newlib: Add FreeBSD files for non LDBL_EQ_DBL support
FreeBSD files to add long double support for i386, aarch64 and x86_64.
This commit is contained in:
parent
41fdb869f9
commit
c630a6a837
|
@ -0,0 +1,207 @@
|
|||
/*-
|
||||
* Copyright (c) 2002 Thomas Moestl <tmm@FreeBSD.org>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD: head/sys/sys/endian.h 208331 2010-05-20 06:16:13Z phk $
|
||||
*/
|
||||
|
||||
#ifndef _SYS_ENDIAN_H_
|
||||
#define _SYS_ENDIAN_H_
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
#include <sys/_types.h>
|
||||
#include <machine/endian.h>
|
||||
|
||||
#ifndef _UINT8_T_DECLARED
|
||||
typedef __uint8_t uint8_t;
|
||||
#define _UINT8_T_DECLARED
|
||||
#endif
|
||||
|
||||
#ifndef _UINT16_T_DECLARED
|
||||
typedef __uint16_t uint16_t;
|
||||
#define _UINT16_T_DECLARED
|
||||
#endif
|
||||
|
||||
#ifndef _UINT32_T_DECLARED
|
||||
typedef __uint32_t uint32_t;
|
||||
#define _UINT32_T_DECLARED
|
||||
#endif
|
||||
|
||||
#ifndef _UINT64_T_DECLARED
|
||||
typedef __uint64_t uint64_t;
|
||||
#define _UINT64_T_DECLARED
|
||||
#endif
|
||||
|
||||
/*
|
||||
* General byte order swapping functions.
|
||||
*/
|
||||
#define bswap16(x) __bswap16(x)
|
||||
#define bswap32(x) __bswap32(x)
|
||||
#define bswap64(x) __bswap64(x)
|
||||
|
||||
/*
|
||||
* Host to big endian, host to little endian, big endian to host, and little
|
||||
* endian to host byte order functions as detailed in byteorder(9).
|
||||
*/
|
||||
#if _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
#define htobe16(x) bswap16((x))
|
||||
#define htobe32(x) bswap32((x))
|
||||
#define htobe64(x) bswap64((x))
|
||||
#define htole16(x) ((uint16_t)(x))
|
||||
#define htole32(x) ((uint32_t)(x))
|
||||
#define htole64(x) ((uint64_t)(x))
|
||||
|
||||
#define be16toh(x) bswap16((x))
|
||||
#define be32toh(x) bswap32((x))
|
||||
#define be64toh(x) bswap64((x))
|
||||
#define le16toh(x) ((uint16_t)(x))
|
||||
#define le32toh(x) ((uint32_t)(x))
|
||||
#define le64toh(x) ((uint64_t)(x))
|
||||
#else /* _BYTE_ORDER != _LITTLE_ENDIAN */
|
||||
#define htobe16(x) ((uint16_t)(x))
|
||||
#define htobe32(x) ((uint32_t)(x))
|
||||
#define htobe64(x) ((uint64_t)(x))
|
||||
#define htole16(x) bswap16((x))
|
||||
#define htole32(x) bswap32((x))
|
||||
#define htole64(x) bswap64((x))
|
||||
|
||||
#define be16toh(x) ((uint16_t)(x))
|
||||
#define be32toh(x) ((uint32_t)(x))
|
||||
#define be64toh(x) ((uint64_t)(x))
|
||||
#define le16toh(x) bswap16((x))
|
||||
#define le32toh(x) bswap32((x))
|
||||
#define le64toh(x) bswap64((x))
|
||||
#endif /* _BYTE_ORDER == _LITTLE_ENDIAN */
|
||||
|
||||
/* Alignment-agnostic encode/decode bytestream to/from little/big endian. */
|
||||
|
||||
static __inline uint16_t
|
||||
be16dec(const void *pp)
|
||||
{
|
||||
uint8_t const *p = (uint8_t const *)pp;
|
||||
|
||||
return (((unsigned)p[0] << 8) | p[1]);
|
||||
}
|
||||
|
||||
static __inline uint32_t
|
||||
be32dec(const void *pp)
|
||||
{
|
||||
uint8_t const *p = (uint8_t const *)pp;
|
||||
|
||||
return (((uint32_t)p[0] << 24) | ((uint32_t)p[1] << 16) |
|
||||
((uint32_t)p[2] << 8) | p[3]);
|
||||
}
|
||||
|
||||
static __inline uint64_t
|
||||
be64dec(const void *pp)
|
||||
{
|
||||
uint8_t const *p = (uint8_t const *)pp;
|
||||
|
||||
return (((uint64_t)be32dec(p) << 32) | be32dec(p + 4));
|
||||
}
|
||||
|
||||
static __inline uint16_t
|
||||
le16dec(const void *pp)
|
||||
{
|
||||
uint8_t const *p = (uint8_t const *)pp;
|
||||
|
||||
return (((unsigned)p[1] << 8) | p[0]);
|
||||
}
|
||||
|
||||
static __inline uint32_t
|
||||
le32dec(const void *pp)
|
||||
{
|
||||
uint8_t const *p = (uint8_t const *)pp;
|
||||
|
||||
return (((uint32_t)p[3] << 24) | ((uint32_t)p[2] << 16) |
|
||||
((uint32_t)p[1] << 8) | p[0]);
|
||||
}
|
||||
|
||||
static __inline uint64_t
|
||||
le64dec(const void *pp)
|
||||
{
|
||||
uint8_t const *p = (uint8_t const *)pp;
|
||||
|
||||
return (((uint64_t)le32dec(p + 4) << 32) | le32dec(p));
|
||||
}
|
||||
|
||||
static __inline void
|
||||
be16enc(void *pp, uint16_t u)
|
||||
{
|
||||
uint8_t *p = (uint8_t *)pp;
|
||||
|
||||
p[0] = (u >> 8) & 0xff;
|
||||
p[1] = u & 0xff;
|
||||
}
|
||||
|
||||
static __inline void
|
||||
be32enc(void *pp, uint32_t u)
|
||||
{
|
||||
uint8_t *p = (uint8_t *)pp;
|
||||
|
||||
p[0] = (u >> 24) & 0xff;
|
||||
p[1] = (u >> 16) & 0xff;
|
||||
p[2] = (u >> 8) & 0xff;
|
||||
p[3] = u & 0xff;
|
||||
}
|
||||
|
||||
static __inline void
|
||||
be64enc(void *pp, uint64_t u)
|
||||
{
|
||||
uint8_t *p = (uint8_t *)pp;
|
||||
|
||||
be32enc(p, (uint32_t)(u >> 32));
|
||||
be32enc(p + 4, (uint32_t)(u & 0xffffffffU));
|
||||
}
|
||||
|
||||
static __inline void
|
||||
le16enc(void *pp, uint16_t u)
|
||||
{
|
||||
uint8_t *p = (uint8_t *)pp;
|
||||
|
||||
p[0] = u & 0xff;
|
||||
p[1] = (u >> 8) & 0xff;
|
||||
}
|
||||
|
||||
static __inline void
|
||||
le32enc(void *pp, uint32_t u)
|
||||
{
|
||||
uint8_t *p = (uint8_t *)pp;
|
||||
|
||||
p[0] = u & 0xff;
|
||||
p[1] = (u >> 8) & 0xff;
|
||||
p[2] = (u >> 16) & 0xff;
|
||||
p[3] = (u >> 24) & 0xff;
|
||||
}
|
||||
|
||||
static __inline void
|
||||
le64enc(void *pp, uint64_t u)
|
||||
{
|
||||
uint8_t *p = (uint8_t *)pp;
|
||||
|
||||
le32enc(p, (uint32_t)(u & 0xffffffffU));
|
||||
le32enc(p + 4, (uint32_t)(u >> 32));
|
||||
}
|
||||
|
||||
#endif /* _SYS_ENDIAN_H_ */
|
|
@ -0,0 +1,58 @@
|
|||
/*-
|
||||
* Copyright (c) 2002, 2003 David Schultz <das@FreeBSD.ORG>
|
||||
* Copyright (2) 2014 The FreeBSD Foundation
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
union IEEEl2bits {
|
||||
long double e;
|
||||
struct {
|
||||
unsigned long manl :64;
|
||||
unsigned long manh :48;
|
||||
unsigned int exp :15;
|
||||
unsigned int sign :1;
|
||||
} bits;
|
||||
/* TODO andrew: Check the packing here */
|
||||
struct {
|
||||
unsigned long manl :64;
|
||||
unsigned long manh :48;
|
||||
unsigned int expsign :16;
|
||||
} xbits;
|
||||
};
|
||||
|
||||
#define LDBL_NBIT 0
|
||||
#define LDBL_IMPLICIT_NBIT
|
||||
#define mask_nbit_l(u) ((void)0)
|
||||
|
||||
#define LDBL_MANH_SIZE 48
|
||||
#define LDBL_MANL_SIZE 64
|
||||
|
||||
#define LDBL_TO_ARRAY32(u, a) do { \
|
||||
(a)[0] = (uint32_t)(u).bits.manl; \
|
||||
(a)[1] = (uint32_t)((u).bits.manl >> 32); \
|
||||
(a)[2] = (uint32_t)(u).bits.manh; \
|
||||
(a)[3] = (uint32_t)((u).bits.manh >> 32); \
|
||||
} while(0)
|
|
@ -0,0 +1,56 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2002, 2003 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
union IEEEl2bits {
|
||||
long double e;
|
||||
struct {
|
||||
unsigned int manl :32;
|
||||
unsigned int manh :32;
|
||||
unsigned int exp :15;
|
||||
unsigned int sign :1;
|
||||
unsigned int junk :16;
|
||||
} bits;
|
||||
struct {
|
||||
unsigned long long man :64;
|
||||
unsigned int expsign :16;
|
||||
unsigned int junk :16;
|
||||
} xbits;
|
||||
};
|
||||
|
||||
#define LDBL_NBIT 0x80000000
|
||||
#define mask_nbit_l(u) ((u).bits.manh &= ~LDBL_NBIT)
|
||||
|
||||
#define LDBL_MANH_SIZE 32
|
||||
#define LDBL_MANL_SIZE 32
|
||||
|
||||
#define LDBL_TO_ARRAY32(u, a) do { \
|
||||
(a)[0] = (uint32_t)(u).bits.manl; \
|
||||
(a)[1] = (uint32_t)(u).bits.manh; \
|
||||
} while (0)
|
|
@ -0,0 +1,57 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2002, 2003 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
union IEEEl2bits {
|
||||
long double e;
|
||||
struct {
|
||||
unsigned int manl :32;
|
||||
unsigned int manh :32;
|
||||
unsigned int exp :15;
|
||||
unsigned int sign :1;
|
||||
unsigned int junkl :16;
|
||||
unsigned int junkh :32;
|
||||
} bits;
|
||||
struct {
|
||||
unsigned long man :64;
|
||||
unsigned int expsign :16;
|
||||
unsigned long junk :48;
|
||||
} xbits;
|
||||
};
|
||||
|
||||
#define LDBL_NBIT 0x80000000
|
||||
#define mask_nbit_l(u) ((u).bits.manh &= ~LDBL_NBIT)
|
||||
|
||||
#define LDBL_MANH_SIZE 32
|
||||
#define LDBL_MANL_SIZE 32
|
||||
|
||||
#define LDBL_TO_ARRAY32(u, a) do { \
|
||||
(a)[0] = (uint32_t)(u).bits.manl; \
|
||||
(a)[1] = (uint32_t)(u).bits.manh; \
|
||||
} while (0)
|
|
@ -0,0 +1,89 @@
|
|||
/* from: FreeBSD: head/lib/msun/src/e_acosh.c 176451 2008-02-22 02:30:36Z das */
|
||||
|
||||
/* @(#)e_acosh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See e_acosh.c for complete comments.
|
||||
*
|
||||
* Converted to long double by David Schultz <das@FreeBSD.ORG> and
|
||||
* Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* EXP_LARGE is the threshold above which we use acosh(x) ~= log(2x). */
|
||||
#if LDBL_MANT_DIG == 64
|
||||
#define EXP_LARGE 34
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
#define EXP_LARGE 58
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
/* We also require the usual expsign encoding. */
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const double
|
||||
one = 1.0;
|
||||
|
||||
#if LDBL_MANT_DIG == 64
|
||||
static const union IEEEl2bits
|
||||
u_ln2 = LD80C(0xb17217f7d1cf79ac, -1, 6.93147180559945309417e-1L);
|
||||
#define ln2 u_ln2.e
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
static const long double
|
||||
ln2 = 6.93147180559945309417232121458176568e-1L; /* 0x162e42fefa39ef35793c7673007e6.0p-113 */
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
long double
|
||||
acoshl(long double x)
|
||||
{
|
||||
long double t;
|
||||
int16_t hx;
|
||||
|
||||
ENTERI();
|
||||
GET_LDBL_EXPSIGN(hx, x);
|
||||
if (hx < 0x3fff) { /* x < 1, or misnormal */
|
||||
RETURNI((x-x)/(x-x));
|
||||
} else if (hx >= BIAS + EXP_LARGE) { /* x >= LARGE */
|
||||
if (hx >= 0x7fff) { /* x is inf, NaN or misnormal */
|
||||
RETURNI(x+x);
|
||||
} else
|
||||
RETURNI(logl(x)+ln2); /* acosh(huge)=log(2x), or misnormal */
|
||||
} else if (hx == 0x3fff && x == 1) {
|
||||
RETURNI(0.0); /* acosh(1) = 0 */
|
||||
} else if (hx >= 0x4000) { /* LARGE > x >= 2, or misnormal */
|
||||
t=x*x;
|
||||
RETURNI(logl(2.0*x-one/(x+sqrtl(t-one))));
|
||||
} else { /* 1<x<2 */
|
||||
t = x-one;
|
||||
RETURNI(log1pl(t+sqrtl(2.0*t+t*t)));
|
||||
}
|
||||
}
|
|
@ -0,0 +1,87 @@
|
|||
|
||||
/* @(#)e_acos.c 1.3 95/01/18 */
|
||||
/* FreeBSD: head/lib/msun/src/e_acos.c 176451 2008-02-22 02:30:36Z das */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See comments in e_acos.c.
|
||||
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "invtrig.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const long double
|
||||
one= 1.00000000000000000000e+00;
|
||||
|
||||
#ifdef __i386__
|
||||
/* XXX Work around the fact that gcc truncates long double constants on i386 */
|
||||
static volatile double
|
||||
pi1 = 3.14159265358979311600e+00, /* 0x1.921fb54442d18p+1 */
|
||||
pi2 = 1.22514845490862001043e-16; /* 0x1.1a80000000000p-53 */
|
||||
#define pi ((long double)pi1 + pi2)
|
||||
#else
|
||||
static const long double
|
||||
pi = 3.14159265358979323846264338327950280e+00L;
|
||||
#endif
|
||||
|
||||
long double
|
||||
acosl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
long double z,p,q,r,w,s,c,df;
|
||||
int16_t expsign, expt;
|
||||
u.e = x;
|
||||
expsign = u.xbits.expsign;
|
||||
expt = expsign & 0x7fff;
|
||||
if(expt >= BIAS) { /* |x| >= 1 */
|
||||
if(expt==BIAS && ((u.bits.manh&~LDBL_NBIT)|u.bits.manl)==0) {
|
||||
if (expsign>0) return 0.0; /* acos(1) = 0 */
|
||||
else return pi+2.0*pio2_lo; /* acos(-1)= pi */
|
||||
}
|
||||
return (x-x)/(x-x); /* acos(|x|>1) is NaN */
|
||||
}
|
||||
if(expt<BIAS-1) { /* |x| < 0.5 */
|
||||
if(expt<ACOS_CONST) return pio2_hi+pio2_lo;/*x tiny: acosl=pi/2*/
|
||||
z = x*x;
|
||||
p = P(z);
|
||||
q = Q(z);
|
||||
r = p/q;
|
||||
return pio2_hi - (x - (pio2_lo-x*r));
|
||||
} else if (expsign<0) { /* x < -0.5 */
|
||||
z = (one+x)*0.5;
|
||||
p = P(z);
|
||||
q = Q(z);
|
||||
s = sqrtl(z);
|
||||
r = p/q;
|
||||
w = r*s-pio2_lo;
|
||||
return pi - 2.0*(s+w);
|
||||
} else { /* x > 0.5 */
|
||||
z = (one-x)*0.5;
|
||||
s = sqrtl(z);
|
||||
u.e = s;
|
||||
u.bits.manl = 0;
|
||||
df = u.e;
|
||||
c = (z-df*df)/(s+df);
|
||||
p = P(z);
|
||||
q = Q(z);
|
||||
r = p/q;
|
||||
w = r*s+c;
|
||||
return 2.0*(df+w);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,77 @@
|
|||
|
||||
/* @(#)e_asin.c 1.3 95/01/18 */
|
||||
/* FreeBSD: head/lib/msun/src/e_asin.c 176451 2008-02-22 02:30:36Z das */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See comments in e_asin.c.
|
||||
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "invtrig.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const long double
|
||||
one = 1.00000000000000000000e+00,
|
||||
huge = 1.000e+300;
|
||||
|
||||
long double
|
||||
asinl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
long double t=0.0,w,p,q,c,r,s;
|
||||
int16_t expsign, expt;
|
||||
u.e = x;
|
||||
expsign = u.xbits.expsign;
|
||||
expt = expsign & 0x7fff;
|
||||
if(expt >= BIAS) { /* |x|>= 1 */
|
||||
if(expt==BIAS && ((u.bits.manh&~LDBL_NBIT)|u.bits.manl)==0)
|
||||
/* asin(1)=+-pi/2 with inexact */
|
||||
return x*pio2_hi+x*pio2_lo;
|
||||
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
|
||||
} else if (expt<BIAS-1) { /* |x|<0.5 */
|
||||
if(expt<ASIN_LINEAR) { /* if |x| is small, asinl(x)=x */
|
||||
if(huge+x>one) return x;/* return x with inexact if x!=0*/
|
||||
}
|
||||
t = x*x;
|
||||
p = P(t);
|
||||
q = Q(t);
|
||||
w = p/q;
|
||||
return x+x*w;
|
||||
}
|
||||
/* 1> |x|>= 0.5 */
|
||||
w = one-fabsl(x);
|
||||
t = w*0.5;
|
||||
p = P(t);
|
||||
q = Q(t);
|
||||
s = sqrtl(t);
|
||||
if(u.bits.manh>=THRESH) { /* if |x| is close to 1 */
|
||||
w = p/q;
|
||||
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
|
||||
} else {
|
||||
u.e = s;
|
||||
u.bits.manl = 0;
|
||||
w = u.e;
|
||||
c = (t-w*w)/(s+w);
|
||||
r = p/q;
|
||||
p = 2.0*s*r-(pio2_lo-2.0*c);
|
||||
q = pio4_hi-2.0*w;
|
||||
t = pio4_hi-(p-q);
|
||||
}
|
||||
if(expsign>0) return t; else return -t;
|
||||
}
|
|
@ -0,0 +1,120 @@
|
|||
|
||||
/* @(#)e_atan2.c 1.3 95/01/18 */
|
||||
/* FreeBSD: head/lib/msun/src/e_atan2.c 176451 2008-02-22 02:30:36Z das */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See comments in e_atan2.c.
|
||||
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "invtrig.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static volatile long double
|
||||
tiny = 1.0e-300;
|
||||
static const long double
|
||||
zero = 0.0;
|
||||
|
||||
#ifdef __i386__
|
||||
/* XXX Work around the fact that gcc truncates long double constants on i386 */
|
||||
static volatile double
|
||||
pi1 = 3.14159265358979311600e+00, /* 0x1.921fb54442d18p+1 */
|
||||
pi2 = 1.22514845490862001043e-16; /* 0x1.1a80000000000p-53 */
|
||||
#define pi ((long double)pi1 + pi2)
|
||||
#else
|
||||
static const long double
|
||||
pi = 3.14159265358979323846264338327950280e+00L;
|
||||
#endif
|
||||
|
||||
long double
|
||||
atan2l(long double y, long double x)
|
||||
{
|
||||
union IEEEl2bits ux, uy;
|
||||
long double z;
|
||||
int32_t k,m;
|
||||
int16_t exptx, expsignx, expty, expsigny;
|
||||
|
||||
uy.e = y;
|
||||
expsigny = uy.xbits.expsign;
|
||||
expty = expsigny & 0x7fff;
|
||||
ux.e = x;
|
||||
expsignx = ux.xbits.expsign;
|
||||
exptx = expsignx & 0x7fff;
|
||||
|
||||
if ((exptx==BIAS+LDBL_MAX_EXP &&
|
||||
((ux.bits.manh&~LDBL_NBIT)|ux.bits.manl)!=0) || /* x is NaN */
|
||||
(expty==BIAS+LDBL_MAX_EXP &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)!=0)) /* y is NaN */
|
||||
return nan_mix(x, y);
|
||||
if (expsignx==BIAS && ((ux.bits.manh&~LDBL_NBIT)|ux.bits.manl)==0)
|
||||
return atanl(y); /* x=1.0 */
|
||||
m = ((expsigny>>15)&1)|((expsignx>>14)&2); /* 2*sign(x)+sign(y) */
|
||||
|
||||
/* when y = 0 */
|
||||
if(expty==0 && ((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)==0) {
|
||||
switch(m) {
|
||||
case 0:
|
||||
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
||||
case 2: return pi+tiny;/* atan(+0,-anything) = pi */
|
||||
case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
|
||||
}
|
||||
}
|
||||
/* when x = 0 */
|
||||
if(exptx==0 && ((ux.bits.manh&~LDBL_NBIT)|ux.bits.manl)==0)
|
||||
return (expsigny<0)? -pio2_hi-tiny: pio2_hi+tiny;
|
||||
|
||||
/* when x is INF */
|
||||
if(exptx==BIAS+LDBL_MAX_EXP) {
|
||||
if(expty==BIAS+LDBL_MAX_EXP) {
|
||||
switch(m) {
|
||||
case 0: return pio2_hi*0.5+tiny;/* atan(+INF,+INF) */
|
||||
case 1: return -pio2_hi*0.5-tiny;/* atan(-INF,+INF) */
|
||||
case 2: return 1.5*pio2_hi+tiny;/*atan(+INF,-INF)*/
|
||||
case 3: return -1.5*pio2_hi-tiny;/*atan(-INF,-INF)*/
|
||||
}
|
||||
} else {
|
||||
switch(m) {
|
||||
case 0: return zero ; /* atan(+...,+INF) */
|
||||
case 1: return -zero ; /* atan(-...,+INF) */
|
||||
case 2: return pi+tiny ; /* atan(+...,-INF) */
|
||||
case 3: return -pi-tiny ; /* atan(-...,-INF) */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* when y is INF */
|
||||
if(expty==BIAS+LDBL_MAX_EXP)
|
||||
return (expsigny<0)? -pio2_hi-tiny: pio2_hi+tiny;
|
||||
|
||||
/* compute y/x */
|
||||
k = expty-exptx;
|
||||
if(k > LDBL_MANT_DIG+2) { /* |y/x| huge */
|
||||
z=pio2_hi+pio2_lo;
|
||||
m&=1;
|
||||
}
|
||||
else if(expsignx<0&&k<-LDBL_MANT_DIG-2) z=0.0; /* |y/x| tiny, x<0 */
|
||||
else z=atanl(fabsl(y/x)); /* safe to do y/x */
|
||||
switch (m) {
|
||||
case 0: return z ; /* atan(+,+) */
|
||||
case 1: return -z ; /* atan(-,+) */
|
||||
case 2: return pi-(z-pi_lo);/* atan(+,-) */
|
||||
default: /* case 3 */
|
||||
return (z-pi_lo)-pi;/* atan(-,-) */
|
||||
}
|
||||
}
|
|
@ -0,0 +1,74 @@
|
|||
/* from: FreeBSD: head/lib/msun/src/e_atanh.c 176451 2008-02-22 02:30:36Z das */
|
||||
|
||||
/* @(#)e_atanh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See e_atanh.c for complete comments.
|
||||
*
|
||||
* Converted to long double by David Schultz <das@FreeBSD.ORG> and
|
||||
* Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* EXP_TINY is the threshold below which we use atanh(x) ~= x. */
|
||||
#if LDBL_MANT_DIG == 64
|
||||
#define EXP_TINY -34
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
#define EXP_TINY -58
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
/* We also require the usual expsign encoding. */
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const double one = 1.0, huge = 1e300;
|
||||
static const double zero = 0.0;
|
||||
|
||||
long double
|
||||
atanhl(long double x)
|
||||
{
|
||||
long double t;
|
||||
uint16_t hx, ix;
|
||||
|
||||
ENTERI();
|
||||
GET_LDBL_EXPSIGN(hx, x);
|
||||
ix = hx & 0x7fff;
|
||||
if (ix >= 0x3fff) /* |x| >= 1, or NaN or misnormal */
|
||||
RETURNI(fabsl(x) == 1 ? x / zero : (x - x) / (x - x));
|
||||
if (ix < BIAS + EXP_TINY && (huge + x) > zero)
|
||||
RETURNI(x); /* x is tiny */
|
||||
SET_LDBL_EXPSIGN(x, ix);
|
||||
if (ix < 0x3ffe) { /* |x| < 0.5, or misnormal */
|
||||
t = x+x;
|
||||
t = 0.5*log1pl(t+t*x/(one-x));
|
||||
} else
|
||||
t = 0.5*log1pl((x+x)/(one-x));
|
||||
RETURNI((hx & 0x8000) == 0 ? t : -t);
|
||||
}
|
|
@ -0,0 +1,132 @@
|
|||
/* from: FreeBSD: head/lib/msun/src/e_coshl.c XXX */
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See e_cosh.c for complete comments.
|
||||
*
|
||||
* Converted to long double by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "k_expl.h"
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
/* We also require the usual expsign encoding. */
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const volatile long double huge = 0x1p10000L, tiny = 0x1p-10000L;
|
||||
#if LDBL_MANT_DIG == 64
|
||||
/*
|
||||
* Domain [-1, 1], range ~[-1.8211e-21, 1.8211e-21]:
|
||||
* |cosh(x) - c(x)| < 2**-68.8
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
C4u = LD80C(0xaaaaaaaaaaaaac78, -5, 4.16666666666666682297e-2L);
|
||||
#define C4 C4u.e
|
||||
static const double
|
||||
C2 = 0.5,
|
||||
C6 = 1.3888888888888616e-3, /* 0x16c16c16c16b99.0p-62 */
|
||||
C8 = 2.4801587301767953e-5, /* 0x1a01a01a027061.0p-68 */
|
||||
C10 = 2.7557319163300398e-7, /* 0x127e4fb6c9b55f.0p-74 */
|
||||
C12 = 2.0876768371393075e-9, /* 0x11eed99406a3f4.0p-81 */
|
||||
C14 = 1.1469537039374480e-11, /* 0x1938c67cd18c48.0p-89 */
|
||||
C16 = 4.8473490896852041e-14; /* 0x1b49c429701e45.0p-97 */
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
/*
|
||||
* Domain [-1, 1], range ~[-2.3194e-37, 2.3194e-37]:
|
||||
* |cosh(x) - c(x)| < 2**-121.69
|
||||
*/
|
||||
static const long double
|
||||
C4 = 4.16666666666666666666666666666666225e-2L, /* 0x1555555555555555555555555554e.0p-117L */
|
||||
C6 = 1.38888888888888888888888888889434831e-3L, /* 0x16c16c16c16c16c16c16c16c1dd7a.0p-122L */
|
||||
C8 = 2.48015873015873015873015871870962089e-5L, /* 0x1a01a01a01a01a01a01a017af2756.0p-128L */
|
||||
C10 = 2.75573192239858906525574318600800201e-7L, /* 0x127e4fb7789f5c72ef01c8a040640.0p-134L */
|
||||
C12 = 2.08767569878680989791444691755468269e-9L, /* 0x11eed8eff8d897b543d0679607399.0p-141L */
|
||||
C14= 1.14707455977297247387801189650495351e-11L, /* 0x193974a8c07c9d24ae169a7fa9b54.0p-149L */
|
||||
C16 = 4.77947733238737883626416876486279985e-14L; /* 0x1ae7f3e733b814d4e1b90f5727fe4.0p-157L */
|
||||
static const double
|
||||
C2 = 0.5,
|
||||
C18 = 1.5619206968597871e-16, /* 0x16827863b9900b.0p-105 */
|
||||
C20 = 4.1103176218528049e-19, /* 0x1e542ba3d3c269.0p-114 */
|
||||
C22 = 8.8967926401641701e-22, /* 0x10ce399542a014.0p-122 */
|
||||
C24 = 1.6116681626523904e-24, /* 0x1f2c981d1f0cb7.0p-132 */
|
||||
C26 = 2.5022374732804632e-27; /* 0x18c7ecf8b2c4a0.0p-141 */
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif /* LDBL_MANT_DIG == 64 */
|
||||
|
||||
/* log(2**16385 - 0.5) rounded up: */
|
||||
static const float
|
||||
o_threshold = 1.13572168e4; /* 0xb174de.0p-10 */
|
||||
|
||||
long double
|
||||
coshl(long double x)
|
||||
{
|
||||
long double hi,lo,x2,x4;
|
||||
#if LDBL_MANT_DIG == 113
|
||||
double dx2;
|
||||
#endif
|
||||
uint16_t ix;
|
||||
|
||||
GET_LDBL_EXPSIGN(ix,x);
|
||||
ix &= 0x7fff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7fff) return x*x;
|
||||
|
||||
ENTERI();
|
||||
|
||||
/* |x| < 1, return 1 or c(x) */
|
||||
if(ix<0x3fff) {
|
||||
if (ix<BIAS-(LDBL_MANT_DIG+1)/2) /* |x| < TINY */
|
||||
RETURNI(1+tiny); /* cosh(tiny) = 1(+) with inexact */
|
||||
x2 = x*x;
|
||||
#if LDBL_MANT_DIG == 64
|
||||
x4 = x2*x2;
|
||||
RETURNI(((C16*x2 + C14)*x4 + (C12*x2 + C10))*(x4*x4*x2) +
|
||||
((C8*x2 + C6)*x2 + C4)*x4 + C2*x2 + 1);
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
dx2 = x2;
|
||||
RETURNI((((((((((((C26*dx2 + C24)*dx2 + C22)*dx2 +
|
||||
C20)*x2 + C18)*x2 +
|
||||
C16)*x2 + C14)*x2 + C12)*x2 + C10)*x2 + C8)*x2 + C6)*x2 +
|
||||
C4)*(x2*x2) + C2*x2 + 1);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* |x| in [1, 64), return accurate exp(|x|)/2+1/exp(|x|)/2 */
|
||||
if (ix < 0x4005) {
|
||||
k_hexpl(fabsl(x), &hi, &lo);
|
||||
RETURNI(lo + 0.25/(hi + lo) + hi);
|
||||
}
|
||||
|
||||
/* |x| in [64, o_threshold], return correctly-overflowing exp(|x|)/2 */
|
||||
if (fabsl(x) <= o_threshold)
|
||||
RETURNI(hexpl(fabsl(x)));
|
||||
|
||||
/* |x| > o_threshold, cosh(x) overflow */
|
||||
RETURNI(huge*huge);
|
||||
}
|
|
@ -0,0 +1,149 @@
|
|||
/* @(#)e_fmod.c 1.3 95/01/18 */
|
||||
/*-
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
#if LDBL_MANL_SIZE > 32
|
||||
typedef uint64_t manl_t;
|
||||
#else
|
||||
typedef uint32_t manl_t;
|
||||
#endif
|
||||
|
||||
#if LDBL_MANH_SIZE > 32
|
||||
typedef uint64_t manh_t;
|
||||
#else
|
||||
typedef uint32_t manh_t;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* These macros add and remove an explicit integer bit in front of the
|
||||
* fractional mantissa, if the architecture doesn't have such a bit by
|
||||
* default already.
|
||||
*/
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE))
|
||||
#define HFRAC_BITS LDBL_MANH_SIZE
|
||||
#else
|
||||
#define SET_NBIT(hx) (hx)
|
||||
#define HFRAC_BITS (LDBL_MANH_SIZE - 1)
|
||||
#endif
|
||||
|
||||
#define MANL_SHIFT (LDBL_MANL_SIZE - 1)
|
||||
|
||||
static const long double one = 1.0, Zero[] = {0.0, -0.0,};
|
||||
|
||||
/*
|
||||
* fmodl(x,y)
|
||||
* Return x mod y in exact arithmetic
|
||||
* Method: shift and subtract
|
||||
*
|
||||
* Assumptions:
|
||||
* - The low part of the mantissa fits in a manl_t exactly.
|
||||
* - The high part of the mantissa fits in an int64_t with enough room
|
||||
* for an explicit integer bit in front of the fractional bits.
|
||||
*/
|
||||
long double
|
||||
fmodl(long double x, long double y)
|
||||
{
|
||||
union IEEEl2bits ux, uy;
|
||||
int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */
|
||||
manh_t hy;
|
||||
manl_t lx,ly,lz;
|
||||
int ix,iy,n,sx;
|
||||
|
||||
ux.e = x;
|
||||
uy.e = y;
|
||||
sx = ux.bits.sign;
|
||||
|
||||
/* purge off exception values */
|
||||
if((uy.bits.exp|uy.bits.manh|uy.bits.manl)==0 || /* y=0 */
|
||||
(ux.bits.exp == BIAS + LDBL_MAX_EXP) || /* or x not finite */
|
||||
(uy.bits.exp == BIAS + LDBL_MAX_EXP &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)!=0)) /* or y is NaN */
|
||||
return nan_mix_op(x, y, *)/nan_mix_op(x, y, *);
|
||||
if(ux.bits.exp<=uy.bits.exp) {
|
||||
if((ux.bits.exp<uy.bits.exp) ||
|
||||
(ux.bits.manh<=uy.bits.manh &&
|
||||
(ux.bits.manh<uy.bits.manh ||
|
||||
ux.bits.manl<uy.bits.manl))) {
|
||||
return x; /* |x|<|y| return x or x-y */
|
||||
}
|
||||
if(ux.bits.manh==uy.bits.manh && ux.bits.manl==uy.bits.manl) {
|
||||
return Zero[sx]; /* |x|=|y| return x*0*/
|
||||
}
|
||||
}
|
||||
|
||||
/* determine ix = ilogb(x) */
|
||||
if(ux.bits.exp == 0) { /* subnormal x */
|
||||
ux.e *= 0x1.0p512;
|
||||
ix = ux.bits.exp - (BIAS + 512);
|
||||
} else {
|
||||
ix = ux.bits.exp - BIAS;
|
||||
}
|
||||
|
||||
/* determine iy = ilogb(y) */
|
||||
if(uy.bits.exp == 0) { /* subnormal y */
|
||||
uy.e *= 0x1.0p512;
|
||||
iy = uy.bits.exp - (BIAS + 512);
|
||||
} else {
|
||||
iy = uy.bits.exp - BIAS;
|
||||
}
|
||||
|
||||
/* set up {hx,lx}, {hy,ly} and align y to x */
|
||||
hx = SET_NBIT(ux.bits.manh);
|
||||
hy = SET_NBIT(uy.bits.manh);
|
||||
lx = ux.bits.manl;
|
||||
ly = uy.bits.manl;
|
||||
|
||||
/* fix point fmod */
|
||||
n = ix - iy;
|
||||
|
||||
while(n--) {
|
||||
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
||||
if(hz<0){hx = hx+hx+(lx>>MANL_SHIFT); lx = lx+lx;}
|
||||
else {
|
||||
if ((hz|lz)==0) /* return sign(x)*0 */
|
||||
return Zero[sx];
|
||||
hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz;
|
||||
}
|
||||
}
|
||||
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
||||
if(hz>=0) {hx=hz;lx=lz;}
|
||||
|
||||
/* convert back to floating value and restore the sign */
|
||||
if((hx|lx)==0) /* return sign(x)*0 */
|
||||
return Zero[sx];
|
||||
while(hx<(1ULL<<HFRAC_BITS)) { /* normalize x */
|
||||
hx = hx+hx+(lx>>MANL_SHIFT); lx = lx+lx;
|
||||
iy -= 1;
|
||||
}
|
||||
ux.bits.manh = hx; /* The mantissa is truncated here if needed. */
|
||||
ux.bits.manl = lx;
|
||||
if (iy < LDBL_MIN_EXP) {
|
||||
ux.bits.exp = iy + (BIAS + 512);
|
||||
ux.e *= 0x1p-512;
|
||||
} else {
|
||||
ux.bits.exp = iy + BIAS;
|
||||
}
|
||||
x = ux.e * one; /* create necessary signal */
|
||||
return x; /* exact output */
|
||||
}
|
|
@ -0,0 +1,25 @@
|
|||
/* @(#)e_lgamma.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
long double
|
||||
lgammal(long double x)
|
||||
{
|
||||
return lgammal_r(x,&signgam);
|
||||
}
|
|
@ -0,0 +1,40 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2008 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <math.h>
|
||||
|
||||
long double
|
||||
remainderl(long double x, long double y)
|
||||
{
|
||||
int quo;
|
||||
|
||||
return (remquol(x, y, &quo));
|
||||
}
|
|
@ -0,0 +1,134 @@
|
|||
/* from: FreeBSD: head/lib/msun/src/e_sinhl.c XXX */
|
||||
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See e_sinh.c for complete comments.
|
||||
*
|
||||
* Converted to long double by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "k_expl.h"
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
/* We also require the usual expsign encoding. */
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const long double shuge = 0x1p16383L;
|
||||
#if LDBL_MANT_DIG == 64
|
||||
/*
|
||||
* Domain [-1, 1], range ~[-6.6749e-22, 6.6749e-22]:
|
||||
* |sinh(x)/x - s(x)| < 2**-70.3
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
S3u = LD80C(0xaaaaaaaaaaaaaaaa, -3, 1.66666666666666666658e-1L);
|
||||
#define S3 S3u.e
|
||||
static const double
|
||||
S5 = 8.3333333333333332e-3, /* 0x11111111111111.0p-59 */
|
||||
S7 = 1.9841269841270074e-4, /* 0x1a01a01a01a070.0p-65 */
|
||||
S9 = 2.7557319223873889e-6, /* 0x171de3a5565fe6.0p-71 */
|
||||
S11 = 2.5052108406704084e-8, /* 0x1ae6456857530f.0p-78 */
|
||||
S13 = 1.6059042748655297e-10, /* 0x161245fa910697.0p-85 */
|
||||
S15 = 7.6470006914396920e-13, /* 0x1ae7ce4eff2792.0p-93 */
|
||||
S17 = 2.8346142308424267e-15; /* 0x19882ce789ffc6.0p-101 */
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
/*
|
||||
* Domain [-1, 1], range ~[-2.9673e-36, 2.9673e-36]:
|
||||
* |sinh(x)/x - s(x)| < 2**-118.0
|
||||
*/
|
||||
static const long double
|
||||
S3 = 1.66666666666666666666666666666666033e-1L, /* 0x1555555555555555555555555553b.0p-115L */
|
||||
S5 = 8.33333333333333333333333333337643193e-3L, /* 0x111111111111111111111111180f5.0p-119L */
|
||||
S7 = 1.98412698412698412698412697391263199e-4L, /* 0x1a01a01a01a01a01a01a0176aad11.0p-125L */
|
||||
S9 = 2.75573192239858906525574406205464218e-6L, /* 0x171de3a556c7338faac243aaa9592.0p-131L */
|
||||
S11 = 2.50521083854417187749675637460977997e-8L, /* 0x1ae64567f544e38fe59b3380d7413.0p-138L */
|
||||
S13 = 1.60590438368216146368737762431552702e-10L, /* 0x16124613a86d098059c7620850fc2.0p-145L */
|
||||
S15 = 7.64716373181980539786802470969096440e-13L, /* 0x1ae7f3e733b814193af09ce723043.0p-153L */
|
||||
S17 = 2.81145725434775409870584280722701574e-15L; /* 0x1952c77030c36898c3fd0b6dfc562.0p-161L */
|
||||
static const double
|
||||
S19= 8.2206352435411005e-18, /* 0x12f49b4662b86d.0p-109 */
|
||||
S21= 1.9572943931418891e-20, /* 0x171b8f2fab9628.0p-118 */
|
||||
S23 = 3.8679983530666939e-23, /* 0x17617002b73afc.0p-127 */
|
||||
S25 = 6.5067867911512749e-26; /* 0x1423352626048a.0p-136 */
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif /* LDBL_MANT_DIG == 64 */
|
||||
|
||||
/* log(2**16385 - 0.5) rounded up: */
|
||||
static const float
|
||||
o_threshold = 1.13572168e4; /* 0xb174de.0p-10 */
|
||||
|
||||
long double
|
||||
sinhl(long double x)
|
||||
{
|
||||
long double hi,lo,x2,x4;
|
||||
#if LDBL_MANT_DIG == 113
|
||||
double dx2;
|
||||
#endif
|
||||
double s;
|
||||
int16_t ix,jx;
|
||||
|
||||
GET_LDBL_EXPSIGN(jx,x);
|
||||
ix = jx&0x7fff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7fff) return x+x;
|
||||
|
||||
ENTERI();
|
||||
|
||||
s = 1;
|
||||
if (jx<0) s = -1;
|
||||
|
||||
/* |x| < 64, return x, s(x), or accurate s*(exp(|x|)/2-1/exp(|x|)/2) */
|
||||
if (ix<0x4005) { /* |x|<64 */
|
||||
if (ix<BIAS-(LDBL_MANT_DIG+1)/2) /* |x|<TINY */
|
||||
if(shuge+x>1) RETURNI(x); /* sinh(tiny) = tiny with inexact */
|
||||
if (ix<0x3fff) { /* |x|<1 */
|
||||
x2 = x*x;
|
||||
#if LDBL_MANT_DIG == 64
|
||||
x4 = x2*x2;
|
||||
RETURNI(((S17*x2 + S15)*x4 + (S13*x2 + S11))*(x2*x*x4*x4) +
|
||||
((S9*x2 + S7)*x2 + S5)*(x2*x*x2) + S3*(x2*x) + x);
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
dx2 = x2;
|
||||
RETURNI(((((((((((S25*dx2 + S23)*dx2 +
|
||||
S21)*x2 + S19)*x2 +
|
||||
S17)*x2 + S15)*x2 + S13)*x2 + S11)*x2 + S9)*x2 + S7)*x2 +
|
||||
S5)* (x2*x*x2) +
|
||||
S3*(x2*x) + x);
|
||||
#endif
|
||||
}
|
||||
k_hexpl(fabsl(x), &hi, &lo);
|
||||
RETURNI(s*(lo - 0.25/(hi + lo) + hi));
|
||||
}
|
||||
|
||||
/* |x| in [64, o_threshold], return correctly-overflowing s*exp(|x|)/2 */
|
||||
if (fabsl(x) <= o_threshold)
|
||||
RETURNI(s*hexpl(fabsl(x)));
|
||||
|
||||
/* |x| > o_threshold, sinh(x) overflow */
|
||||
return x*shuge;
|
||||
}
|
|
@ -0,0 +1,82 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2003 Mike Barcroft <mike@FreeBSD.org>
|
||||
* Copyright (c) 2002 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#ifndef _FPMATH_H_
|
||||
#define _FPMATH_H_
|
||||
|
||||
#include <sys/endian.h>
|
||||
#include "_fpmath.h"
|
||||
|
||||
#ifndef _IEEE_WORD_ORDER
|
||||
#define _IEEE_WORD_ORDER _BYTE_ORDER
|
||||
#endif
|
||||
|
||||
union IEEEf2bits {
|
||||
float f;
|
||||
struct {
|
||||
#if _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
unsigned int man :23;
|
||||
unsigned int exp :8;
|
||||
unsigned int sign :1;
|
||||
#else /* _BIG_ENDIAN */
|
||||
unsigned int sign :1;
|
||||
unsigned int exp :8;
|
||||
unsigned int man :23;
|
||||
#endif
|
||||
} bits;
|
||||
};
|
||||
|
||||
#define DBL_MANH_SIZE 20
|
||||
#define DBL_MANL_SIZE 32
|
||||
|
||||
union IEEEd2bits {
|
||||
double d;
|
||||
struct {
|
||||
#if _BYTE_ORDER == _LITTLE_ENDIAN
|
||||
#if _IEEE_WORD_ORDER == _LITTLE_ENDIAN
|
||||
unsigned int manl :32;
|
||||
#endif
|
||||
unsigned int manh :20;
|
||||
unsigned int exp :11;
|
||||
unsigned int sign :1;
|
||||
#if _IEEE_WORD_ORDER == _BIG_ENDIAN
|
||||
unsigned int manl :32;
|
||||
#endif
|
||||
#else /* _BIG_ENDIAN */
|
||||
unsigned int sign :1;
|
||||
unsigned int exp :11;
|
||||
unsigned int manh :20;
|
||||
unsigned int manl :32;
|
||||
#endif
|
||||
} bits;
|
||||
};
|
||||
|
||||
#endif /* !_FPMATH_H */
|
|
@ -0,0 +1,924 @@
|
|||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* from: @(#)fdlibm.h 5.1 93/09/24
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#ifndef _MATH_PRIVATE_H_
|
||||
#define _MATH_PRIVATE_H_
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <machine/endian.h>
|
||||
|
||||
/*
|
||||
* The original fdlibm code used statements like:
|
||||
* n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
||||
* ix0 = *(n0+(int*)&x); * high word of x *
|
||||
* ix1 = *((1-n0)+(int*)&x); * low word of x *
|
||||
* to dig two 32 bit words out of the 64 bit IEEE floating point
|
||||
* value. That is non-ANSI, and, moreover, the gcc instruction
|
||||
* scheduler gets it wrong. We instead use the following macros.
|
||||
* Unlike the original code, we determine the endianness at compile
|
||||
* time, not at run time; I don't see much benefit to selecting
|
||||
* endianness at run time.
|
||||
*/
|
||||
|
||||
/*
|
||||
* A union which permits us to convert between a double and two 32 bit
|
||||
* ints.
|
||||
*/
|
||||
|
||||
#ifdef __arm__
|
||||
#if defined(__VFP_FP__) || defined(__ARM_EABI__)
|
||||
#define IEEE_WORD_ORDER BYTE_ORDER
|
||||
#else
|
||||
#define IEEE_WORD_ORDER BIG_ENDIAN
|
||||
#endif
|
||||
#else /* __arm__ */
|
||||
#define IEEE_WORD_ORDER BYTE_ORDER
|
||||
#endif
|
||||
|
||||
/* A union which permits us to convert between a long double and
|
||||
four 32 bit ints. */
|
||||
|
||||
#if IEEE_WORD_ORDER == BIG_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
long double value;
|
||||
struct {
|
||||
u_int32_t mswhi;
|
||||
u_int32_t mswlo;
|
||||
u_int32_t lswhi;
|
||||
u_int32_t lswlo;
|
||||
} parts32;
|
||||
struct {
|
||||
u_int64_t msw;
|
||||
u_int64_t lsw;
|
||||
} parts64;
|
||||
} ieee_quad_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
#if IEEE_WORD_ORDER == LITTLE_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
long double value;
|
||||
struct {
|
||||
u_int32_t lswlo;
|
||||
u_int32_t lswhi;
|
||||
u_int32_t mswlo;
|
||||
u_int32_t mswhi;
|
||||
} parts32;
|
||||
struct {
|
||||
u_int64_t lsw;
|
||||
u_int64_t msw;
|
||||
} parts64;
|
||||
} ieee_quad_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
#if IEEE_WORD_ORDER == BIG_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t msw;
|
||||
u_int32_t lsw;
|
||||
} parts;
|
||||
struct
|
||||
{
|
||||
u_int64_t w;
|
||||
} xparts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
#if IEEE_WORD_ORDER == LITTLE_ENDIAN
|
||||
|
||||
typedef union
|
||||
{
|
||||
double value;
|
||||
struct
|
||||
{
|
||||
u_int32_t lsw;
|
||||
u_int32_t msw;
|
||||
} parts;
|
||||
struct
|
||||
{
|
||||
u_int64_t w;
|
||||
} xparts;
|
||||
} ieee_double_shape_type;
|
||||
|
||||
#endif
|
||||
|
||||
/* Get two 32 bit ints from a double. */
|
||||
|
||||
#define EXTRACT_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix0) = ew_u.parts.msw; \
|
||||
(ix1) = ew_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Get a 64-bit int from a double. */
|
||||
#define EXTRACT_WORD64(ix,d) \
|
||||
do { \
|
||||
ieee_double_shape_type ew_u; \
|
||||
ew_u.value = (d); \
|
||||
(ix) = ew_u.xparts.w; \
|
||||
} while (0)
|
||||
|
||||
/* Get the more significant 32 bit int from a double. */
|
||||
|
||||
#define GET_HIGH_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gh_u; \
|
||||
gh_u.value = (d); \
|
||||
(i) = gh_u.parts.msw; \
|
||||
} while (0)
|
||||
|
||||
/* Get the less significant 32 bit int from a double. */
|
||||
|
||||
#define GET_LOW_WORD(i,d) \
|
||||
do { \
|
||||
ieee_double_shape_type gl_u; \
|
||||
gl_u.value = (d); \
|
||||
(i) = gl_u.parts.lsw; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from two 32 bit ints. */
|
||||
|
||||
#define INSERT_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.parts.msw = (ix0); \
|
||||
iw_u.parts.lsw = (ix1); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set a double from a 64-bit int. */
|
||||
#define INSERT_WORD64(d,ix) \
|
||||
do { \
|
||||
ieee_double_shape_type iw_u; \
|
||||
iw_u.xparts.w = (ix); \
|
||||
(d) = iw_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the more significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_HIGH_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sh_u; \
|
||||
sh_u.value = (d); \
|
||||
sh_u.parts.msw = (v); \
|
||||
(d) = sh_u.value; \
|
||||
} while (0)
|
||||
|
||||
/* Set the less significant 32 bits of a double from an int. */
|
||||
|
||||
#define SET_LOW_WORD(d,v) \
|
||||
do { \
|
||||
ieee_double_shape_type sl_u; \
|
||||
sl_u.value = (d); \
|
||||
sl_u.parts.lsw = (v); \
|
||||
(d) = sl_u.value; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* A union which permits us to convert between a float and a 32 bit
|
||||
* int.
|
||||
*/
|
||||
|
||||
typedef union
|
||||
{
|
||||
float value;
|
||||
/* FIXME: Assumes 32 bit int. */
|
||||
unsigned int word;
|
||||
} ieee_float_shape_type;
|
||||
|
||||
/* Get a 32 bit int from a float. */
|
||||
|
||||
#define GET_FLOAT_WORD(i,d) \
|
||||
do { \
|
||||
ieee_float_shape_type gf_u; \
|
||||
gf_u.value = (d); \
|
||||
(i) = gf_u.word; \
|
||||
} while (0)
|
||||
|
||||
/* Set a float from a 32 bit int. */
|
||||
|
||||
#define SET_FLOAT_WORD(d,i) \
|
||||
do { \
|
||||
ieee_float_shape_type sf_u; \
|
||||
sf_u.word = (i); \
|
||||
(d) = sf_u.value; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
|
||||
* double.
|
||||
*/
|
||||
|
||||
#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \
|
||||
do { \
|
||||
union IEEEl2bits ew_u; \
|
||||
ew_u.e = (d); \
|
||||
(ix0) = ew_u.xbits.expsign; \
|
||||
(ix1) = ew_u.xbits.man; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
|
||||
* long double.
|
||||
*/
|
||||
|
||||
#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \
|
||||
do { \
|
||||
union IEEEl2bits ew_u; \
|
||||
ew_u.e = (d); \
|
||||
(ix0) = ew_u.xbits.expsign; \
|
||||
(ix1) = ew_u.xbits.manh; \
|
||||
(ix2) = ew_u.xbits.manl; \
|
||||
} while (0)
|
||||
|
||||
/* Get expsign as a 16 bit int from a long double. */
|
||||
|
||||
#define GET_LDBL_EXPSIGN(i,d) \
|
||||
do { \
|
||||
union IEEEl2bits ge_u; \
|
||||
ge_u.e = (d); \
|
||||
(i) = ge_u.xbits.expsign; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
|
||||
* mantissa.
|
||||
*/
|
||||
|
||||
#define INSERT_LDBL80_WORDS(d,ix0,ix1) \
|
||||
do { \
|
||||
union IEEEl2bits iw_u; \
|
||||
iw_u.xbits.expsign = (ix0); \
|
||||
iw_u.xbits.man = (ix1); \
|
||||
(d) = iw_u.e; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
|
||||
* comprising the mantissa.
|
||||
*/
|
||||
|
||||
#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \
|
||||
do { \
|
||||
union IEEEl2bits iw_u; \
|
||||
iw_u.xbits.expsign = (ix0); \
|
||||
iw_u.xbits.manh = (ix1); \
|
||||
iw_u.xbits.manl = (ix2); \
|
||||
(d) = iw_u.e; \
|
||||
} while (0)
|
||||
|
||||
/* Set expsign of a long double from a 16 bit int. */
|
||||
|
||||
#define SET_LDBL_EXPSIGN(d,v) \
|
||||
do { \
|
||||
union IEEEl2bits se_u; \
|
||||
se_u.e = (d); \
|
||||
se_u.xbits.expsign = (v); \
|
||||
(d) = se_u.e; \
|
||||
} while (0)
|
||||
|
||||
#ifdef __i386__
|
||||
/* Long double constants are broken on i386. */
|
||||
#define LD80C(m, ex, v) { \
|
||||
.xbits.man = __CONCAT(m, ULL), \
|
||||
.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
|
||||
}
|
||||
#else
|
||||
/* The above works on non-i386 too, but we use this to check v. */
|
||||
#define LD80C(m, ex, v) { .e = (v), }
|
||||
#endif
|
||||
|
||||
#ifdef FLT_EVAL_METHOD
|
||||
/*
|
||||
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
|
||||
*/
|
||||
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
|
||||
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
|
||||
#else
|
||||
#define STRICT_ASSIGN(type, lval, rval) do { \
|
||||
volatile type __lval; \
|
||||
\
|
||||
if (sizeof(type) >= sizeof(long double)) \
|
||||
(lval) = (rval); \
|
||||
else { \
|
||||
__lval = (rval); \
|
||||
(lval) = __lval; \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
#endif /* FLT_EVAL_METHOD */
|
||||
|
||||
/* Support switching the mode to FP_PE if necessary. */
|
||||
#if defined(__i386__) && !defined(NO_FPSETPREC)
|
||||
#define ENTERI() ENTERIT(long double)
|
||||
#define ENTERIT(returntype) \
|
||||
returntype __retval; \
|
||||
fp_prec_t __oprec; \
|
||||
\
|
||||
if ((__oprec = fpgetprec()) != FP_PE) \
|
||||
fpsetprec(FP_PE)
|
||||
#define RETURNI(x) do { \
|
||||
__retval = (x); \
|
||||
if (__oprec != FP_PE) \
|
||||
fpsetprec(__oprec); \
|
||||
RETURNF(__retval); \
|
||||
} while (0)
|
||||
#define ENTERV() \
|
||||
fp_prec_t __oprec; \
|
||||
\
|
||||
if ((__oprec = fpgetprec()) != FP_PE) \
|
||||
fpsetprec(FP_PE)
|
||||
#define RETURNV() do { \
|
||||
if (__oprec != FP_PE) \
|
||||
fpsetprec(__oprec); \
|
||||
return; \
|
||||
} while (0)
|
||||
#else
|
||||
#define ENTERI()
|
||||
#define ENTERIT(x)
|
||||
#define RETURNI(x) RETURNF(x)
|
||||
#define ENTERV()
|
||||
#define RETURNV() return
|
||||
#endif
|
||||
|
||||
/* Default return statement if hack*_t() is not used. */
|
||||
#define RETURNF(v) return (v)
|
||||
|
||||
/*
|
||||
* 2sum gives the same result as 2sumF without requiring |a| >= |b| or
|
||||
* a == 0, but is slower.
|
||||
*/
|
||||
#define _2sum(a, b) do { \
|
||||
__typeof(a) __s, __w; \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
__s = __w - (a); \
|
||||
(b) = ((a) - (__w - __s)) + ((b) - __s); \
|
||||
(a) = __w; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* 2sumF algorithm.
|
||||
*
|
||||
* "Normalize" the terms in the infinite-precision expression a + b for
|
||||
* the sum of 2 floating point values so that b is as small as possible
|
||||
* relative to 'a'. (The resulting 'a' is the value of the expression in
|
||||
* the same precision as 'a' and the resulting b is the rounding error.)
|
||||
* |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
|
||||
* exponent overflow or underflow must not occur. This uses a Theorem of
|
||||
* Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum"
|
||||
* is apparently due to Skewchuk (1997).
|
||||
*
|
||||
* For this to always work, assignment of a + b to 'a' must not retain any
|
||||
* extra precision in a + b. This is required by C standards but broken
|
||||
* in many compilers. The brokenness cannot be worked around using
|
||||
* STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
|
||||
* algorithm would be destroyed by non-null strict assignments. (The
|
||||
* compilers are correct to be broken -- the efficiency of all floating
|
||||
* point code calculations would be destroyed similarly if they forced the
|
||||
* conversions.)
|
||||
*
|
||||
* Fortunately, a case that works well can usually be arranged by building
|
||||
* any extra precision into the type of 'a' -- 'a' should have type float_t,
|
||||
* double_t or long double. b's type should be no larger than 'a's type.
|
||||
* Callers should use these types with scopes as large as possible, to
|
||||
* reduce their own extra-precision and efficiciency problems. In
|
||||
* particular, they shouldn't convert back and forth just to call here.
|
||||
*/
|
||||
#ifdef DEBUG
|
||||
#define _2sumF(a, b) do { \
|
||||
__typeof(a) __w; \
|
||||
volatile __typeof(a) __ia, __ib, __r, __vw; \
|
||||
\
|
||||
__ia = (a); \
|
||||
__ib = (b); \
|
||||
assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
(b) = ((a) - __w) + (b); \
|
||||
(a) = __w; \
|
||||
\
|
||||
/* The next 2 assertions are weak if (a) is already long double. */ \
|
||||
assert((long double)__ia + __ib == (long double)(a) + (b)); \
|
||||
__vw = __ia + __ib; \
|
||||
__r = __ia - __vw; \
|
||||
__r += __ib; \
|
||||
assert(__vw == (a) && __r == (b)); \
|
||||
} while (0)
|
||||
#else /* !DEBUG */
|
||||
#define _2sumF(a, b) do { \
|
||||
__typeof(a) __w; \
|
||||
\
|
||||
__w = (a) + (b); \
|
||||
(b) = ((a) - __w) + (b); \
|
||||
(a) = __w; \
|
||||
} while (0)
|
||||
#endif /* DEBUG */
|
||||
|
||||
/*
|
||||
* Set x += c, where x is represented in extra precision as a + b.
|
||||
* x must be sufficiently normalized and sufficiently larger than c,
|
||||
* and the result is then sufficiently normalized.
|
||||
*
|
||||
* The details of ordering are that |a| must be >= |c| (so that (a, c)
|
||||
* can be normalized without extra work to swap 'a' with c). The details of
|
||||
* the normalization are that b must be small relative to the normalized 'a'.
|
||||
* Normalization of (a, c) makes the normalized c tiny relative to the
|
||||
* normalized a, so b remains small relative to 'a' in the result. However,
|
||||
* b need not ever be tiny relative to 'a'. For example, b might be about
|
||||
* 2**20 times smaller than 'a' to give about 20 extra bits of precision.
|
||||
* That is usually enough, and adding c (which by normalization is about
|
||||
* 2**53 times smaller than a) cannot change b significantly. However,
|
||||
* cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
|
||||
* significantly relative to b. The caller must ensure that significant
|
||||
* cancellation doesn't occur, either by having c of the same sign as 'a',
|
||||
* or by having |c| a few percent smaller than |a|. Pre-normalization of
|
||||
* (a, b) may help.
|
||||
*
|
||||
* This is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
|
||||
* exercise 19). We gain considerable efficiency by requiring the terms to
|
||||
* be sufficiently normalized and sufficiently increasing.
|
||||
*/
|
||||
#define _3sumF(a, b, c) do { \
|
||||
__typeof(a) __tmp; \
|
||||
\
|
||||
__tmp = (c); \
|
||||
_2sumF(__tmp, (a)); \
|
||||
(b) += (a); \
|
||||
(a) = __tmp; \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Common routine to process the arguments to nan(), nanf(), and nanl().
|
||||
*/
|
||||
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
|
||||
|
||||
/*
|
||||
* Mix 0, 1 or 2 NaNs. First add 0 to each arg. This normally just turns
|
||||
* signaling NaNs into quiet NaNs by setting a quiet bit. We do this
|
||||
* because we want to never return a signaling NaN, and also because we
|
||||
* don't want the quiet bit to affect the result. Then mix the converted
|
||||
* args using the specified operation.
|
||||
*
|
||||
* When one arg is NaN, the result is typically that arg quieted. When both
|
||||
* args are NaNs, the result is typically the quietening of the arg whose
|
||||
* mantissa is largest after quietening. When neither arg is NaN, the
|
||||
* result may be NaN because it is indeterminate, or finite for subsequent
|
||||
* construction of a NaN as the indeterminate 0.0L/0.0L.
|
||||
*
|
||||
* Technical complications: the result in bits after rounding to the final
|
||||
* precision might depend on the runtime precision and/or on compiler
|
||||
* optimizations, especially when different register sets are used for
|
||||
* different precisions. Try to make the result not depend on at least the
|
||||
* runtime precision by always doing the main mixing step in long double
|
||||
* precision. Try to reduce dependencies on optimizations by adding the
|
||||
* the 0's in different precisions (unless everything is in long double
|
||||
* precision).
|
||||
*/
|
||||
#define nan_mix(x, y) (nan_mix_op((x), (y), +))
|
||||
#define nan_mix_op(x, y, op) (((x) + 0.0L) op ((y) + 0))
|
||||
|
||||
#ifdef _COMPLEX_H
|
||||
|
||||
/*
|
||||
* C99 specifies that complex numbers have the same representation as
|
||||
* an array of two elements, where the first element is the real part
|
||||
* and the second element is the imaginary part.
|
||||
*/
|
||||
typedef union {
|
||||
float complex f;
|
||||
float a[2];
|
||||
} float_complex;
|
||||
typedef union {
|
||||
double complex f;
|
||||
double a[2];
|
||||
} double_complex;
|
||||
typedef union {
|
||||
long double complex f;
|
||||
long double a[2];
|
||||
} long_double_complex;
|
||||
#define REALPART(z) ((z).a[0])
|
||||
#define IMAGPART(z) ((z).a[1])
|
||||
|
||||
/*
|
||||
* Inline functions that can be used to construct complex values.
|
||||
*
|
||||
* The C99 standard intends x+I*y to be used for this, but x+I*y is
|
||||
* currently unusable in general since gcc introduces many overflow,
|
||||
* underflow, sign and efficiency bugs by rewriting I*y as
|
||||
* (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
|
||||
* In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
|
||||
* to -0.0+I*0.0.
|
||||
*
|
||||
* The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
|
||||
* to construct complex values. Compilers that conform to the C99
|
||||
* standard require the following functions to avoid the above issues.
|
||||
*/
|
||||
|
||||
#ifndef CMPLXF
|
||||
static __inline float complex
|
||||
CMPLXF(float x, float y)
|
||||
{
|
||||
float_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef CMPLX
|
||||
static __inline double complex
|
||||
CMPLX(double x, double y)
|
||||
{
|
||||
double_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef CMPLXL
|
||||
static __inline long double complex
|
||||
CMPLXL(long double x, long double y)
|
||||
{
|
||||
long_double_complex z;
|
||||
|
||||
REALPART(z) = x;
|
||||
IMAGPART(z) = y;
|
||||
return (z.f);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _COMPLEX_H */
|
||||
|
||||
/*
|
||||
* The rnint() family rounds to the nearest integer for a restricted range
|
||||
* range of args (up to about 2**MANT_DIG). We assume that the current
|
||||
* rounding mode is FE_TONEAREST so that this can be done efficiently.
|
||||
* Extra precision causes more problems in practice, and we only centralize
|
||||
* this here to reduce those problems, and have not solved the efficiency
|
||||
* problems. The exp2() family uses a more delicate version of this that
|
||||
* requires extracting bits from the intermediate value, so it is not
|
||||
* centralized here and should copy any solution of the efficiency problems.
|
||||
*/
|
||||
|
||||
static inline double
|
||||
rnint(__double_t x)
|
||||
{
|
||||
/*
|
||||
* This casts to double to kill any extra precision. This depends
|
||||
* on the cast being applied to a double_t to avoid compiler bugs
|
||||
* (this is a cleaner version of STRICT_ASSIGN()). This is
|
||||
* inefficient if there actually is extra precision, but is hard
|
||||
* to improve on. We use double_t in the API to minimise conversions
|
||||
* for just calling here. Note that we cannot easily change the
|
||||
* magic number to the one that works directly with double_t, since
|
||||
* the rounding precision is variable at runtime on x86 so the
|
||||
* magic number would need to be variable. Assuming that the
|
||||
* rounding precision is always the default is too fragile. This
|
||||
* and many other complications will move when the default is
|
||||
* changed to FP_PE.
|
||||
*/
|
||||
return ((double)(x + 0x1.8p52) - 0x1.8p52);
|
||||
}
|
||||
|
||||
static inline float
|
||||
rnintf(__float_t x)
|
||||
{
|
||||
/*
|
||||
* As for rnint(), except we could just call that to handle the
|
||||
* extra precision case, usually without losing efficiency.
|
||||
*/
|
||||
return ((float)(x + 0x1.8p23F) - 0x1.8p23F);
|
||||
}
|
||||
|
||||
#ifdef LDBL_MANT_DIG
|
||||
/*
|
||||
* The complications for extra precision are smaller for rnintl() since it
|
||||
* can safely assume that the rounding precision has been increased from
|
||||
* its default to FP_PE on x86. We don't exploit that here to get small
|
||||
* optimizations from limiting the rangle to double. We just need it for
|
||||
* the magic number to work with long doubles. ld128 callers should use
|
||||
* rnint() instead of this if possible. ld80 callers should prefer
|
||||
* rnintl() since for amd64 this avoids swapping the register set, while
|
||||
* for i386 it makes no difference (assuming FP_PE), and for other arches
|
||||
* it makes little difference.
|
||||
*/
|
||||
static inline long double
|
||||
rnintl(long double x)
|
||||
{
|
||||
return (x + __CONCAT(0x1.8p, LDBL_MANT_DIG) / 2 -
|
||||
__CONCAT(0x1.8p, LDBL_MANT_DIG) / 2);
|
||||
}
|
||||
#endif /* LDBL_MANT_DIG */
|
||||
|
||||
/*
|
||||
* irint() and i64rint() give the same result as casting to their integer
|
||||
* return type provided their arg is a floating point integer. They can
|
||||
* sometimes be more efficient because no rounding is required.
|
||||
*/
|
||||
#if defined(amd64) || defined(__i386__)
|
||||
#define irint(x) \
|
||||
(sizeof(x) == sizeof(float) && \
|
||||
sizeof(__float_t) == sizeof(long double) ? irintf(x) : \
|
||||
sizeof(x) == sizeof(double) && \
|
||||
sizeof(__double_t) == sizeof(long double) ? irintd(x) : \
|
||||
sizeof(x) == sizeof(long double) ? irintl(x) : (int)(x))
|
||||
#else
|
||||
#define irint(x) ((int)(x))
|
||||
#endif
|
||||
|
||||
#define i64rint(x) ((int64_t)(x)) /* only needed for ld128 so not opt. */
|
||||
|
||||
#if defined(__i386__)
|
||||
static __inline int
|
||||
irintf(float x)
|
||||
{
|
||||
int n;
|
||||
|
||||
__asm("fistl %0" : "=m" (n) : "t" (x));
|
||||
return (n);
|
||||
}
|
||||
|
||||
static __inline int
|
||||
irintd(double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
__asm("fistl %0" : "=m" (n) : "t" (x));
|
||||
return (n);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
static __inline int
|
||||
irintl(long double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
__asm("fistl %0" : "=m" (n) : "t" (x));
|
||||
return (n);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef DEBUG
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
#define breakpoint() asm("int $3")
|
||||
#else
|
||||
#include <signal.h>
|
||||
|
||||
#define breakpoint() raise(SIGTRAP)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* Write a pari script to test things externally. */
|
||||
#ifdef DOPRINT
|
||||
#include <stdio.h>
|
||||
|
||||
#ifndef DOPRINT_SWIZZLE
|
||||
#define DOPRINT_SWIZZLE 0
|
||||
#endif
|
||||
|
||||
#ifdef DOPRINT_LD80
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint64_t __lx; \
|
||||
uint16_t __hx; \
|
||||
\
|
||||
/* Hack to give more-problematic args. */ \
|
||||
EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \
|
||||
__lx ^= DOPRINT_SWIZZLE; \
|
||||
INSERT_LDBL80_WORDS(*xp, __hx, __lx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#elif defined(DOPRINT_D64)
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint32_t __hx, __lx; \
|
||||
\
|
||||
EXTRACT_WORDS(__hx, __lx, *xp); \
|
||||
__lx ^= DOPRINT_SWIZZLE; \
|
||||
INSERT_WORDS(*xp, __hx, __lx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#elif defined(DOPRINT_F32)
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint32_t __hx; \
|
||||
\
|
||||
GET_FLOAT_WORD(__hx, *xp); \
|
||||
__hx ^= DOPRINT_SWIZZLE; \
|
||||
SET_FLOAT_WORD(*xp, __hx); \
|
||||
printf("x = %.21Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
|
||||
|
||||
#ifndef DOPRINT_SWIZZLE_HIGH
|
||||
#define DOPRINT_SWIZZLE_HIGH 0
|
||||
#endif
|
||||
|
||||
#define DOPRINT_START(xp) do { \
|
||||
uint64_t __lx, __llx; \
|
||||
uint16_t __hx; \
|
||||
\
|
||||
EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \
|
||||
__llx ^= DOPRINT_SWIZZLE; \
|
||||
__lx ^= DOPRINT_SWIZZLE_HIGH; \
|
||||
INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \
|
||||
printf("x = %.36Lg; ", (long double)*xp); \
|
||||
} while (0)
|
||||
#define DOPRINT_END1(v) \
|
||||
printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
|
||||
#define DOPRINT_END2(hi, lo) \
|
||||
printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \
|
||||
(long double)(hi), (long double)(lo))
|
||||
|
||||
#endif /* DOPRINT_LD80 */
|
||||
|
||||
#else /* !DOPRINT */
|
||||
#define DOPRINT_START(xp)
|
||||
#define DOPRINT_END1(v)
|
||||
#define DOPRINT_END2(hi, lo)
|
||||
#endif /* DOPRINT */
|
||||
|
||||
#define RETURNP(x) do { \
|
||||
DOPRINT_END1(x); \
|
||||
RETURNF(x); \
|
||||
} while (0)
|
||||
#define RETURNPI(x) do { \
|
||||
DOPRINT_END1(x); \
|
||||
RETURNI(x); \
|
||||
} while (0)
|
||||
#define RETURN2P(x, y) do { \
|
||||
DOPRINT_END2((x), (y)); \
|
||||
RETURNF((x) + (y)); \
|
||||
} while (0)
|
||||
#define RETURN2PI(x, y) do { \
|
||||
DOPRINT_END2((x), (y)); \
|
||||
RETURNI((x) + (y)); \
|
||||
} while (0)
|
||||
#ifdef STRUCT_RETURN
|
||||
#define RETURNSP(rp) do { \
|
||||
if (!(rp)->lo_set) \
|
||||
RETURNP((rp)->hi); \
|
||||
RETURN2P((rp)->hi, (rp)->lo); \
|
||||
} while (0)
|
||||
#define RETURNSPI(rp) do { \
|
||||
if (!(rp)->lo_set) \
|
||||
RETURNPI((rp)->hi); \
|
||||
RETURN2PI((rp)->hi, (rp)->lo); \
|
||||
} while (0)
|
||||
#endif
|
||||
#define SUM2P(x, y) ({ \
|
||||
const __typeof (x) __x = (x); \
|
||||
const __typeof (y) __y = (y); \
|
||||
\
|
||||
DOPRINT_END2(__x, __y); \
|
||||
__x + __y; \
|
||||
})
|
||||
|
||||
/*
|
||||
* ieee style elementary functions
|
||||
*
|
||||
* We rename functions here to improve other sources' diffability
|
||||
* against fdlibm.
|
||||
*/
|
||||
#define __ieee754_sqrt sqrt
|
||||
#define __ieee754_acos acos
|
||||
#define __ieee754_acosh acosh
|
||||
#define __ieee754_log log
|
||||
#define __ieee754_log2 log2
|
||||
#define __ieee754_atanh atanh
|
||||
#define __ieee754_asin asin
|
||||
#define __ieee754_atan2 atan2
|
||||
#define __ieee754_exp exp
|
||||
#define __ieee754_cosh cosh
|
||||
#define __ieee754_fmod fmod
|
||||
#define __ieee754_pow pow
|
||||
#define __ieee754_lgamma lgamma
|
||||
#define __ieee754_gamma gamma
|
||||
#define __ieee754_lgamma_r lgamma_r
|
||||
#define __ieee754_gamma_r gamma_r
|
||||
#define __ieee754_log10 log10
|
||||
#define __ieee754_sinh sinh
|
||||
#define __ieee754_hypot hypot
|
||||
#define __ieee754_j0 j0
|
||||
#define __ieee754_j1 j1
|
||||
#define __ieee754_y0 y0
|
||||
#define __ieee754_y1 y1
|
||||
#define __ieee754_jn jn
|
||||
#define __ieee754_yn yn
|
||||
#define __ieee754_remainder remainder
|
||||
#define __ieee754_scalb scalb
|
||||
#define __ieee754_sqrtf sqrtf
|
||||
#define __ieee754_acosf acosf
|
||||
#define __ieee754_acoshf acoshf
|
||||
#define __ieee754_logf logf
|
||||
#define __ieee754_atanhf atanhf
|
||||
#define __ieee754_asinf asinf
|
||||
#define __ieee754_atan2f atan2f
|
||||
#define __ieee754_expf expf
|
||||
#define __ieee754_coshf coshf
|
||||
#define __ieee754_fmodf fmodf
|
||||
#define __ieee754_powf powf
|
||||
#define __ieee754_lgammaf lgammaf
|
||||
#define __ieee754_gammaf gammaf
|
||||
#define __ieee754_lgammaf_r lgammaf_r
|
||||
#define __ieee754_gammaf_r gammaf_r
|
||||
#define __ieee754_log10f log10f
|
||||
#define __ieee754_log2f log2f
|
||||
#define __ieee754_sinhf sinhf
|
||||
#define __ieee754_hypotf hypotf
|
||||
#define __ieee754_j0f j0f
|
||||
#define __ieee754_j1f j1f
|
||||
#define __ieee754_y0f y0f
|
||||
#define __ieee754_y1f y1f
|
||||
#define __ieee754_jnf jnf
|
||||
#define __ieee754_ynf ynf
|
||||
#define __ieee754_remainderf remainderf
|
||||
#define __ieee754_scalbf scalbf
|
||||
|
||||
/* fdlibm kernel function */
|
||||
int __kernel_rem_pio2(double*,double*,int,int,int);
|
||||
|
||||
/* double precision kernel functions */
|
||||
#ifndef INLINE_REM_PIO2
|
||||
int __ieee754_rem_pio2(double,double*);
|
||||
#endif
|
||||
double __kernel_sin(double,double,int);
|
||||
double __kernel_cos(double,double);
|
||||
double __kernel_tan(double,double,int);
|
||||
double __ldexp_exp(double,int);
|
||||
#ifdef _COMPLEX_H
|
||||
double complex __ldexp_cexp(double complex,int);
|
||||
#endif
|
||||
|
||||
/* float precision kernel functions */
|
||||
#ifndef INLINE_REM_PIO2F
|
||||
int __ieee754_rem_pio2f(float,double*);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_SINDF
|
||||
float __kernel_sindf(double);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_COSDF
|
||||
float __kernel_cosdf(double);
|
||||
#endif
|
||||
#ifndef INLINE_KERNEL_TANDF
|
||||
float __kernel_tandf(double,int);
|
||||
#endif
|
||||
float __ldexp_expf(float,int);
|
||||
#ifdef _COMPLEX_H
|
||||
float complex __ldexp_cexpf(float complex,int);
|
||||
#endif
|
||||
|
||||
/* long double precision kernel functions */
|
||||
long double __kernel_sinl(long double, long double, int);
|
||||
long double __kernel_cosl(long double, long double);
|
||||
long double __kernel_tanl(long double, long double, int);
|
||||
|
||||
#endif /* !_MATH_PRIVATE_H_ */
|
|
@ -0,0 +1,91 @@
|
|||
/* from: FreeBSD: head/lib/msun/src/e_acosh.c 176451 2008-02-22 02:30:36Z das */
|
||||
|
||||
/* @(#)s_asinh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See s_asinh.c for complete comments.
|
||||
*
|
||||
* Converted to long double by David Schultz <das@FreeBSD.ORG> and
|
||||
* Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* EXP_LARGE is the threshold above which we use asinh(x) ~= log(2x). */
|
||||
/* EXP_TINY is the threshold below which we use asinh(x) ~= x. */
|
||||
#if LDBL_MANT_DIG == 64
|
||||
#define EXP_LARGE 34
|
||||
#define EXP_TINY -34
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
#define EXP_LARGE 58
|
||||
#define EXP_TINY -58
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
/* We also require the usual expsign encoding. */
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
huge= 1.00000000000000000000e+300;
|
||||
|
||||
#if LDBL_MANT_DIG == 64
|
||||
static const union IEEEl2bits
|
||||
u_ln2 = LD80C(0xb17217f7d1cf79ac, -1, 6.93147180559945309417e-1L);
|
||||
#define ln2 u_ln2.e
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
static const long double
|
||||
ln2 = 6.93147180559945309417232121458176568e-1L; /* 0x162e42fefa39ef35793c7673007e6.0p-113 */
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
long double
|
||||
asinhl(long double x)
|
||||
{
|
||||
long double t, w;
|
||||
uint16_t hx, ix;
|
||||
|
||||
ENTERI();
|
||||
GET_LDBL_EXPSIGN(hx, x);
|
||||
ix = hx & 0x7fff;
|
||||
if (ix >= 0x7fff) RETURNI(x+x); /* x is inf, NaN or misnormal */
|
||||
if (ix < BIAS + EXP_TINY) { /* |x| < TINY, or misnormal */
|
||||
if (huge + x > one) RETURNI(x); /* return x inexact except 0 */
|
||||
}
|
||||
if (ix >= BIAS + EXP_LARGE) { /* |x| >= LARGE, or misnormal */
|
||||
w = logl(fabsl(x))+ln2;
|
||||
} else if (ix >= 0x4000) { /* LARGE > |x| >= 2.0, or misnormal */
|
||||
t = fabsl(x);
|
||||
w = logl(2.0*t+one/(sqrtl(x*x+one)+t));
|
||||
} else { /* 2.0 > |x| >= TINY, or misnormal */
|
||||
t = x*x;
|
||||
w =log1pl(fabsl(x)+t/(one+sqrtl(one+t)));
|
||||
}
|
||||
RETURNI((hx & 0x8000) == 0 ? w : -w);
|
||||
}
|
|
@ -0,0 +1,85 @@
|
|||
/* @(#)s_atan.c 5.1 93/09/24 */
|
||||
/* FreeBSD: head/lib/msun/src/s_atan.c 176451 2008-02-22 02:30:36Z das */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See comments in s_atan.c.
|
||||
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "invtrig.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const long double
|
||||
one = 1.0,
|
||||
huge = 1.0e300;
|
||||
|
||||
long double
|
||||
atanl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
long double w,s1,s2,z;
|
||||
int id;
|
||||
int16_t expsign, expt;
|
||||
int32_t expman;
|
||||
|
||||
u.e = x;
|
||||
expsign = u.xbits.expsign;
|
||||
expt = expsign & 0x7fff;
|
||||
if(expt >= ATAN_CONST) { /* if |x| is large, atan(x)~=pi/2 */
|
||||
if(expt == BIAS + LDBL_MAX_EXP &&
|
||||
((u.bits.manh&~LDBL_NBIT)|u.bits.manl)!=0)
|
||||
return x+x; /* NaN */
|
||||
if(expsign>0) return atanhi[3]+atanlo[3];
|
||||
else return -atanhi[3]-atanlo[3];
|
||||
}
|
||||
/* Extract the exponent and the first few bits of the mantissa. */
|
||||
/* XXX There should be a more convenient way to do this. */
|
||||
expman = (expt << 8) | ((u.bits.manh >> (MANH_SIZE - 9)) & 0xff);
|
||||
if (expman < ((BIAS - 2) << 8) + 0xc0) { /* |x| < 0.4375 */
|
||||
if (expt < ATAN_LINEAR) { /* if |x| is small, atanl(x)~=x */
|
||||
if(huge+x>one) return x; /* raise inexact */
|
||||
}
|
||||
id = -1;
|
||||
} else {
|
||||
x = fabsl(x);
|
||||
if (expman < (BIAS << 8) + 0x30) { /* |x| < 1.1875 */
|
||||
if (expman < ((BIAS - 1) << 8) + 0x60) { /* 7/16 <=|x|<11/16 */
|
||||
id = 0; x = (2.0*x-one)/(2.0+x);
|
||||
} else { /* 11/16<=|x|< 19/16 */
|
||||
id = 1; x = (x-one)/(x+one);
|
||||
}
|
||||
} else {
|
||||
if (expman < ((BIAS + 1) << 8) + 0x38) { /* |x| < 2.4375 */
|
||||
id = 2; x = (x-1.5)/(one+1.5*x);
|
||||
} else { /* 2.4375 <= |x| < 2^ATAN_CONST */
|
||||
id = 3; x = -1.0/x;
|
||||
}
|
||||
}}
|
||||
/* end of argument reduction */
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
/* break sum aT[i]z**(i+1) into odd and even poly */
|
||||
s1 = z*T_even(w);
|
||||
s2 = w*T_odd(w);
|
||||
if (id<0) return x - x*(s1+s2);
|
||||
else {
|
||||
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
||||
return (expsign<0)? -z:z;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,143 @@
|
|||
/*-
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* The argument reduction and testing for exceptional cases was
|
||||
* written by Steven G. Kargl with input from Bruce D. Evans
|
||||
* and David A. Schultz.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const unsigned
|
||||
B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
|
||||
|
||||
long double
|
||||
cbrtl(long double x)
|
||||
{
|
||||
union IEEEl2bits u, v;
|
||||
long double r, s, t, w;
|
||||
double dr, dt, dx;
|
||||
float ft, fx;
|
||||
uint32_t hx;
|
||||
uint16_t expsign;
|
||||
int k;
|
||||
|
||||
u.e = x;
|
||||
expsign = u.xbits.expsign;
|
||||
k = expsign & 0x7fff;
|
||||
|
||||
/*
|
||||
* If x = +-Inf, then cbrt(x) = +-Inf.
|
||||
* If x = NaN, then cbrt(x) = NaN.
|
||||
*/
|
||||
if (k == BIAS + LDBL_MAX_EXP)
|
||||
return (x + x);
|
||||
|
||||
ENTERI();
|
||||
if (k == 0) {
|
||||
/* If x = +-0, then cbrt(x) = +-0. */
|
||||
if ((u.bits.manh | u.bits.manl) == 0)
|
||||
RETURNI(x);
|
||||
/* Adjust subnormal numbers. */
|
||||
u.e *= 0x1.0p514;
|
||||
k = u.bits.exp;
|
||||
k -= BIAS + 514;
|
||||
} else
|
||||
k -= BIAS;
|
||||
u.xbits.expsign = BIAS;
|
||||
v.e = 1;
|
||||
|
||||
x = u.e;
|
||||
switch (k % 3) {
|
||||
case 1:
|
||||
case -2:
|
||||
x = 2*x;
|
||||
k--;
|
||||
break;
|
||||
case 2:
|
||||
case -1:
|
||||
x = 4*x;
|
||||
k -= 2;
|
||||
break;
|
||||
}
|
||||
v.xbits.expsign = (expsign & 0x8000) | (BIAS + k / 3);
|
||||
|
||||
/*
|
||||
* The following is the guts of s_cbrtf, with the handling of
|
||||
* special values removed and extra care for accuracy not taken,
|
||||
* but with most of the extra accuracy not discarded.
|
||||
*/
|
||||
|
||||
/* ~5-bit estimate: */
|
||||
fx = x;
|
||||
GET_FLOAT_WORD(hx, fx);
|
||||
SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1));
|
||||
|
||||
/* ~16-bit estimate: */
|
||||
dx = x;
|
||||
dt = ft;
|
||||
dr = dt * dt * dt;
|
||||
dt = dt * (dx + dx + dr) / (dx + dr + dr);
|
||||
|
||||
/* ~47-bit estimate: */
|
||||
dr = dt * dt * dt;
|
||||
dt = dt * (dx + dx + dr) / (dx + dr + dr);
|
||||
|
||||
#if LDBL_MANT_DIG == 64
|
||||
/*
|
||||
* dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
|
||||
* Round it away from zero to 32 bits (32 so that t*t is exact, and
|
||||
* away from zero for technical reasons).
|
||||
*/
|
||||
volatile double vd2 = 0x1.0p32;
|
||||
volatile double vd1 = 0x1.0p-31;
|
||||
#define vd ((long double)vd2 + vd1)
|
||||
|
||||
t = dt + vd - 0x1.0p32;
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
/*
|
||||
* Round dt away from zero to 47 bits. Since we don't trust the 47,
|
||||
* add 2 47-bit ulps instead of 1 to round up. Rounding is slow and
|
||||
* might be avoidable in this case, since on most machines dt will
|
||||
* have been evaluated in 53-bit precision and the technical reasons
|
||||
* for rounding up might not apply to either case in cbrtl() since
|
||||
* dt is much more accurate than needed.
|
||||
*/
|
||||
t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60;
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Final step Newton iteration to 64 or 113 bits with
|
||||
* error < 0.667 ulps
|
||||
*/
|
||||
s=t*t; /* t*t is exact */
|
||||
r=x/s; /* error <= 0.5 ulps; |r| < |t| */
|
||||
w=t+t; /* t+t is exact */
|
||||
r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
|
||||
t=t+t*r; /* error <= (0.5 + 0.5/3) * ulp */
|
||||
|
||||
t *= v.e;
|
||||
RETURNI(t);
|
||||
}
|
|
@ -0,0 +1,101 @@
|
|||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* From: @(#)s_ceil.c 5.1 93/09/24
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ceill(x)
|
||||
* Return x rounded toward -inf to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to ceill(x).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
#define MANH_SIZE (LDBL_MANH_SIZE + 1)
|
||||
#define INC_MANH(u, c) do { \
|
||||
uint64_t o = u.bits.manh; \
|
||||
u.bits.manh += (c); \
|
||||
if (u.bits.manh < o) \
|
||||
u.bits.exp++; \
|
||||
} while (0)
|
||||
#else
|
||||
#define MANH_SIZE LDBL_MANH_SIZE
|
||||
#define INC_MANH(u, c) do { \
|
||||
uint64_t o = u.bits.manh; \
|
||||
u.bits.manh += (c); \
|
||||
if (u.bits.manh < o) { \
|
||||
u.bits.exp++; \
|
||||
u.bits.manh |= 1llu << (LDBL_MANH_SIZE - 1); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
static const long double huge = 1.0e300;
|
||||
|
||||
long double
|
||||
ceill(long double x)
|
||||
{
|
||||
union IEEEl2bits u = { .e = x };
|
||||
int e = u.bits.exp - LDBL_MAX_EXP + 1;
|
||||
|
||||
if (e < MANH_SIZE - 1) {
|
||||
if (e < 0) { /* raise inexact if x != 0 */
|
||||
if (huge + x > 0.0)
|
||||
if (u.bits.exp > 0 ||
|
||||
(u.bits.manh | u.bits.manl) != 0)
|
||||
u.e = u.bits.sign ? -0.0 : 1.0;
|
||||
} else {
|
||||
uint64_t m = ((1llu << MANH_SIZE) - 1) >> (e + 1);
|
||||
if (((u.bits.manh & m) | u.bits.manl) == 0)
|
||||
return (x); /* x is integral */
|
||||
if (!u.bits.sign) {
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
if (e == 0)
|
||||
u.bits.exp++;
|
||||
else
|
||||
#endif
|
||||
INC_MANH(u, 1llu << (MANH_SIZE - e - 1));
|
||||
}
|
||||
if (huge + x > 0.0) { /* raise inexact flag */
|
||||
u.bits.manh &= ~m;
|
||||
u.bits.manl = 0;
|
||||
}
|
||||
}
|
||||
} else if (e < LDBL_MANT_DIG - 1) {
|
||||
uint64_t m = (uint64_t)-1 >> (64 - LDBL_MANT_DIG + e + 1);
|
||||
if ((u.bits.manl & m) == 0)
|
||||
return (x); /* x is integral */
|
||||
if (!u.bits.sign) {
|
||||
if (e == MANH_SIZE - 1)
|
||||
INC_MANH(u, 1);
|
||||
else {
|
||||
uint64_t o = u.bits.manl;
|
||||
u.bits.manl += 1llu << (LDBL_MANT_DIG - e - 1);
|
||||
if (u.bits.manl < o) /* got a carry */
|
||||
INC_MANH(u, 1);
|
||||
}
|
||||
}
|
||||
if (huge + x > 0.0) /* raise inexact flag */
|
||||
u.bits.manl &= ~m;
|
||||
}
|
||||
return (u.e);
|
||||
}
|
|
@ -0,0 +1,44 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2004 Stefan Farfeleder
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
long double
|
||||
copysignl(long double x, long double y)
|
||||
{
|
||||
union IEEEl2bits ux, uy;
|
||||
|
||||
ux.e = x;
|
||||
uy.e = y;
|
||||
ux.bits.sign = uy.bits.sign;
|
||||
return (ux.e);
|
||||
}
|
|
@ -0,0 +1,102 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2007 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* Limited testing on pseudorandom numbers drawn within [-2e8:4e8] shows
|
||||
* an accuracy of <= 0.7412 ULP.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#if LDBL_MANT_DIG == 64
|
||||
#include "../ld80/e_rem_pio2l.h"
|
||||
static const union IEEEl2bits
|
||||
pio4u = LD80C(0xc90fdaa22168c235, -00001, 7.85398163397448309628e-01L);
|
||||
#define pio4 (pio4u.e)
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
#include "../ld128/e_rem_pio2l.h"
|
||||
long double pio4 = 7.85398163397448309615660845819875721e-1L;
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
long double
|
||||
cosl(long double x)
|
||||
{
|
||||
union IEEEl2bits z;
|
||||
int e0;
|
||||
long double y[2];
|
||||
long double hi, lo;
|
||||
|
||||
z.e = x;
|
||||
z.bits.sign = 0;
|
||||
|
||||
/* If x = +-0 or x is a subnormal number, then cos(x) = 1 */
|
||||
if (z.bits.exp == 0)
|
||||
return (1.0);
|
||||
|
||||
/* If x = NaN or Inf, then cos(x) = NaN. */
|
||||
if (z.bits.exp == 32767)
|
||||
return ((x - x) / (x - x));
|
||||
|
||||
ENTERI();
|
||||
|
||||
/* Optimize the case where x is already within range. */
|
||||
if (z.e < pio4)
|
||||
RETURNI(__kernel_cosl(z.e, 0));
|
||||
|
||||
e0 = __ieee754_rem_pio2l(x, y);
|
||||
hi = y[0];
|
||||
lo = y[1];
|
||||
|
||||
switch (e0 & 3) {
|
||||
case 0:
|
||||
hi = __kernel_cosl(hi, lo);
|
||||
break;
|
||||
case 1:
|
||||
hi = - __kernel_sinl(hi, lo, 1);
|
||||
break;
|
||||
case 2:
|
||||
hi = - __kernel_cosl(hi, lo);
|
||||
break;
|
||||
case 3:
|
||||
hi = __kernel_sinl(hi, lo, 1);
|
||||
break;
|
||||
}
|
||||
|
||||
RETURNI(hi);
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
* Copyright (c) 2003 Dag-Erling Smørgrav
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer
|
||||
* in this position and unchanged.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. The name of the author may not be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
long double
|
||||
fabsl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
|
||||
u.e = x;
|
||||
u.bits.sign = 0;
|
||||
return (u.e);
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#define DECL(type, fn) \
|
||||
type \
|
||||
fn(type x, type y) \
|
||||
{ \
|
||||
\
|
||||
if (isnan(x)) \
|
||||
return (x); \
|
||||
if (isnan(y)) \
|
||||
return (y); \
|
||||
return (x > y ? x - y : 0.0); \
|
||||
}
|
||||
|
||||
DECL(double, fdim)
|
||||
DECL(float, fdimf)
|
||||
DECL(long double, fdiml)
|
|
@ -0,0 +1,101 @@
|
|||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* From: @(#)s_floor.c 5.1 93/09/24
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* floorl(x)
|
||||
* Return x rounded toward -inf to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to floorl(x).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
#define MANH_SIZE (LDBL_MANH_SIZE + 1)
|
||||
#define INC_MANH(u, c) do { \
|
||||
uint64_t o = u.bits.manh; \
|
||||
u.bits.manh += (c); \
|
||||
if (u.bits.manh < o) \
|
||||
u.bits.exp++; \
|
||||
} while (0)
|
||||
#else
|
||||
#define MANH_SIZE LDBL_MANH_SIZE
|
||||
#define INC_MANH(u, c) do { \
|
||||
uint64_t o = u.bits.manh; \
|
||||
u.bits.manh += (c); \
|
||||
if (u.bits.manh < o) { \
|
||||
u.bits.exp++; \
|
||||
u.bits.manh |= 1llu << (LDBL_MANH_SIZE - 1); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
static const long double huge = 1.0e300;
|
||||
|
||||
long double
|
||||
floorl(long double x)
|
||||
{
|
||||
union IEEEl2bits u = { .e = x };
|
||||
int e = u.bits.exp - LDBL_MAX_EXP + 1;
|
||||
|
||||
if (e < MANH_SIZE - 1) {
|
||||
if (e < 0) { /* raise inexact if x != 0 */
|
||||
if (huge + x > 0.0)
|
||||
if (u.bits.exp > 0 ||
|
||||
(u.bits.manh | u.bits.manl) != 0)
|
||||
u.e = u.bits.sign ? -1.0 : 0.0;
|
||||
} else {
|
||||
uint64_t m = ((1llu << MANH_SIZE) - 1) >> (e + 1);
|
||||
if (((u.bits.manh & m) | u.bits.manl) == 0)
|
||||
return (x); /* x is integral */
|
||||
if (u.bits.sign) {
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
if (e == 0)
|
||||
u.bits.exp++;
|
||||
else
|
||||
#endif
|
||||
INC_MANH(u, 1llu << (MANH_SIZE - e - 1));
|
||||
}
|
||||
if (huge + x > 0.0) { /* raise inexact flag */
|
||||
u.bits.manh &= ~m;
|
||||
u.bits.manl = 0;
|
||||
}
|
||||
}
|
||||
} else if (e < LDBL_MANT_DIG - 1) {
|
||||
uint64_t m = (uint64_t)-1 >> (64 - LDBL_MANT_DIG + e + 1);
|
||||
if ((u.bits.manl & m) == 0)
|
||||
return (x); /* x is integral */
|
||||
if (u.bits.sign) {
|
||||
if (e == MANH_SIZE - 1)
|
||||
INC_MANH(u, 1);
|
||||
else {
|
||||
uint64_t o = u.bits.manl;
|
||||
u.bits.manl += 1llu << (LDBL_MANT_DIG - e - 1);
|
||||
if (u.bits.manl < o) /* got a carry */
|
||||
INC_MANH(u, 1);
|
||||
}
|
||||
}
|
||||
if (huge + x > 0.0) /* raise inexact flag */
|
||||
u.bits.manl &= ~m;
|
||||
}
|
||||
return (u.e);
|
||||
}
|
|
@ -0,0 +1,274 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <fenv.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
/*
|
||||
* A struct dd represents a floating-point number with twice the precision
|
||||
* of a long double. We maintain the invariant that "hi" stores the high-order
|
||||
* bits of the result.
|
||||
*/
|
||||
struct dd {
|
||||
long double hi;
|
||||
long double lo;
|
||||
};
|
||||
|
||||
/*
|
||||
* Compute a+b exactly, returning the exact result in a struct dd. We assume
|
||||
* that both a and b are finite, but make no assumptions about their relative
|
||||
* magnitudes.
|
||||
*/
|
||||
static inline struct dd
|
||||
dd_add(long double a, long double b)
|
||||
{
|
||||
struct dd ret;
|
||||
long double s;
|
||||
|
||||
ret.hi = a + b;
|
||||
s = ret.hi - a;
|
||||
ret.lo = (a - (ret.hi - s)) + (b - s);
|
||||
return (ret);
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute a+b, with a small tweak: The least significant bit of the
|
||||
* result is adjusted into a sticky bit summarizing all the bits that
|
||||
* were lost to rounding. This adjustment negates the effects of double
|
||||
* rounding when the result is added to another number with a higher
|
||||
* exponent. For an explanation of round and sticky bits, see any reference
|
||||
* on FPU design, e.g.,
|
||||
*
|
||||
* J. Coonen. An Implementation Guide to a Proposed Standard for
|
||||
* Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980.
|
||||
*/
|
||||
static inline long double
|
||||
add_adjusted(long double a, long double b)
|
||||
{
|
||||
struct dd sum;
|
||||
union IEEEl2bits u;
|
||||
|
||||
sum = dd_add(a, b);
|
||||
if (sum.lo != 0) {
|
||||
u.e = sum.hi;
|
||||
if ((u.bits.manl & 1) == 0)
|
||||
sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
|
||||
}
|
||||
return (sum.hi);
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute ldexp(a+b, scale) with a single rounding error. It is assumed
|
||||
* that the result will be subnormal, and care is taken to ensure that
|
||||
* double rounding does not occur.
|
||||
*/
|
||||
static inline long double
|
||||
add_and_denormalize(long double a, long double b, int scale)
|
||||
{
|
||||
struct dd sum;
|
||||
int bits_lost;
|
||||
union IEEEl2bits u;
|
||||
|
||||
sum = dd_add(a, b);
|
||||
|
||||
/*
|
||||
* If we are losing at least two bits of accuracy to denormalization,
|
||||
* then the first lost bit becomes a round bit, and we adjust the
|
||||
* lowest bit of sum.hi to make it a sticky bit summarizing all the
|
||||
* bits in sum.lo. With the sticky bit adjusted, the hardware will
|
||||
* break any ties in the correct direction.
|
||||
*
|
||||
* If we are losing only one bit to denormalization, however, we must
|
||||
* break the ties manually.
|
||||
*/
|
||||
if (sum.lo != 0) {
|
||||
u.e = sum.hi;
|
||||
bits_lost = -u.bits.exp - scale + 1;
|
||||
if ((bits_lost != 1) ^ (int)(u.bits.manl & 1))
|
||||
sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
|
||||
}
|
||||
return (ldexp(sum.hi, scale));
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute a*b exactly, returning the exact result in a struct dd. We assume
|
||||
* that both a and b are normalized, so no underflow or overflow will occur.
|
||||
* The current rounding mode must be round-to-nearest.
|
||||
*/
|
||||
static inline struct dd
|
||||
dd_mul(long double a, long double b)
|
||||
{
|
||||
#if LDBL_MANT_DIG == 64
|
||||
static const long double split = 0x1p32L + 1.0;
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
static const long double split = 0x1p57L + 1.0;
|
||||
#endif
|
||||
struct dd ret;
|
||||
long double ha, hb, la, lb, p, q;
|
||||
|
||||
p = a * split;
|
||||
ha = a - p;
|
||||
ha += p;
|
||||
la = a - ha;
|
||||
|
||||
p = b * split;
|
||||
hb = b - p;
|
||||
hb += p;
|
||||
lb = b - hb;
|
||||
|
||||
p = ha * hb;
|
||||
q = ha * lb + la * hb;
|
||||
|
||||
ret.hi = p + q;
|
||||
ret.lo = p - ret.hi + q + la * lb;
|
||||
return (ret);
|
||||
}
|
||||
|
||||
/*
|
||||
* Fused multiply-add: Compute x * y + z with a single rounding error.
|
||||
*
|
||||
* We use scaling to avoid overflow/underflow, along with the
|
||||
* canonical precision-doubling technique adapted from:
|
||||
*
|
||||
* Dekker, T. A Floating-Point Technique for Extending the
|
||||
* Available Precision. Numer. Math. 18, 224-242 (1971).
|
||||
*/
|
||||
long double
|
||||
fmal(long double x, long double y, long double z)
|
||||
{
|
||||
long double xs, ys, zs, adj;
|
||||
struct dd xy, r;
|
||||
int oround;
|
||||
int ex, ey, ez;
|
||||
int spread;
|
||||
|
||||
/*
|
||||
* Handle special cases. The order of operations and the particular
|
||||
* return values here are crucial in handling special cases involving
|
||||
* infinities, NaNs, overflows, and signed zeroes correctly.
|
||||
*/
|
||||
if (x == 0.0 || y == 0.0)
|
||||
return (x * y + z);
|
||||
if (z == 0.0)
|
||||
return (x * y);
|
||||
if (!isfinite(x) || !isfinite(y))
|
||||
return (x * y + z);
|
||||
if (!isfinite(z))
|
||||
return (z);
|
||||
|
||||
xs = frexpl(x, &ex);
|
||||
ys = frexpl(y, &ey);
|
||||
zs = frexpl(z, &ez);
|
||||
oround = fegetround();
|
||||
spread = ex + ey - ez;
|
||||
|
||||
/*
|
||||
* If x * y and z are many orders of magnitude apart, the scaling
|
||||
* will overflow, so we handle these cases specially. Rounding
|
||||
* modes other than FE_TONEAREST are painful.
|
||||
*/
|
||||
if (spread < -LDBL_MANT_DIG) {
|
||||
feraiseexcept(FE_INEXACT);
|
||||
if (!isnormal(z))
|
||||
feraiseexcept(FE_UNDERFLOW);
|
||||
switch (oround) {
|
||||
case FE_TONEAREST:
|
||||
return (z);
|
||||
case FE_TOWARDZERO:
|
||||
if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
|
||||
return (z);
|
||||
else
|
||||
return (nextafterl(z, 0));
|
||||
case FE_DOWNWARD:
|
||||
if (x > 0.0 ^ y < 0.0)
|
||||
return (z);
|
||||
else
|
||||
return (nextafterl(z, -INFINITY));
|
||||
default: /* FE_UPWARD */
|
||||
if (x > 0.0 ^ y < 0.0)
|
||||
return (nextafterl(z, INFINITY));
|
||||
else
|
||||
return (z);
|
||||
}
|
||||
}
|
||||
if (spread <= LDBL_MANT_DIG * 2)
|
||||
zs = ldexpl(zs, -spread);
|
||||
else
|
||||
zs = copysignl(LDBL_MIN, zs);
|
||||
|
||||
fesetround(FE_TONEAREST);
|
||||
/* work around clang bug 8100 */
|
||||
volatile long double vxs = xs;
|
||||
|
||||
/*
|
||||
* Basic approach for round-to-nearest:
|
||||
*
|
||||
* (xy.hi, xy.lo) = x * y (exact)
|
||||
* (r.hi, r.lo) = xy.hi + z (exact)
|
||||
* adj = xy.lo + r.lo (inexact; low bit is sticky)
|
||||
* result = r.hi + adj (correctly rounded)
|
||||
*/
|
||||
xy = dd_mul(vxs, ys);
|
||||
r = dd_add(xy.hi, zs);
|
||||
|
||||
spread = ex + ey;
|
||||
|
||||
if (r.hi == 0.0) {
|
||||
/*
|
||||
* When the addends cancel to 0, ensure that the result has
|
||||
* the correct sign.
|
||||
*/
|
||||
fesetround(oround);
|
||||
volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
|
||||
return (xy.hi + vzs + ldexpl(xy.lo, spread));
|
||||
}
|
||||
|
||||
if (oround != FE_TONEAREST) {
|
||||
/*
|
||||
* There is no need to worry about double rounding in directed
|
||||
* rounding modes.
|
||||
*/
|
||||
fesetround(oround);
|
||||
/* work around clang bug 8100 */
|
||||
volatile long double vrlo = r.lo;
|
||||
adj = vrlo + xy.lo;
|
||||
return (ldexpl(r.hi + adj, spread));
|
||||
}
|
||||
|
||||
adj = add_adjusted(r.lo, xy.lo);
|
||||
if (spread + ilogbl(r.hi) > -16383)
|
||||
return (ldexpl(r.hi + adj, spread));
|
||||
else
|
||||
return (add_and_denormalize(r.hi, adj, spread));
|
||||
}
|
|
@ -0,0 +1,57 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
long double
|
||||
fmaxl(long double x, long double y)
|
||||
{
|
||||
union IEEEl2bits u[2];
|
||||
|
||||
u[0].e = x;
|
||||
mask_nbit_l(u[0]);
|
||||
u[1].e = y;
|
||||
mask_nbit_l(u[1]);
|
||||
|
||||
/* Check for NaNs to avoid raising spurious exceptions. */
|
||||
if (u[0].bits.exp == 32767 && (u[0].bits.manh | u[0].bits.manl) != 0)
|
||||
return (y);
|
||||
if (u[1].bits.exp == 32767 && (u[1].bits.manh | u[1].bits.manl) != 0)
|
||||
return (x);
|
||||
|
||||
/* Handle comparisons of signed zeroes. */
|
||||
if (u[0].bits.sign != u[1].bits.sign)
|
||||
return (u[0].bits.sign ? y : x);
|
||||
|
||||
return (x > y ? x : y);
|
||||
}
|
|
@ -0,0 +1,57 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
long double
|
||||
fminl(long double x, long double y)
|
||||
{
|
||||
union IEEEl2bits u[2];
|
||||
|
||||
u[0].e = x;
|
||||
mask_nbit_l(u[0]);
|
||||
u[1].e = y;
|
||||
mask_nbit_l(u[1]);
|
||||
|
||||
/* Check for NaNs to avoid raising spurious exceptions. */
|
||||
if (u[0].bits.exp == 32767 && (u[0].bits.manh | u[0].bits.manl) != 0)
|
||||
return (y);
|
||||
if (u[1].bits.exp == 32767 && (u[1].bits.manh | u[1].bits.manl) != 0)
|
||||
return (x);
|
||||
|
||||
/* Handle comparisons of signed zeroes. */
|
||||
if (u[0].bits.sign != u[1].bits.sign)
|
||||
return (u[1].bits.sign ? y : x);
|
||||
|
||||
return (x < y ? x : y);
|
||||
}
|
|
@ -0,0 +1,64 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2004-2005 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
long double
|
||||
frexpl(long double x, int *ex)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
|
||||
u.e = x;
|
||||
switch (u.bits.exp) {
|
||||
case 0: /* 0 or subnormal */
|
||||
if ((u.bits.manl | u.bits.manh) == 0) {
|
||||
*ex = 0;
|
||||
} else {
|
||||
u.e *= 0x1.0p514;
|
||||
*ex = u.bits.exp - 0x4200;
|
||||
u.bits.exp = 0x3ffe;
|
||||
}
|
||||
break;
|
||||
case 0x7fff: /* infinity or NaN; value of *ex is unspecified */
|
||||
break;
|
||||
default: /* normal */
|
||||
*ex = u.bits.exp - 0x3ffe;
|
||||
u.bits.exp = 0x3ffe;
|
||||
break;
|
||||
}
|
||||
return (u.e);
|
||||
}
|
|
@ -0,0 +1,53 @@
|
|||
/*
|
||||
* From: @(#)s_ilogb.c 5.1 93/09/24
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <limits.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
int
|
||||
ilogbl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
unsigned long m;
|
||||
int b;
|
||||
|
||||
u.e = x;
|
||||
if (u.bits.exp == 0) {
|
||||
if ((u.bits.manl | u.bits.manh) == 0)
|
||||
return (FP_ILOGB0);
|
||||
/* denormalized */
|
||||
if (u.bits.manh == 0) {
|
||||
m = 1lu << (LDBL_MANL_SIZE - 1);
|
||||
for (b = LDBL_MANH_SIZE; !(u.bits.manl & m); m >>= 1)
|
||||
b++;
|
||||
} else {
|
||||
m = 1lu << (LDBL_MANH_SIZE - 1);
|
||||
for (b = 0; !(u.bits.manh & m); m >>= 1)
|
||||
b++;
|
||||
}
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
b++;
|
||||
#endif
|
||||
return (LDBL_MIN_EXP - b - 1);
|
||||
} else if (u.bits.exp < (LDBL_MAX_EXP << 1) - 1)
|
||||
return (u.bits.exp - LDBL_MAX_EXP + 1);
|
||||
else if (u.bits.manl != 0 || u.bits.manh != 0)
|
||||
return (FP_ILOGBNAN);
|
||||
else
|
||||
return (INT_MAX);
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#define type long double
|
||||
#define roundit rintl
|
||||
#define dtype long long
|
||||
#define fn llrintl
|
||||
|
||||
#include "s_lrint.c"
|
|
@ -0,0 +1,11 @@
|
|||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#define type long double
|
||||
#define roundit roundl
|
||||
#define dtype long long
|
||||
#define DTYPE_MIN LLONG_MIN
|
||||
#define DTYPE_MAX LLONG_MAX
|
||||
#define fn llroundl
|
||||
|
||||
#include "s_lround.c"
|
|
@ -0,0 +1,54 @@
|
|||
/*
|
||||
* From: @(#)s_ilogb.c 5.1 93/09/24
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <limits.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
long double
|
||||
logbl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
unsigned long m;
|
||||
int b;
|
||||
|
||||
u.e = x;
|
||||
if (u.bits.exp == 0) {
|
||||
if ((u.bits.manl | u.bits.manh) == 0) { /* x == 0 */
|
||||
u.bits.sign = 1;
|
||||
return (1.0L / u.e);
|
||||
}
|
||||
/* denormalized */
|
||||
if (u.bits.manh == 0) {
|
||||
m = 1lu << (LDBL_MANL_SIZE - 1);
|
||||
for (b = LDBL_MANH_SIZE; !(u.bits.manl & m); m >>= 1)
|
||||
b++;
|
||||
} else {
|
||||
m = 1lu << (LDBL_MANH_SIZE - 1);
|
||||
for (b = 0; !(u.bits.manh & m); m >>= 1)
|
||||
b++;
|
||||
}
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
b++;
|
||||
#endif
|
||||
return ((long double)(LDBL_MIN_EXP - b - 1));
|
||||
}
|
||||
if (u.bits.exp < (LDBL_MAX_EXP << 1) - 1) /* normal */
|
||||
return ((long double)(u.bits.exp - LDBL_MAX_EXP + 1));
|
||||
else /* +/- inf or nan */
|
||||
return (x * x);
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
#include <fenv.h>
|
||||
#include <math.h>
|
||||
|
||||
#ifndef type
|
||||
__FBSDID("$FreeBSD$");
|
||||
#define type double
|
||||
#define roundit rint
|
||||
#define dtype long
|
||||
#define fn lrint
|
||||
#endif
|
||||
|
||||
/*
|
||||
* C99 says we should not raise a spurious inexact exception when an
|
||||
* invalid exception is raised. Unfortunately, the set of inputs
|
||||
* that overflows depends on the rounding mode when 'dtype' has more
|
||||
* significant bits than 'type'. Hence, we bend over backwards for the
|
||||
* sake of correctness; an MD implementation could be more efficient.
|
||||
*/
|
||||
dtype
|
||||
fn(type x)
|
||||
{
|
||||
fenv_t env;
|
||||
dtype d;
|
||||
|
||||
feholdexcept(&env);
|
||||
d = (dtype)roundit(x);
|
||||
if (fetestexcept(FE_INVALID))
|
||||
feclearexcept(FE_INEXACT);
|
||||
feupdateenv(&env);
|
||||
return (d);
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#define type long double
|
||||
#define roundit rintl
|
||||
#define dtype long
|
||||
#define fn lrintl
|
||||
|
||||
#include "s_lrint.c"
|
|
@ -0,0 +1,70 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
#include <sys/limits.h>
|
||||
#include <fenv.h>
|
||||
#include <math.h>
|
||||
|
||||
#ifndef type
|
||||
__FBSDID("$FreeBSD$");
|
||||
#define type double
|
||||
#define roundit round
|
||||
#define dtype long
|
||||
#define DTYPE_MIN LONG_MIN
|
||||
#define DTYPE_MAX LONG_MAX
|
||||
#define fn lround
|
||||
#endif
|
||||
|
||||
/*
|
||||
* If type has more precision than dtype, the endpoints dtype_(min|max) are
|
||||
* of the form xxx.5; they are "out of range" because lround() rounds away
|
||||
* from 0. On the other hand, if type has less precision than dtype, then
|
||||
* all values that are out of range are integral, so we might as well assume
|
||||
* that everything is in range. At compile time, INRANGE(x) should reduce to
|
||||
* two floating-point comparisons in the former case, or TRUE otherwise.
|
||||
*/
|
||||
static const type type_min = (type)DTYPE_MIN;
|
||||
static const type type_max = (type)DTYPE_MAX;
|
||||
static const type dtype_min = (type)DTYPE_MIN - 0.5;
|
||||
static const type dtype_max = (type)DTYPE_MAX + 0.5;
|
||||
#define INRANGE(x) (dtype_max - type_max != 0.5 || \
|
||||
((x) > dtype_min && (x) < dtype_max))
|
||||
|
||||
dtype
|
||||
fn(type x)
|
||||
{
|
||||
|
||||
if (INRANGE(x)) {
|
||||
x = roundit(x);
|
||||
return ((dtype)x);
|
||||
} else {
|
||||
feraiseexcept(FE_INVALID);
|
||||
return (DTYPE_MAX);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,11 @@
|
|||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#define type long double
|
||||
#define roundit roundl
|
||||
#define dtype long
|
||||
#define DTYPE_MIN LONG_MIN
|
||||
#define DTYPE_MAX LONG_MAX
|
||||
#define fn lroundl
|
||||
|
||||
#include "s_lround.c"
|
|
@ -0,0 +1,103 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2007 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* Derived from s_modf.c, which has the following Copyright:
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
#if LDBL_MANL_SIZE > 32
|
||||
#define MASK ((uint64_t)-1)
|
||||
#else
|
||||
#define MASK ((uint32_t)-1)
|
||||
#endif
|
||||
/* Return the last n bits of a word, representing the fractional part. */
|
||||
#define GETFRAC(bits, n) ((bits) & ~(MASK << (n)))
|
||||
/* The number of fraction bits in manh, not counting the integer bit */
|
||||
#define HIBITS (LDBL_MANT_DIG - LDBL_MANL_SIZE)
|
||||
|
||||
static const long double zero[] = { 0.0L, -0.0L };
|
||||
|
||||
long double
|
||||
modfl(long double x, long double *iptr)
|
||||
{
|
||||
union IEEEl2bits ux;
|
||||
int e;
|
||||
|
||||
ux.e = x;
|
||||
e = ux.bits.exp - LDBL_MAX_EXP + 1;
|
||||
if (e < HIBITS) { /* Integer part is in manh. */
|
||||
if (e < 0) { /* |x|<1 */
|
||||
*iptr = zero[ux.bits.sign];
|
||||
return (x);
|
||||
} else {
|
||||
if ((GETFRAC(ux.bits.manh, HIBITS - 1 - e) |
|
||||
ux.bits.manl) == 0) { /* X is an integer. */
|
||||
*iptr = x;
|
||||
return (zero[ux.bits.sign]);
|
||||
} else {
|
||||
/* Clear all but the top e+1 bits. */
|
||||
ux.bits.manh >>= HIBITS - 1 - e;
|
||||
ux.bits.manh <<= HIBITS - 1 - e;
|
||||
ux.bits.manl = 0;
|
||||
*iptr = ux.e;
|
||||
return (x - ux.e);
|
||||
}
|
||||
}
|
||||
} else if (e >= LDBL_MANT_DIG - 1) { /* x has no fraction part. */
|
||||
*iptr = x;
|
||||
if (x != x) /* Handle NaNs. */
|
||||
return (x);
|
||||
return (zero[ux.bits.sign]);
|
||||
} else { /* Fraction part is in manl. */
|
||||
if (GETFRAC(ux.bits.manl, LDBL_MANT_DIG - 1 - e) == 0) {
|
||||
/* x is integral. */
|
||||
*iptr = x;
|
||||
return (zero[ux.bits.sign]);
|
||||
} else {
|
||||
/* Clear all but the top e+1 bits. */
|
||||
ux.bits.manl >>= LDBL_MANT_DIG - 1 - e;
|
||||
ux.bits.manl <<= LDBL_MANT_DIG - 1 - e;
|
||||
*iptr = ux.e;
|
||||
return (x - ux.e);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,61 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <fenv.h>
|
||||
#include <math.h>
|
||||
|
||||
/*
|
||||
* We save and restore the floating-point environment to avoid raising
|
||||
* an inexact exception. We can get away with using fesetenv()
|
||||
* instead of feclearexcept()/feupdateenv() to restore the environment
|
||||
* because the only exception defined for rint() is overflow, and
|
||||
* rounding can't overflow as long as emax >= p.
|
||||
*
|
||||
* The volatile keyword is needed below because clang incorrectly assumes
|
||||
* that rint won't raise any floating-point exceptions. Declaring ret volatile
|
||||
* is sufficient to trick the compiler into doing the right thing.
|
||||
*/
|
||||
#define DECL(type, fn, rint) \
|
||||
type \
|
||||
fn(type x) \
|
||||
{ \
|
||||
volatile type ret; \
|
||||
fenv_t env; \
|
||||
\
|
||||
fegetenv(&env); \
|
||||
ret = rint(x); \
|
||||
fesetenv(&env); \
|
||||
return (ret); \
|
||||
}
|
||||
|
||||
DECL(double, nearbyint, rint)
|
||||
DECL(float, nearbyintf, rintf)
|
||||
DECL(long double, nearbyintl, rintl)
|
|
@ -0,0 +1,80 @@
|
|||
/* @(#)s_nextafter.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/* IEEE functions
|
||||
* nextafter(x,y)
|
||||
* return the next machine floating-point number of x in the
|
||||
* direction toward y.
|
||||
* Special cases:
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
long double
|
||||
nextafterl(long double x, long double y)
|
||||
{
|
||||
volatile long double t;
|
||||
union IEEEl2bits ux, uy;
|
||||
|
||||
ux.e = x;
|
||||
uy.e = y;
|
||||
|
||||
if ((ux.bits.exp == 0x7fff &&
|
||||
((ux.bits.manh&~LDBL_NBIT)|ux.bits.manl) != 0) ||
|
||||
(uy.bits.exp == 0x7fff &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl) != 0))
|
||||
return x+y; /* x or y is nan */
|
||||
if(x==y) return y; /* x=y, return y */
|
||||
if(x==0.0) {
|
||||
ux.bits.manh = 0; /* return +-minsubnormal */
|
||||
ux.bits.manl = 1;
|
||||
ux.bits.sign = uy.bits.sign;
|
||||
t = ux.e*ux.e;
|
||||
if(t==ux.e) return t; else return ux.e; /* raise underflow flag */
|
||||
}
|
||||
if(x>0.0 ^ x<y) { /* x -= ulp */
|
||||
if(ux.bits.manl==0) {
|
||||
if ((ux.bits.manh&~LDBL_NBIT)==0)
|
||||
ux.bits.exp -= 1;
|
||||
ux.bits.manh = (ux.bits.manh - 1) | (ux.bits.manh & LDBL_NBIT);
|
||||
}
|
||||
ux.bits.manl -= 1;
|
||||
} else { /* x += ulp */
|
||||
ux.bits.manl += 1;
|
||||
if(ux.bits.manl==0) {
|
||||
ux.bits.manh = (ux.bits.manh + 1) | (ux.bits.manh & LDBL_NBIT);
|
||||
if ((ux.bits.manh&~LDBL_NBIT)==0)
|
||||
ux.bits.exp += 1;
|
||||
}
|
||||
}
|
||||
if(ux.bits.exp==0x7fff) return x+x; /* overflow */
|
||||
if(ux.bits.exp==0) { /* underflow */
|
||||
mask_nbit_l(ux);
|
||||
t = ux.e * ux.e;
|
||||
if(t!=ux.e) /* raise underflow flag */
|
||||
return ux.e;
|
||||
}
|
||||
return ux.e;
|
||||
}
|
||||
|
||||
__strong_reference(nextafterl, nexttowardl);
|
|
@ -0,0 +1,72 @@
|
|||
/* @(#)s_nextafter.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* We assume that a long double has a 15-bit exponent. On systems
|
||||
* where long double is the same as double, nexttoward() is an alias
|
||||
* for nextafter(), so we don't use this routine.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
double
|
||||
nexttoward(double x, long double y)
|
||||
{
|
||||
union IEEEl2bits uy;
|
||||
volatile double t;
|
||||
int32_t hx,ix;
|
||||
u_int32_t lx;
|
||||
|
||||
EXTRACT_WORDS(hx,lx,x);
|
||||
ix = hx&0x7fffffff; /* |x| */
|
||||
uy.e = y;
|
||||
|
||||
if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) ||
|
||||
(uy.bits.exp == 0x7fff &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl) != 0))
|
||||
return x+y; /* x or y is nan */
|
||||
if(x==y) return (double)y; /* x=y, return y */
|
||||
if(x==0.0) {
|
||||
INSERT_WORDS(x,uy.bits.sign<<31,1); /* return +-minsubnormal */
|
||||
t = x*x;
|
||||
if(t==x) return t; else return x; /* raise underflow flag */
|
||||
}
|
||||
if(hx>0.0 ^ x < y) { /* x -= ulp */
|
||||
if(lx==0) hx -= 1;
|
||||
lx -= 1;
|
||||
} else { /* x += ulp */
|
||||
lx += 1;
|
||||
if(lx==0) hx += 1;
|
||||
}
|
||||
ix = hx&0x7ff00000;
|
||||
if(ix>=0x7ff00000) return x+x; /* overflow */
|
||||
if(ix<0x00100000) { /* underflow */
|
||||
t = x*x;
|
||||
if(t!=x) { /* raise underflow flag */
|
||||
INSERT_WORDS(x,hx,lx);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
INSERT_WORDS(x,hx,lx);
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,59 @@
|
|||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#define LDBL_INFNAN_EXP (LDBL_MAX_EXP * 2 - 1)
|
||||
|
||||
float
|
||||
nexttowardf(float x, long double y)
|
||||
{
|
||||
union IEEEl2bits uy;
|
||||
volatile float t;
|
||||
int32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx,x);
|
||||
ix = hx&0x7fffffff; /* |x| */
|
||||
uy.e = y;
|
||||
|
||||
if((ix>0x7f800000) ||
|
||||
(uy.bits.exp == LDBL_INFNAN_EXP &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl) != 0))
|
||||
return x+y; /* x or y is nan */
|
||||
if(x==y) return (float)y; /* x=y, return y */
|
||||
if(ix==0) { /* x == 0 */
|
||||
SET_FLOAT_WORD(x,(uy.bits.sign<<31)|1);/* return +-minsubnormal */
|
||||
t = x*x;
|
||||
if(t==x) return t; else return x; /* raise underflow flag */
|
||||
}
|
||||
if(hx>=0 ^ x < y) /* x -= ulp */
|
||||
hx -= 1;
|
||||
else /* x += ulp */
|
||||
hx += 1;
|
||||
ix = hx&0x7f800000;
|
||||
if(ix>=0x7f800000) return x+x; /* overflow */
|
||||
if(ix<0x00800000) { /* underflow */
|
||||
t = x*x;
|
||||
if(t!=x) { /* raise underflow flag */
|
||||
SET_FLOAT_WORD(x,hx);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
SET_FLOAT_WORD(x,hx);
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,173 @@
|
|||
/* @(#)e_fmod.c 1.3 95/01/18 */
|
||||
/*-
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
#if LDBL_MANL_SIZE > 32
|
||||
typedef uint64_t manl_t;
|
||||
#else
|
||||
typedef uint32_t manl_t;
|
||||
#endif
|
||||
|
||||
#if LDBL_MANH_SIZE > 32
|
||||
typedef uint64_t manh_t;
|
||||
#else
|
||||
typedef uint32_t manh_t;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* These macros add and remove an explicit integer bit in front of the
|
||||
* fractional mantissa, if the architecture doesn't have such a bit by
|
||||
* default already.
|
||||
*/
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
#define SET_NBIT(hx) ((hx) | (1ULL << LDBL_MANH_SIZE))
|
||||
#define HFRAC_BITS LDBL_MANH_SIZE
|
||||
#else
|
||||
#define SET_NBIT(hx) (hx)
|
||||
#define HFRAC_BITS (LDBL_MANH_SIZE - 1)
|
||||
#endif
|
||||
|
||||
#define MANL_SHIFT (LDBL_MANL_SIZE - 1)
|
||||
|
||||
static const long double Zero[] = {0.0L, -0.0L};
|
||||
|
||||
/*
|
||||
* Return the IEEE remainder and set *quo to the last n bits of the
|
||||
* quotient, rounded to the nearest integer. We choose n=31 because
|
||||
* we wind up computing all the integer bits of the quotient anyway as
|
||||
* a side-effect of computing the remainder by the shift and subtract
|
||||
* method. In practice, this is far more bits than are needed to use
|
||||
* remquo in reduction algorithms.
|
||||
*
|
||||
* Assumptions:
|
||||
* - The low part of the mantissa fits in a manl_t exactly.
|
||||
* - The high part of the mantissa fits in an int64_t with enough room
|
||||
* for an explicit integer bit in front of the fractional bits.
|
||||
*/
|
||||
long double
|
||||
remquol(long double x, long double y, int *quo)
|
||||
{
|
||||
union IEEEl2bits ux, uy;
|
||||
int64_t hx,hz; /* We need a carry bit even if LDBL_MANH_SIZE is 32. */
|
||||
manh_t hy;
|
||||
manl_t lx,ly,lz;
|
||||
int ix,iy,n,q,sx,sxy;
|
||||
|
||||
ux.e = x;
|
||||
uy.e = y;
|
||||
sx = ux.bits.sign;
|
||||
sxy = sx ^ uy.bits.sign;
|
||||
ux.bits.sign = 0; /* |x| */
|
||||
uy.bits.sign = 0; /* |y| */
|
||||
|
||||
/* purge off exception values */
|
||||
if((uy.bits.exp|uy.bits.manh|uy.bits.manl)==0 || /* y=0 */
|
||||
(ux.bits.exp == BIAS + LDBL_MAX_EXP) || /* or x not finite */
|
||||
(uy.bits.exp == BIAS + LDBL_MAX_EXP &&
|
||||
((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)!=0)) /* or y is NaN */
|
||||
return nan_mix_op(x, y, *)/nan_mix_op(x, y, *);
|
||||
if(ux.bits.exp<=uy.bits.exp) {
|
||||
if((ux.bits.exp<uy.bits.exp) ||
|
||||
(ux.bits.manh<=uy.bits.manh &&
|
||||
(ux.bits.manh<uy.bits.manh ||
|
||||
ux.bits.manl<uy.bits.manl))) {
|
||||
q = 0;
|
||||
goto fixup; /* |x|<|y| return x or x-y */
|
||||
}
|
||||
if(ux.bits.manh==uy.bits.manh && ux.bits.manl==uy.bits.manl) {
|
||||
*quo = (sxy ? -1 : 1);
|
||||
return Zero[sx]; /* |x|=|y| return x*0*/
|
||||
}
|
||||
}
|
||||
|
||||
/* determine ix = ilogb(x) */
|
||||
if(ux.bits.exp == 0) { /* subnormal x */
|
||||
ux.e *= 0x1.0p512;
|
||||
ix = ux.bits.exp - (BIAS + 512);
|
||||
} else {
|
||||
ix = ux.bits.exp - BIAS;
|
||||
}
|
||||
|
||||
/* determine iy = ilogb(y) */
|
||||
if(uy.bits.exp == 0) { /* subnormal y */
|
||||
uy.e *= 0x1.0p512;
|
||||
iy = uy.bits.exp - (BIAS + 512);
|
||||
} else {
|
||||
iy = uy.bits.exp - BIAS;
|
||||
}
|
||||
|
||||
/* set up {hx,lx}, {hy,ly} and align y to x */
|
||||
hx = SET_NBIT(ux.bits.manh);
|
||||
hy = SET_NBIT(uy.bits.manh);
|
||||
lx = ux.bits.manl;
|
||||
ly = uy.bits.manl;
|
||||
|
||||
/* fix point fmod */
|
||||
n = ix - iy;
|
||||
q = 0;
|
||||
while(n--) {
|
||||
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
||||
if(hz<0){hx = hx+hx+(lx>>MANL_SHIFT); lx = lx+lx;}
|
||||
else {hx = hz+hz+(lz>>MANL_SHIFT); lx = lz+lz; q++;}
|
||||
q <<= 1;
|
||||
}
|
||||
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
|
||||
if(hz>=0) {hx=hz;lx=lz;q++;}
|
||||
|
||||
/* convert back to floating value and restore the sign */
|
||||
if((hx|lx)==0) { /* return sign(x)*0 */
|
||||
q &= 0x7fffffff;
|
||||
*quo = (sxy ? -q : q);
|
||||
return Zero[sx];
|
||||
}
|
||||
while(hx<(1ULL<<HFRAC_BITS)) { /* normalize x */
|
||||
hx = hx+hx+(lx>>MANL_SHIFT); lx = lx+lx;
|
||||
iy -= 1;
|
||||
}
|
||||
ux.bits.manh = hx; /* The integer bit is truncated here if needed. */
|
||||
ux.bits.manl = lx;
|
||||
if (iy < LDBL_MIN_EXP) {
|
||||
ux.bits.exp = iy + (BIAS + 512);
|
||||
ux.e *= 0x1p-512;
|
||||
} else {
|
||||
ux.bits.exp = iy + BIAS;
|
||||
}
|
||||
fixup:
|
||||
x = ux.e; /* |x| */
|
||||
y = fabsl(y);
|
||||
if (y < LDBL_MIN * 2) {
|
||||
if (x+x>y || (x+x==y && (q & 1))) {
|
||||
q++;
|
||||
x-=y;
|
||||
}
|
||||
} else if (x>0.5*y || (x==0.5*y && (q & 1))) {
|
||||
q++;
|
||||
x-=y;
|
||||
}
|
||||
ux.e = x;
|
||||
ux.bits.sign ^= sx;
|
||||
x = ux.e;
|
||||
q &= 0x7fffffff;
|
||||
*quo = (sxy ? -q : q);
|
||||
return x;
|
||||
}
|
|
@ -0,0 +1,92 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2008 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
/* We also require the usual bias, min exp and expsign packing. */
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const float
|
||||
shift[2] = {
|
||||
#if LDBL_MANT_DIG == 64
|
||||
0x1.0p63, -0x1.0p63
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
0x1.0p112, -0x1.0p112
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
};
|
||||
static const float zero[2] = { 0.0, -0.0 };
|
||||
|
||||
long double
|
||||
rintl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
uint32_t expsign;
|
||||
int ex, sign;
|
||||
|
||||
u.e = x;
|
||||
expsign = u.xbits.expsign;
|
||||
ex = expsign & 0x7fff;
|
||||
|
||||
if (ex >= BIAS + LDBL_MANT_DIG - 1) {
|
||||
if (ex == BIAS + LDBL_MAX_EXP)
|
||||
return (x + x); /* Inf, NaN, or unsupported format */
|
||||
return (x); /* finite and already an integer */
|
||||
}
|
||||
sign = expsign >> 15;
|
||||
|
||||
/*
|
||||
* The following code assumes that intermediate results are
|
||||
* evaluated in long double precision. If they are evaluated in
|
||||
* greater precision, double rounding may occur, and if they are
|
||||
* evaluated in less precision (as on i386), results will be
|
||||
* wildly incorrect.
|
||||
*/
|
||||
x += shift[sign];
|
||||
x -= shift[sign];
|
||||
|
||||
/*
|
||||
* If the result is +-0, then it must have the same sign as x, but
|
||||
* the above calculation doesn't always give this. Fix up the sign.
|
||||
*/
|
||||
if (ex < BIAS && x == 0.0L)
|
||||
return (zero[sign]);
|
||||
|
||||
return (x);
|
||||
}
|
|
@ -0,0 +1,64 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2003, Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
long double
|
||||
roundl(long double x)
|
||||
{
|
||||
long double t;
|
||||
uint16_t hx;
|
||||
|
||||
GET_LDBL_EXPSIGN(hx, x);
|
||||
if ((hx & 0x7fff) == 0x7fff)
|
||||
return (x + x);
|
||||
|
||||
ENTERI();
|
||||
|
||||
if (!(hx & 0x8000)) {
|
||||
t = floorl(x);
|
||||
if (t - x <= -0.5L)
|
||||
t += 1;
|
||||
RETURNI(t);
|
||||
} else {
|
||||
t = floorl(-x);
|
||||
if (t + x <= -0.5L)
|
||||
t += 1;
|
||||
RETURNI(-t);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2004 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#define NMAX 65536
|
||||
#define NMIN -65536
|
||||
|
||||
double
|
||||
scalbln(double x, long n)
|
||||
{
|
||||
|
||||
return (scalbn(x, (n > NMAX) ? NMAX : (n < NMIN) ? NMIN : (int)n));
|
||||
}
|
||||
|
||||
float
|
||||
scalblnf(float x, long n)
|
||||
{
|
||||
|
||||
return (scalbnf(x, (n > NMAX) ? NMAX : (n < NMIN) ? NMIN : (int)n));
|
||||
}
|
||||
|
||||
long double
|
||||
scalblnl(long double x, long n)
|
||||
{
|
||||
|
||||
return (scalbnl(x, (n > NMAX) ? NMAX : (n < NMIN) ? NMIN : (int)n));
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
/*
|
||||
* Copyright (c) 2005-2020 Rich Felker, et al.
|
||||
*
|
||||
* SPDX-License-Identifier: MIT
|
||||
*
|
||||
* Please see https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
|
||||
* for all contributors to musl.
|
||||
*/
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
#include "math_private.h"
|
||||
#include "fpmath.h"
|
||||
/*
|
||||
* scalbnl (long double x, int n)
|
||||
* scalbnl(x,n) returns x* 2**n computed by exponent
|
||||
* manipulation rather than by actually performing an
|
||||
* exponentiation or a multiplication.
|
||||
*/
|
||||
#if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
||||
long double scalbnl(long double x, int n)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
|
||||
if (n > 16383) {
|
||||
x *= 0x1p16383L;
|
||||
n -= 16383;
|
||||
if (n > 16383) {
|
||||
x *= 0x1p16383L;
|
||||
n -= 16383;
|
||||
if (n > 16383)
|
||||
n = 16383;
|
||||
}
|
||||
} else if (n < -16382) {
|
||||
x *= 0x1p-16382L * 0x1p113L;
|
||||
n += 16382 - 113;
|
||||
if (n < -16382) {
|
||||
x *= 0x1p-16382L * 0x1p113L;
|
||||
n += 16382 - 113;
|
||||
if (n < -16382)
|
||||
n = -16382;
|
||||
}
|
||||
}
|
||||
u.e = 1.0;
|
||||
u.xbits.expsign = 0x3fff + n;
|
||||
return x * u.e;
|
||||
}
|
||||
__strong_reference(scalbnl, ldexpl);
|
||||
#endif
|
|
@ -0,0 +1,95 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2007 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#if LDBL_MANT_DIG == 64
|
||||
#include "../ld80/e_rem_pio2l.h"
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
#include "../ld128/e_rem_pio2l.h"
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
long double
|
||||
sinl(long double x)
|
||||
{
|
||||
union IEEEl2bits z;
|
||||
int e0, s;
|
||||
long double y[2];
|
||||
long double hi, lo;
|
||||
|
||||
z.e = x;
|
||||
s = z.bits.sign;
|
||||
z.bits.sign = 0;
|
||||
|
||||
/* If x = +-0 or x is a subnormal number, then sin(x) = x */
|
||||
if (z.bits.exp == 0)
|
||||
return (x);
|
||||
|
||||
/* If x = NaN or Inf, then sin(x) = NaN. */
|
||||
if (z.bits.exp == 32767)
|
||||
return ((x - x) / (x - x));
|
||||
|
||||
ENTERI();
|
||||
|
||||
/* Optimize the case where x is already within range. */
|
||||
if (z.e < M_PI_4) {
|
||||
hi = __kernel_sinl(z.e, 0, 0);
|
||||
RETURNI(s ? -hi : hi);
|
||||
}
|
||||
|
||||
e0 = __ieee754_rem_pio2l(x, y);
|
||||
hi = y[0];
|
||||
lo = y[1];
|
||||
|
||||
switch (e0 & 3) {
|
||||
case 0:
|
||||
hi = __kernel_sinl(hi, lo, 1);
|
||||
break;
|
||||
case 1:
|
||||
hi = __kernel_cosl(hi, lo);
|
||||
break;
|
||||
case 2:
|
||||
hi = - __kernel_sinl(hi, lo, 1);
|
||||
break;
|
||||
case 3:
|
||||
hi = - __kernel_cosl(hi, lo);
|
||||
break;
|
||||
}
|
||||
|
||||
RETURNI(hi);
|
||||
}
|
|
@ -0,0 +1,174 @@
|
|||
/* from: FreeBSD: head/lib/msun/src/s_tanhl.c XXX */
|
||||
|
||||
/* @(#)s_tanh.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See s_tanh.c for complete comments.
|
||||
*
|
||||
* Converted to long double by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "fpmath.h"
|
||||
#include "k_expl.h"
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
/* We also require the usual expsign encoding. */
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const volatile double tiny = 1.0e-300;
|
||||
static const double one = 1.0;
|
||||
#if LDBL_MANT_DIG == 64
|
||||
/*
|
||||
* Domain [-0.25, 0.25], range ~[-1.6304e-22, 1.6304e-22]:
|
||||
* |tanh(x)/x - t(x)| < 2**-72.3
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
T3u = LD80C(0xaaaaaaaaaaaaaa9f, -2, -3.33333333333333333017e-1L);
|
||||
#define T3 T3u.e
|
||||
static const double
|
||||
T5 = 1.3333333333333314e-1, /* 0x1111111111110a.0p-55 */
|
||||
T7 = -5.3968253968210485e-2, /* -0x1ba1ba1ba1a1a1.0p-57 */
|
||||
T9 = 2.1869488531393817e-2, /* 0x1664f488172022.0p-58 */
|
||||
T11 = -8.8632352345964591e-3, /* -0x1226e34bc138d5.0p-59 */
|
||||
T13 = 3.5921169709993771e-3, /* 0x1d6d371d3e400f.0p-61 */
|
||||
T15 = -1.4555786415756001e-3, /* -0x17d923aa63814d.0p-62 */
|
||||
T17 = 5.8645267876296793e-4, /* 0x13378589b85aa7.0p-63 */
|
||||
T19 = -2.1121033571392224e-4; /* -0x1baf0af80c4090.0p-65 */
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
/*
|
||||
* Domain [-0.25, 0.25], range ~[-2.4211e-37, 2.4211e-37]:
|
||||
* |tanh(x)/x - t(x)| < 2**121.6
|
||||
*/
|
||||
static const long double
|
||||
T3 = -3.33333333333333333333333333333332980e-1L, /* -0x1555555555555555555555555554e.0p-114L */
|
||||
T5 = 1.33333333333333333333333333332707260e-1L, /* 0x1111111111111111111111110ab7b.0p-115L */
|
||||
T7 = -5.39682539682539682539682535723482314e-2L, /* -0x1ba1ba1ba1ba1ba1ba1ba17b5fc98.0p-117L */
|
||||
T9 = 2.18694885361552028218693591149061717e-2L, /* 0x1664f4882c10f9f32d6b1a12a25e5.0p-118L */
|
||||
T11 = -8.86323552990219656883762347736381851e-3L, /* -0x1226e355e6c23c8f5a5a0f386cb4d.0p-119L */
|
||||
T13 = 3.59212803657248101358314398220822722e-3L, /* 0x1d6d3d0e157ddfb403ad3637442c6.0p-121L */
|
||||
T15 = -1.45583438705131796512568010348874662e-3L; /* -0x17da36452b75e150c44cc34253b34.0p-122L */
|
||||
static const double
|
||||
T17 = 5.9002744094556621e-4, /* 0x1355824803668e.0p-63 */
|
||||
T19 = -2.3912911424260516e-4, /* -0x1f57d7734c8dde.0p-65 */
|
||||
T21 = 9.6915379535512898e-5, /* 0x1967e18ad6a6ca.0p-66 */
|
||||
T23 = -3.9278322983156353e-5, /* -0x1497d8e6b75729.0p-67 */
|
||||
T25 = 1.5918887220143869e-5, /* 0x10b1319998cafa.0p-68 */
|
||||
T27 = -6.4514295231630956e-6, /* -0x1b0f2b71b218eb.0p-70 */
|
||||
T29 = 2.6120754043964365e-6, /* 0x15e963a3cf3a39.0p-71 */
|
||||
T31 = -1.0407567231003314e-6, /* -0x1176041e656869.0p-72 */
|
||||
T33 = 3.4744117554063574e-7; /* 0x1750fe732cab9c.0p-74 */
|
||||
#endif /* LDBL_MANT_DIG == 64 */
|
||||
|
||||
static inline long double
|
||||
divl(long double a, long double b, long double c, long double d,
|
||||
long double e, long double f)
|
||||
{
|
||||
long double inv, r;
|
||||
float fr, fw;
|
||||
|
||||
_2sumF(a, c);
|
||||
b = b + c;
|
||||
_2sumF(d, f);
|
||||
e = e + f;
|
||||
|
||||
inv = 1 / (d + e);
|
||||
|
||||
r = (a + b) * inv;
|
||||
fr = r;
|
||||
r = fr;
|
||||
|
||||
fw = d + e;
|
||||
e = d - fw + e;
|
||||
d = fw;
|
||||
|
||||
r = r + (a - d * r + b - e * r) * inv;
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
long double
|
||||
tanhl(long double x)
|
||||
{
|
||||
long double hi,lo,s,x2,x4,z;
|
||||
#if LDBL_MANT_DIG == 113
|
||||
double dx2;
|
||||
#endif
|
||||
int16_t jx,ix;
|
||||
|
||||
GET_LDBL_EXPSIGN(jx,x);
|
||||
ix = jx&0x7fff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix>=0x7fff) {
|
||||
if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
|
||||
else return one/x-one; /* tanh(NaN) = NaN */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
/* |x| < 40 */
|
||||
if (ix < 0x4004 || fabsl(x) < 40) { /* |x|<40 */
|
||||
if (__predict_false(ix<BIAS-(LDBL_MANT_DIG+1)/2)) { /* |x|<TINY */
|
||||
/* tanh(+-0) = +0; tanh(tiny) = tiny(-+) with inexact: */
|
||||
return (x == 0 ? x : (0x1p200 * x - x) * 0x1p-200);
|
||||
}
|
||||
if (ix<0x3ffd) { /* |x|<0.25 */
|
||||
x2 = x*x;
|
||||
#if LDBL_MANT_DIG == 64
|
||||
x4 = x2*x2;
|
||||
RETURNI(((T19*x2 + T17)*x4 + (T15*x2 + T13))*(x2*x*x2*x4*x4) +
|
||||
((T11*x2 + T9)*x4 + (T7*x2 + T5))*(x2*x*x2) +
|
||||
T3*(x2*x) + x);
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
dx2 = x2;
|
||||
#if 0
|
||||
RETURNI(((((((((((((((T33*dx2 + T31)*dx2 + T29)*dx2 + T27)*dx2 +
|
||||
T25)*x2 + T23)*x2 + T21)*x2 + T19)*x2 + T17)*x2 +
|
||||
T15)*x2 + T13)*x2 + T11)*x2 + T9)*x2 + T7)*x2 + T5)*
|
||||
(x2*x*x2) +
|
||||
T3*(x2*x) + x);
|
||||
#else
|
||||
long double q = ((((((((((((((T33*dx2 + T31)*dx2 + T29)*dx2 + T27)*dx2 +
|
||||
T25)*x2 + T23)*x2 + T21)*x2 + T19)*x2 + T17)*x2 +
|
||||
T15)*x2 + T13)*x2 + T11)*x2 + T9)*x2 + T7)*x2 + T5)*
|
||||
(x2*x*x2);
|
||||
RETURNI(q + T3*(x2*x) + x);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
k_hexpl(2*fabsl(x), &hi, &lo);
|
||||
if (ix<0x4001 && fabsl(x) < 1.5) /* |x|<1.5 */
|
||||
z = divl(hi, lo, -0.5, hi, lo, 0.5);
|
||||
else
|
||||
z = one - one/(lo+0.5+hi);
|
||||
/* |x| >= 40, return +-1 */
|
||||
} else {
|
||||
z = one - tiny; /* raise inexact flag */
|
||||
}
|
||||
s = 1;
|
||||
if (jx<0) s = -1;
|
||||
RETURNI(s*z);
|
||||
}
|
|
@ -0,0 +1,97 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2007 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* Limited testing on pseudorandom numbers drawn within [0:4e8] shows
|
||||
* an accuracy of <= 1.5 ULP where 247024 values of x out of 40 million
|
||||
* possibles resulted in tan(x) that exceeded 0.5 ULP (ie., 0.6%).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#if LDBL_MANT_DIG == 64
|
||||
#include "../ld80/e_rem_pio2l.h"
|
||||
#elif LDBL_MANT_DIG == 113
|
||||
#include "../ld128/e_rem_pio2l.h"
|
||||
#else
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
long double
|
||||
tanl(long double x)
|
||||
{
|
||||
union IEEEl2bits z;
|
||||
int e0, s;
|
||||
long double y[2];
|
||||
long double hi, lo;
|
||||
|
||||
z.e = x;
|
||||
s = z.bits.sign;
|
||||
z.bits.sign = 0;
|
||||
|
||||
/* If x = +-0 or x is subnormal, then tan(x) = x. */
|
||||
if (z.bits.exp == 0)
|
||||
return (x);
|
||||
|
||||
/* If x = NaN or Inf, then tan(x) = NaN. */
|
||||
if (z.bits.exp == 32767)
|
||||
return ((x - x) / (x - x));
|
||||
|
||||
ENTERI();
|
||||
|
||||
/* Optimize the case where x is already within range. */
|
||||
if (z.e < M_PI_4) {
|
||||
hi = __kernel_tanl(z.e, 0, 0);
|
||||
RETURNI(s ? -hi : hi);
|
||||
}
|
||||
|
||||
e0 = __ieee754_rem_pio2l(x, y);
|
||||
hi = y[0];
|
||||
lo = y[1];
|
||||
|
||||
switch (e0 & 3) {
|
||||
case 0:
|
||||
case 2:
|
||||
hi = __kernel_tanl(hi, lo, 0);
|
||||
break;
|
||||
case 1:
|
||||
case 3:
|
||||
hi = __kernel_tanl(hi, lo, 1);
|
||||
break;
|
||||
}
|
||||
|
||||
RETURNI(hi);
|
||||
}
|
|
@ -0,0 +1,68 @@
|
|||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* From: @(#)s_floor.c 5.1 93/09/24
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* truncl(x)
|
||||
* Return x rounded toward 0 to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to truncl(x).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
#ifdef LDBL_IMPLICIT_NBIT
|
||||
#define MANH_SIZE (LDBL_MANH_SIZE + 1)
|
||||
#else
|
||||
#define MANH_SIZE LDBL_MANH_SIZE
|
||||
#endif
|
||||
|
||||
static const long double huge = 1.0e300;
|
||||
static const float zero[] = { 0.0, -0.0 };
|
||||
|
||||
long double
|
||||
truncl(long double x)
|
||||
{
|
||||
union IEEEl2bits u = { .e = x };
|
||||
int e = u.bits.exp - LDBL_MAX_EXP + 1;
|
||||
|
||||
if (e < MANH_SIZE - 1) {
|
||||
if (e < 0) { /* raise inexact if x != 0 */
|
||||
if (huge + x > 0.0)
|
||||
u.e = zero[u.bits.sign];
|
||||
} else {
|
||||
uint64_t m = ((1llu << MANH_SIZE) - 1) >> (e + 1);
|
||||
if (((u.bits.manh & m) | u.bits.manl) == 0)
|
||||
return (x); /* x is integral */
|
||||
if (huge + x > 0.0) { /* raise inexact flag */
|
||||
u.bits.manh &= ~m;
|
||||
u.bits.manl = 0;
|
||||
}
|
||||
}
|
||||
} else if (e < LDBL_MANT_DIG - 1) {
|
||||
uint64_t m = (uint64_t)-1 >> (64 - LDBL_MANT_DIG + e + 1);
|
||||
if ((u.bits.manl & m) == 0)
|
||||
return (x); /* x is integral */
|
||||
if (huge + x > 0.0) /* raise inexact flag */
|
||||
u.bits.manl &= ~m;
|
||||
}
|
||||
return (u.e);
|
||||
}
|
|
@ -0,0 +1,57 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2013 David Chisnall
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
/*
|
||||
* If long double is not the same size as double, then these will lose
|
||||
* precision and we should emit a warning whenever something links against
|
||||
* them.
|
||||
*/
|
||||
#if (LDBL_MANT_DIG > 53)
|
||||
#define WARN_IMPRECISE(x) \
|
||||
__warn_references(x, # x " has lower than advertised precision");
|
||||
#else
|
||||
#define WARN_IMPRECISE(x)
|
||||
#endif
|
||||
/*
|
||||
* Declare the functions as weak variants so that other libraries providing
|
||||
* real versions can override them.
|
||||
*/
|
||||
#define DECLARE_WEAK(x)\
|
||||
__weak_reference(imprecise_## x, x);\
|
||||
WARN_IMPRECISE(x)
|
||||
|
||||
#define DECLARE_IMPRECISE(f) \
|
||||
long double imprecise_ ## f ## l(long double v) { return f(v); }\
|
||||
DECLARE_WEAK(f ## l)
|
||||
|
||||
DECLARE_IMPRECISE(tgamma);
|
|
@ -0,0 +1,330 @@
|
|||
/* @(#)e_lgamma_r.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See e_lgamma_r.c for complete comments.
|
||||
*
|
||||
* Converted to long double by Steven G. Kargl.
|
||||
*/
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const volatile double vzero = 0;
|
||||
|
||||
static const double
|
||||
zero= 0,
|
||||
half= 0.5,
|
||||
one = 1;
|
||||
|
||||
static const long double
|
||||
pi = 3.14159265358979323846264338327950288e+00L;
|
||||
/*
|
||||
* Domain y in [0x1p-119, 0.28], range ~[-1.4065e-36, 1.4065e-36]:
|
||||
* |(lgamma(2 - y) + y / 2) / y - a(y)| < 2**-119.1
|
||||
*/
|
||||
static const long double
|
||||
a0 = 7.72156649015328606065120900824024296e-02L,
|
||||
a1 = 3.22467033424113218236207583323018498e-01L,
|
||||
a2 = 6.73523010531980951332460538330282217e-02L,
|
||||
a3 = 2.05808084277845478790009252803463129e-02L,
|
||||
a4 = 7.38555102867398526627292839296001626e-03L,
|
||||
a5 = 2.89051033074152328576829509522483468e-03L,
|
||||
a6 = 1.19275391170326097618357349881842913e-03L,
|
||||
a7 = 5.09669524743042462515256340206203019e-04L,
|
||||
a8 = 2.23154758453578096143609255559576017e-04L,
|
||||
a9 = 9.94575127818397632126978731542755129e-05L,
|
||||
a10 = 4.49262367375420471287545895027098145e-05L,
|
||||
a11 = 2.05072127845117995426519671481628849e-05L,
|
||||
a12 = 9.43948816959096748454087141447939513e-06L,
|
||||
a13 = 4.37486780697359330303852050718287419e-06L,
|
||||
a14 = 2.03920783892362558276037363847651809e-06L,
|
||||
a15 = 9.55191070057967287877923073200324649e-07L,
|
||||
a16 = 4.48993286185740853170657139487620560e-07L,
|
||||
a17 = 2.13107543597620911675316728179563522e-07L,
|
||||
a18 = 9.70745379855304499867546549551023473e-08L,
|
||||
a19 = 5.61889970390290257926487734695402075e-08L,
|
||||
a20 = 6.42739653024130071866684358960960951e-09L,
|
||||
a21 = 3.34491062143649291746195612991870119e-08L,
|
||||
a22 = -1.57068547394315223934653011440641472e-08L,
|
||||
a23 = 1.30812825422415841213733487745200632e-08L;
|
||||
/*
|
||||
* Domain x in [tc-0.24, tc+0.28], range ~[-6.3201e-37, 6.3201e-37]:
|
||||
* |(lgamma(x) - tf) - t(x - tc)| < 2**-120.3.
|
||||
*/
|
||||
static const long double
|
||||
tc = 1.46163214496836234126265954232572133e+00L,
|
||||
tf = -1.21486290535849608095514557177691584e-01L,
|
||||
tt = 1.57061739945077675484237837992951704e-36L,
|
||||
t0 = -1.99238329499314692728655623767019240e-36L,
|
||||
t1 = -6.08453430711711404116887457663281416e-35L,
|
||||
t2 = 4.83836122723810585213722380854828904e-01L,
|
||||
t3 = -1.47587722994530702030955093950668275e-01L,
|
||||
t4 = 6.46249402389127526561003464202671923e-02L,
|
||||
t5 = -3.27885410884813055008502586863748063e-02L,
|
||||
t6 = 1.79706751152103942928638276067164935e-02L,
|
||||
t7 = -1.03142230366363872751602029672767978e-02L,
|
||||
t8 = 6.10053602051788840313573150785080958e-03L,
|
||||
t9 = -3.68456960831637325470641021892968954e-03L,
|
||||
t10 = 2.25976482322181046611440855340968560e-03L,
|
||||
t11 = -1.40225144590445082933490395950664961e-03L,
|
||||
t12 = 8.78232634717681264035014878172485575e-04L,
|
||||
t13 = -5.54194952796682301220684760591403899e-04L,
|
||||
t14 = 3.51912956837848209220421213975000298e-04L,
|
||||
t15 = -2.24653443695947456542669289367055542e-04L,
|
||||
t16 = 1.44070395420840737695611929680511823e-04L,
|
||||
t17 = -9.27609865550394140067059487518862512e-05L,
|
||||
t18 = 5.99347334438437081412945428365433073e-05L,
|
||||
t19 = -3.88458388854572825603964274134801009e-05L,
|
||||
t20 = 2.52476631610328129217896436186551043e-05L,
|
||||
t21 = -1.64508584981658692556994212457518536e-05L,
|
||||
t22 = 1.07434583475987007495523340296173839e-05L,
|
||||
t23 = -7.03070407519397260929482550448878399e-06L,
|
||||
t24 = 4.60968590693753579648385629003100469e-06L,
|
||||
t25 = -3.02765473778832036018438676945512661e-06L,
|
||||
t26 = 1.99238771545503819972741288511303401e-06L,
|
||||
t27 = -1.31281299822614084861868817951788579e-06L,
|
||||
t28 = 8.60844432267399655055574642052370223e-07L,
|
||||
t29 = -5.64535486432397413273248363550536374e-07L,
|
||||
t30 = 3.99357783676275660934903139592727737e-07L,
|
||||
t31 = -2.95849029193433121795495215869311610e-07L,
|
||||
t32 = 1.37790144435073124976696250804940384e-07L;
|
||||
/*
|
||||
* Domain y in [-0.1, 0.232], range ~[-1.4046e-37, 1.4181e-37]:
|
||||
* |(lgamma(1 + y) + 0.5 * y) / y - u(y) / v(y)| < 2**-122.8
|
||||
*/
|
||||
static const long double
|
||||
u0 = -7.72156649015328606065120900824024311e-02L,
|
||||
u1 = 4.24082772271938167430983113242482656e-01L,
|
||||
u2 = 2.96194003481457101058321977413332171e+00L,
|
||||
u3 = 6.49503267711258043997790983071543710e+00L,
|
||||
u4 = 7.40090051288150177152835698948644483e+00L,
|
||||
u5 = 4.94698036296756044610805900340723464e+00L,
|
||||
u6 = 2.00194224610796294762469550684947768e+00L,
|
||||
u7 = 4.82073087750608895996915051568834949e-01L,
|
||||
u8 = 6.46694052280506568192333848437585427e-02L,
|
||||
u9 = 4.17685526755100259316625348933108810e-03L,
|
||||
u10 = 9.06361003550314327144119307810053410e-05L,
|
||||
v1 = 5.15937098592887275994320496999951947e+00L,
|
||||
v2 = 1.14068418766251486777604403304717558e+01L,
|
||||
v3 = 1.41164839437524744055723871839748489e+01L,
|
||||
v4 = 1.07170702656179582805791063277960532e+01L,
|
||||
v5 = 5.14448694179047879915042998453632434e+00L,
|
||||
v6 = 1.55210088094585540637493826431170289e+00L,
|
||||
v7 = 2.82975732849424562719893657416365673e-01L,
|
||||
v8 = 2.86424622754753198010525786005443539e-02L,
|
||||
v9 = 1.35364253570403771005922441442688978e-03L,
|
||||
v10 = 1.91514173702398375346658943749580666e-05L,
|
||||
v11 = -3.25364686890242327944584691466034268e-08L;
|
||||
/*
|
||||
* Domain x in (2, 3], range ~[-1.3341e-36, 1.3536e-36]:
|
||||
* |(lgamma(y+2) - 0.5 * y) / y - s(y)/r(y)| < 2**-120.1
|
||||
* with y = x - 2.
|
||||
*/
|
||||
static const long double
|
||||
s0 = -7.72156649015328606065120900824024297e-02L,
|
||||
s1 = 1.23221687850916448903914170805852253e-01L,
|
||||
s2 = 5.43673188699937239808255378293820020e-01L,
|
||||
s3 = 6.31998137119005233383666791176301800e-01L,
|
||||
s4 = 3.75885340179479850993811501596213763e-01L,
|
||||
s5 = 1.31572908743275052623410195011261575e-01L,
|
||||
s6 = 2.82528453299138685507186287149699749e-02L,
|
||||
s7 = 3.70262021550340817867688714880797019e-03L,
|
||||
s8 = 2.83374000312371199625774129290973648e-04L,
|
||||
s9 = 1.15091830239148290758883505582343691e-05L,
|
||||
s10 = 2.04203474281493971326506384646692446e-07L,
|
||||
s11 = 9.79544198078992058548607407635645763e-10L,
|
||||
r1 = 2.58037466655605285937112832039537492e+00L,
|
||||
r2 = 2.86289413392776399262513849911531180e+00L,
|
||||
r3 = 1.78691044735267497452847829579514367e+00L,
|
||||
r4 = 6.89400381446725342846854215600008055e-01L,
|
||||
r5 = 1.70135865462567955867134197595365343e-01L,
|
||||
r6 = 2.68794816183964420375498986152766763e-02L,
|
||||
r7 = 2.64617234244861832870088893332006679e-03L,
|
||||
r8 = 1.52881761239180800640068128681725702e-04L,
|
||||
r9 = 4.63264813762296029824851351257638558e-06L,
|
||||
r10 = 5.89461519146957343083848967333671142e-08L,
|
||||
r11 = 1.79027678176582527798327441636552968e-10L;
|
||||
/*
|
||||
* Domain z in [8, 0x1p70], range ~[-9.8214e-35, 9.8214e-35]:
|
||||
* |lgamma(x) - (x - 0.5) * (log(x) - 1) - w(1/x)| < 2**-113.0
|
||||
*/
|
||||
static const long double
|
||||
w0 = 4.18938533204672741780329736405617738e-01L,
|
||||
w1 = 8.33333333333333333333333333332852026e-02L,
|
||||
w2 = -2.77777777777777777777777727810123528e-03L,
|
||||
w3 = 7.93650793650793650791708939493907380e-04L,
|
||||
w4 = -5.95238095238095234390450004444370959e-04L,
|
||||
w5 = 8.41750841750837633887817658848845695e-04L,
|
||||
w6 = -1.91752691752396849943172337347259743e-03L,
|
||||
w7 = 6.41025640880333069429106541459015557e-03L,
|
||||
w8 = -2.95506530801732133437990433080327074e-02L,
|
||||
w9 = 1.79644237328444101596766586979576927e-01L,
|
||||
w10 = -1.39240539108367641920172649259736394e+00L,
|
||||
w11 = 1.33987701479007233325288857758641761e+01L,
|
||||
w12 = -1.56363596431084279780966590116006255e+02L,
|
||||
w13 = 2.14830978044410267201172332952040777e+03L,
|
||||
w14 = -3.28636067474227378352761516589092334e+04L,
|
||||
w15 = 5.06201257747865138432663574251462485e+05L,
|
||||
w16 = -6.79720123352023636706247599728048344e+06L,
|
||||
w17 = 6.57556601705472106989497289465949255e+07L,
|
||||
w18 = -3.26229058141181783534257632389415580e+08L;
|
||||
|
||||
static long double
|
||||
sin_pil(long double x)
|
||||
{
|
||||
volatile long double vz;
|
||||
long double y,z;
|
||||
uint64_t lx, n;
|
||||
uint16_t hx;
|
||||
|
||||
y = -x;
|
||||
|
||||
vz = y+0x1.p112;
|
||||
z = vz-0x1.p112;
|
||||
if (z == y)
|
||||
return zero;
|
||||
|
||||
vz = y+0x1.p110;
|
||||
EXTRACT_LDBL128_WORDS(hx,lx,n,vz);
|
||||
z = vz-0x1.p110;
|
||||
if (z > y) {
|
||||
z -= 0.25;
|
||||
n--;
|
||||
}
|
||||
n &= 7;
|
||||
y = y - z + n * 0.25;
|
||||
|
||||
switch (n) {
|
||||
case 0: y = __kernel_sinl(pi*y,zero,0); break;
|
||||
case 1:
|
||||
case 2: y = __kernel_cosl(pi*(0.5-y),zero); break;
|
||||
case 3:
|
||||
case 4: y = __kernel_sinl(pi*(one-y),zero,0); break;
|
||||
case 5:
|
||||
case 6: y = -__kernel_cosl(pi*(y-1.5),zero); break;
|
||||
default: y = __kernel_sinl(pi*(y-2.0),zero,0); break;
|
||||
}
|
||||
return -y;
|
||||
}
|
||||
|
||||
long double
|
||||
lgammal_r(long double x, int *signgamp)
|
||||
{
|
||||
long double nadj,p,p1,p2,p3,q,r,t,w,y,z;
|
||||
uint64_t llx,lx;
|
||||
int i;
|
||||
uint16_t hx,ix;
|
||||
|
||||
EXTRACT_LDBL128_WORDS(hx,lx,llx,x);
|
||||
|
||||
/* purge +-Inf and NaNs */
|
||||
*signgamp = 1;
|
||||
ix = hx&0x7fff;
|
||||
if(ix==0x7fff) return x*x;
|
||||
|
||||
/* purge +-0 and tiny arguments */
|
||||
*signgamp = 1-2*(hx>>15);
|
||||
if(ix<0x3fff-116) { /* |x|<2**-(p+3), return -log(|x|) */
|
||||
if((ix|lx|llx)==0)
|
||||
return one/vzero;
|
||||
return -logl(fabsl(x));
|
||||
}
|
||||
|
||||
/* purge negative integers and start evaluation for other x < 0 */
|
||||
if(hx&0x8000) {
|
||||
*signgamp = 1;
|
||||
if(ix>=0x3fff+112) /* |x|>=2**(p-1), must be -integer */
|
||||
return one/vzero;
|
||||
t = sin_pil(x);
|
||||
if(t==zero) return one/vzero;
|
||||
nadj = logl(pi/fabsl(t*x));
|
||||
if(t<zero) *signgamp = -1;
|
||||
x = -x;
|
||||
}
|
||||
|
||||
/* purge 1 and 2 */
|
||||
if((ix==0x3fff || ix==0x4000) && (lx|llx)==0) r = 0;
|
||||
/* for x < 2.0 */
|
||||
else if(ix<0x4000) {
|
||||
if(x<=8.9999961853027344e-01) {
|
||||
r = -logl(x);
|
||||
if(x>=7.3159980773925781e-01) {y = 1-x; i= 0;}
|
||||
else if(x>=2.3163998126983643e-01) {y= x-(tc-1); i=1;}
|
||||
else {y = x; i=2;}
|
||||
} else {
|
||||
r = 0;
|
||||
if(x>=1.7316312789916992e+00) {y=2-x;i=0;}
|
||||
else if(x>=1.2316322326660156e+00) {y=x-tc;i=1;}
|
||||
else {y=x-1;i=2;}
|
||||
}
|
||||
switch(i) {
|
||||
case 0:
|
||||
z = y*y;
|
||||
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*(a10+z*(a12+z*(a14+z*(a16+
|
||||
z*(a18+z*(a20+z*a22))))))))));
|
||||
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*(a11+z*(a13+z*(a15+
|
||||
z*(a17+z*(a19+z*(a21+z*a23)))))))))));
|
||||
p = y*p1+p2;
|
||||
r += p-y/2; break;
|
||||
case 1:
|
||||
p = t0+y*t1+tt+y*y*(t2+y*(t3+y*(t4+y*(t5+y*(t6+y*(t7+y*(t8+
|
||||
y*(t9+y*(t10+y*(t11+y*(t12+y*(t13+y*(t14+y*(t15+y*(t16+
|
||||
y*(t17+y*(t18+y*(t19+y*(t20+y*(t21+y*(t22+y*(t23+
|
||||
y*(t24+y*(t25+y*(t26+y*(t27+y*(t28+y*(t29+y*(t30+
|
||||
y*(t31+y*t32))))))))))))))))))))))))))))));
|
||||
r += tf + p; break;
|
||||
case 2:
|
||||
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*(u5+y*(u6+y*(u7+
|
||||
y*(u8+y*(u9+y*u10))))))))));
|
||||
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*(v5+y*(v6+y*(v7+
|
||||
y*(v8+y*(v9+y*(v10+y*v11))))))))));
|
||||
r += p1/p2-y/2;
|
||||
}
|
||||
}
|
||||
/* x < 8.0 */
|
||||
else if(ix<0x4002) {
|
||||
i = x;
|
||||
y = x-i;
|
||||
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*(s6+y*(s7+y*(s8+
|
||||
y*(s9+y*(s10+y*s11)))))))))));
|
||||
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*(r6+y*(r7+y*(r8+
|
||||
y*(r9+y*(r10+y*r11))))))))));
|
||||
r = y/2+p/q;
|
||||
z = 1; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
switch(i) {
|
||||
case 7: z *= (y+6); /* FALLTHRU */
|
||||
case 6: z *= (y+5); /* FALLTHRU */
|
||||
case 5: z *= (y+4); /* FALLTHRU */
|
||||
case 4: z *= (y+3); /* FALLTHRU */
|
||||
case 3: z *= (y+2); /* FALLTHRU */
|
||||
r += logl(z); break;
|
||||
}
|
||||
/* 8.0 <= x < 2**(p+3) */
|
||||
} else if (ix<0x3fff+116) {
|
||||
t = logl(x);
|
||||
z = one/x;
|
||||
y = z*z;
|
||||
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*(w6+y*(w7+y*(w8+
|
||||
y*(w9+y*(w10+y*(w11+y*(w12+y*(w13+y*(w14+y*(w15+y*(w16+
|
||||
y*(w17+y*w18)))))))))))))))));
|
||||
r = (x-half)*(t-one)+w;
|
||||
/* 2**(p+3) <= x <= inf */
|
||||
} else
|
||||
r = x*(logl(x)-1);
|
||||
if(hx&0x8000) r = nadj - r;
|
||||
return r;
|
||||
}
|
|
@ -0,0 +1,443 @@
|
|||
/*-
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
/* powl(x,y) return x**y
|
||||
*
|
||||
* n
|
||||
* Method: Let x = 2 * (1+f)
|
||||
* 1. Compute and return log2(x) in two pieces:
|
||||
* log2(x) = w1 + w2,
|
||||
* where w1 has 113-53 = 60 bit trailing zeros.
|
||||
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
|
||||
* arithmetic, where |y'|<=0.5.
|
||||
* 3. Return x**y = 2**n*exp(y'*log2)
|
||||
*
|
||||
* Special cases:
|
||||
* 1. (anything) ** 0 is 1
|
||||
* 2. (anything) ** 1 is itself
|
||||
* 3. (anything) ** NAN is NAN
|
||||
* 4. NAN ** (anything except 0) is NAN
|
||||
* 5. +-(|x| > 1) ** +INF is +INF
|
||||
* 6. +-(|x| > 1) ** -INF is +0
|
||||
* 7. +-(|x| < 1) ** +INF is +0
|
||||
* 8. +-(|x| < 1) ** -INF is +INF
|
||||
* 9. +-1 ** +-INF is NAN
|
||||
* 10. +0 ** (+anything except 0, NAN) is +0
|
||||
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
||||
* 12. +0 ** (-anything except 0, NAN) is +INF
|
||||
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
||||
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
||||
* 15. +INF ** (+anything except 0,NAN) is +INF
|
||||
* 16. +INF ** (-anything except 0,NAN) is +0
|
||||
* 17. -INF ** (anything) = -0 ** (-anything)
|
||||
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
||||
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
||||
*
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const long double bp[] = {
|
||||
1.0L,
|
||||
1.5L,
|
||||
};
|
||||
|
||||
/* log_2(1.5) */
|
||||
static const long double dp_h[] = {
|
||||
0.0,
|
||||
5.8496250072115607565592654282227158546448E-1L
|
||||
};
|
||||
|
||||
/* Low part of log_2(1.5) */
|
||||
static const long double dp_l[] = {
|
||||
0.0,
|
||||
1.0579781240112554492329533686862998106046E-16L
|
||||
};
|
||||
|
||||
static const long double zero = 0.0L,
|
||||
one = 1.0L,
|
||||
two = 2.0L,
|
||||
two113 = 1.0384593717069655257060992658440192E34L,
|
||||
huge = 1.0e3000L,
|
||||
tiny = 1.0e-3000L;
|
||||
|
||||
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
|
||||
z = (x-1)/(x+1)
|
||||
1 <= x <= 1.25
|
||||
Peak relative error 2.3e-37 */
|
||||
static const long double LN[] =
|
||||
{
|
||||
-3.0779177200290054398792536829702930623200E1L,
|
||||
6.5135778082209159921251824580292116201640E1L,
|
||||
-4.6312921812152436921591152809994014413540E1L,
|
||||
1.2510208195629420304615674658258363295208E1L,
|
||||
-9.9266909031921425609179910128531667336670E-1L
|
||||
};
|
||||
static const long double LD[] =
|
||||
{
|
||||
-5.129862866715009066465422805058933131960E1L,
|
||||
1.452015077564081884387441590064272782044E2L,
|
||||
-1.524043275549860505277434040464085593165E2L,
|
||||
7.236063513651544224319663428634139768808E1L,
|
||||
-1.494198912340228235853027849917095580053E1L
|
||||
/* 1.0E0 */
|
||||
};
|
||||
|
||||
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
|
||||
0 <= x <= 0.5
|
||||
Peak relative error 5.7e-38 */
|
||||
static const long double PN[] =
|
||||
{
|
||||
5.081801691915377692446852383385968225675E8L,
|
||||
9.360895299872484512023336636427675327355E6L,
|
||||
4.213701282274196030811629773097579432957E4L,
|
||||
5.201006511142748908655720086041570288182E1L,
|
||||
9.088368420359444263703202925095675982530E-3L,
|
||||
};
|
||||
static const long double PD[] =
|
||||
{
|
||||
3.049081015149226615468111430031590411682E9L,
|
||||
1.069833887183886839966085436512368982758E8L,
|
||||
8.259257717868875207333991924545445705394E5L,
|
||||
1.872583833284143212651746812884298360922E3L,
|
||||
/* 1.0E0 */
|
||||
};
|
||||
|
||||
static const long double
|
||||
/* ln 2 */
|
||||
lg2 = 6.9314718055994530941723212145817656807550E-1L,
|
||||
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
|
||||
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
|
||||
ovt = 8.0085662595372944372e-0017L,
|
||||
/* 2/(3*log(2)) */
|
||||
cp = 9.6179669392597560490661645400126142495110E-1L,
|
||||
cp_h = 9.6179669392597555432899980587535537779331E-1L,
|
||||
cp_l = 5.0577616648125906047157785230014751039424E-17L;
|
||||
|
||||
long double
|
||||
powl(long double x, long double y)
|
||||
{
|
||||
long double z, ax, z_h, z_l, p_h, p_l;
|
||||
long double yy1, t1, t2, r, s, t, u, v, w;
|
||||
long double s2, s_h, s_l, t_h, t_l;
|
||||
int32_t i, j, k, yisint, n;
|
||||
u_int32_t ix, iy;
|
||||
int32_t hx, hy;
|
||||
ieee_quad_shape_type o, p, q;
|
||||
|
||||
p.value = x;
|
||||
hx = p.parts32.mswhi;
|
||||
ix = hx & 0x7fffffff;
|
||||
|
||||
q.value = y;
|
||||
hy = q.parts32.mswhi;
|
||||
iy = hy & 0x7fffffff;
|
||||
|
||||
|
||||
/* y==zero: x**0 = 1 */
|
||||
if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
|
||||
return one;
|
||||
|
||||
/* 1.0**y = 1; -1.0**+-Inf = 1 */
|
||||
if (x == one)
|
||||
return one;
|
||||
if (x == -1.0L && iy == 0x7fff0000
|
||||
&& (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
|
||||
return one;
|
||||
|
||||
/* +-NaN return x+y */
|
||||
if ((ix > 0x7fff0000)
|
||||
|| ((ix == 0x7fff0000)
|
||||
&& ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
|
||||
|| (iy > 0x7fff0000)
|
||||
|| ((iy == 0x7fff0000)
|
||||
&& ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
|
||||
return nan_mix(x, y);
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
* yisint = 1 ... y is an odd int
|
||||
* yisint = 2 ... y is an even int
|
||||
*/
|
||||
yisint = 0;
|
||||
if (hx < 0)
|
||||
{
|
||||
if (iy >= 0x40700000) /* 2^113 */
|
||||
yisint = 2; /* even integer y */
|
||||
else if (iy >= 0x3fff0000) /* 1.0 */
|
||||
{
|
||||
if (floorl (y) == y)
|
||||
{
|
||||
z = 0.5 * y;
|
||||
if (floorl (z) == z)
|
||||
yisint = 2;
|
||||
else
|
||||
yisint = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* special value of y */
|
||||
if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
|
||||
{
|
||||
if (iy == 0x7fff0000) /* y is +-inf */
|
||||
{
|
||||
if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
|
||||
p.parts32.lswlo) == 0)
|
||||
return y - y; /* +-1**inf is NaN */
|
||||
else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
|
||||
return (hy >= 0) ? y : zero;
|
||||
else /* (|x|<1)**-,+inf = inf,0 */
|
||||
return (hy < 0) ? -y : zero;
|
||||
}
|
||||
if (iy == 0x3fff0000)
|
||||
{ /* y is +-1 */
|
||||
if (hy < 0)
|
||||
return one / x;
|
||||
else
|
||||
return x;
|
||||
}
|
||||
if (hy == 0x40000000)
|
||||
return x * x; /* y is 2 */
|
||||
if (hy == 0x3ffe0000)
|
||||
{ /* y is 0.5 */
|
||||
if (hx >= 0) /* x >= +0 */
|
||||
return sqrtl (x);
|
||||
}
|
||||
}
|
||||
|
||||
ax = fabsl (x);
|
||||
/* special value of x */
|
||||
if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
|
||||
{
|
||||
if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
|
||||
{
|
||||
z = ax; /*x is +-0,+-inf,+-1 */
|
||||
if (hy < 0)
|
||||
z = one / z; /* z = (1/|x|) */
|
||||
if (hx < 0)
|
||||
{
|
||||
if (((ix - 0x3fff0000) | yisint) == 0)
|
||||
{
|
||||
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
|
||||
}
|
||||
else if (yisint == 1)
|
||||
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
||||
}
|
||||
return z;
|
||||
}
|
||||
}
|
||||
|
||||
/* (x<0)**(non-int) is NaN */
|
||||
if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
|
||||
return (x - x) / (x - x);
|
||||
|
||||
/* |y| is huge.
|
||||
2^-16495 = 1/2 of smallest representable value.
|
||||
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
|
||||
if (iy > 0x401d654b)
|
||||
{
|
||||
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
|
||||
if (iy > 0x407d654b)
|
||||
{
|
||||
if (ix <= 0x3ffeffff)
|
||||
return (hy < 0) ? huge * huge : tiny * tiny;
|
||||
if (ix >= 0x3fff0000)
|
||||
return (hy > 0) ? huge * huge : tiny * tiny;
|
||||
}
|
||||
/* over/underflow if x is not close to one */
|
||||
if (ix < 0x3ffeffff)
|
||||
return (hy < 0) ? huge * huge : tiny * tiny;
|
||||
if (ix > 0x3fff0000)
|
||||
return (hy > 0) ? huge * huge : tiny * tiny;
|
||||
}
|
||||
|
||||
n = 0;
|
||||
/* take care subnormal number */
|
||||
if (ix < 0x00010000)
|
||||
{
|
||||
ax *= two113;
|
||||
n -= 113;
|
||||
o.value = ax;
|
||||
ix = o.parts32.mswhi;
|
||||
}
|
||||
n += ((ix) >> 16) - 0x3fff;
|
||||
j = ix & 0x0000ffff;
|
||||
/* determine interval */
|
||||
ix = j | 0x3fff0000; /* normalize ix */
|
||||
if (j <= 0x3988)
|
||||
k = 0; /* |x|<sqrt(3/2) */
|
||||
else if (j < 0xbb67)
|
||||
k = 1; /* |x|<sqrt(3) */
|
||||
else
|
||||
{
|
||||
k = 0;
|
||||
n += 1;
|
||||
ix -= 0x00010000;
|
||||
}
|
||||
|
||||
o.value = ax;
|
||||
o.parts32.mswhi = ix;
|
||||
ax = o.value;
|
||||
|
||||
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
||||
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
||||
v = one / (ax + bp[k]);
|
||||
s = u * v;
|
||||
s_h = s;
|
||||
|
||||
o.value = s_h;
|
||||
o.parts32.lswlo = 0;
|
||||
o.parts32.lswhi &= 0xf8000000;
|
||||
s_h = o.value;
|
||||
/* t_h=ax+bp[k] High */
|
||||
t_h = ax + bp[k];
|
||||
o.value = t_h;
|
||||
o.parts32.lswlo = 0;
|
||||
o.parts32.lswhi &= 0xf8000000;
|
||||
t_h = o.value;
|
||||
t_l = ax - (t_h - bp[k]);
|
||||
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
||||
/* compute log(ax) */
|
||||
s2 = s * s;
|
||||
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
|
||||
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
|
||||
r = s2 * s2 * u / v;
|
||||
r += s_l * (s_h + s);
|
||||
s2 = s_h * s_h;
|
||||
t_h = 3.0 + s2 + r;
|
||||
o.value = t_h;
|
||||
o.parts32.lswlo = 0;
|
||||
o.parts32.lswhi &= 0xf8000000;
|
||||
t_h = o.value;
|
||||
t_l = r - ((t_h - 3.0) - s2);
|
||||
/* u+v = s*(1+...) */
|
||||
u = s_h * t_h;
|
||||
v = s_l * t_h + t_l * s;
|
||||
/* 2/(3log2)*(s+...) */
|
||||
p_h = u + v;
|
||||
o.value = p_h;
|
||||
o.parts32.lswlo = 0;
|
||||
o.parts32.lswhi &= 0xf8000000;
|
||||
p_h = o.value;
|
||||
p_l = v - (p_h - u);
|
||||
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
|
||||
z_l = cp_l * p_h + p_l * cp + dp_l[k];
|
||||
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
||||
t = (long double) n;
|
||||
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
||||
o.value = t1;
|
||||
o.parts32.lswlo = 0;
|
||||
o.parts32.lswhi &= 0xf8000000;
|
||||
t1 = o.value;
|
||||
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
||||
|
||||
/* s (sign of result -ve**odd) = -1 else = 1 */
|
||||
s = one;
|
||||
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
|
||||
s = -one; /* (-ve)**(odd int) */
|
||||
|
||||
/* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
|
||||
yy1 = y;
|
||||
o.value = yy1;
|
||||
o.parts32.lswlo = 0;
|
||||
o.parts32.lswhi &= 0xf8000000;
|
||||
yy1 = o.value;
|
||||
p_l = (y - yy1) * t1 + y * t2;
|
||||
p_h = yy1 * t1;
|
||||
z = p_l + p_h;
|
||||
o.value = z;
|
||||
j = o.parts32.mswhi;
|
||||
if (j >= 0x400d0000) /* z >= 16384 */
|
||||
{
|
||||
/* if z > 16384 */
|
||||
if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
|
||||
o.parts32.lswlo) != 0)
|
||||
return s * huge * huge; /* overflow */
|
||||
else
|
||||
{
|
||||
if (p_l + ovt > z - p_h)
|
||||
return s * huge * huge; /* overflow */
|
||||
}
|
||||
}
|
||||
else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
|
||||
{
|
||||
/* z < -16495 */
|
||||
if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
|
||||
o.parts32.lswlo)
|
||||
!= 0)
|
||||
return s * tiny * tiny; /* underflow */
|
||||
else
|
||||
{
|
||||
if (p_l <= z - p_h)
|
||||
return s * tiny * tiny; /* underflow */
|
||||
}
|
||||
}
|
||||
/* compute 2**(p_h+p_l) */
|
||||
i = j & 0x7fffffff;
|
||||
k = (i >> 16) - 0x3fff;
|
||||
n = 0;
|
||||
if (i > 0x3ffe0000)
|
||||
{ /* if |z| > 0.5, set n = [z+0.5] */
|
||||
n = floorl (z + 0.5L);
|
||||
t = n;
|
||||
p_h -= t;
|
||||
}
|
||||
t = p_l + p_h;
|
||||
o.value = t;
|
||||
o.parts32.lswlo = 0;
|
||||
o.parts32.lswhi &= 0xf8000000;
|
||||
t = o.value;
|
||||
u = t * lg2_h;
|
||||
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
|
||||
z = u + v;
|
||||
w = v - (z - u);
|
||||
/* exp(z) */
|
||||
t = z * z;
|
||||
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
|
||||
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
|
||||
t1 = z - t * u / v;
|
||||
r = (z * t1) / (t1 - two) - (w + z * w);
|
||||
z = one - (r - z);
|
||||
o.value = z;
|
||||
j = o.parts32.mswhi;
|
||||
j += (n << 16);
|
||||
if ((j >> 16) <= 0)
|
||||
z = scalbnl (z, n); /* subnormal output */
|
||||
else
|
||||
{
|
||||
o.parts32.mswhi = j;
|
||||
z = o.value;
|
||||
}
|
||||
return s * z;
|
||||
}
|
|
@ -0,0 +1,135 @@
|
|||
/* From: @(#)e_rem_pio2.c 1.4 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/* ld128 version of __ieee754_rem_pio2l(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __kernel_rem_pio2()
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "../ld/fpmath.h"
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
/*
|
||||
* XXX need to verify that nonzero integer multiples of pi/2 within the
|
||||
* range get no closer to a long double than 2**-140, or that
|
||||
* ilogb(x) + ilogb(min_delta) < 45 - -140.
|
||||
*/
|
||||
/*
|
||||
* invpio2: 113 bits of 2/pi
|
||||
* pio2_1: first 68 bits of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 68 bits of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 68 bits of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
static const double
|
||||
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
two24 = 1.67772160000000000000e+07; /* 0x41700000, 0x00000000 */
|
||||
|
||||
static const long double
|
||||
invpio2 = 6.3661977236758134307553505349005747e-01L, /* 0x145f306dc9c882a53f84eafa3ea6a.0p-113 */
|
||||
pio2_1 = 1.5707963267948966192292994253909555e+00L, /* 0x1921fb54442d18469800000000000.0p-112 */
|
||||
pio2_1t = 2.0222662487959507323996846200947577e-21L, /* 0x13198a2e03707344a4093822299f3.0p-181 */
|
||||
pio2_2 = 2.0222662487959507323994779168837751e-21L, /* 0x13198a2e03707344a400000000000.0p-181 */
|
||||
pio2_2t = 2.0670321098263988236496903051604844e-43L, /* 0x127044533e63a0105df531d89cd91.0p-254 */
|
||||
pio2_3 = 2.0670321098263988236499468110329591e-43L, /* 0x127044533e63a0105e00000000000.0p-254 */
|
||||
pio2_3t = -2.5650587247459238361625433492959285e-65L; /* -0x159c4ec64ddaeb5f78671cbfb2210.0p-327 */
|
||||
|
||||
static inline __always_inline int
|
||||
__ieee754_rem_pio2l(long double x, long double *y)
|
||||
{
|
||||
union IEEEl2bits u,u1;
|
||||
long double z,w,t,r,fn;
|
||||
double tx[5],ty[3];
|
||||
int64_t n;
|
||||
int e0,ex,i,j,nx;
|
||||
int16_t expsign;
|
||||
|
||||
u.e = x;
|
||||
expsign = u.xbits.expsign;
|
||||
ex = expsign & 0x7fff;
|
||||
if (ex < BIAS + 45 || ex == BIAS + 45 &&
|
||||
u.bits.manh < 0x921fb54442d1LL) {
|
||||
/* |x| ~< 2^45*(pi/2), medium size */
|
||||
/* TODO: use only double precision for fn, as in expl(). */
|
||||
fn = rnintl(x * invpio2);
|
||||
n = i64rint(fn);
|
||||
r = x-fn*pio2_1;
|
||||
w = fn*pio2_1t; /* 1st round good to 180 bit */
|
||||
{
|
||||
union IEEEl2bits u2;
|
||||
int ex1;
|
||||
j = ex;
|
||||
y[0] = r-w;
|
||||
u2.e = y[0];
|
||||
ex1 = u2.xbits.expsign & 0x7fff;
|
||||
i = j-ex1;
|
||||
if(i>51) { /* 2nd iteration needed, good to 248 */
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
r = t-w;
|
||||
w = fn*pio2_2t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
u2.e = y[0];
|
||||
ex1 = u2.xbits.expsign & 0x7fff;
|
||||
i = j-ex1;
|
||||
if(i>119) { /* 3rd iteration need, 316 bits acc */
|
||||
t = r; /* will cover all possible cases */
|
||||
w = fn*pio2_3;
|
||||
r = t-w;
|
||||
w = fn*pio2_3t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
}
|
||||
}
|
||||
}
|
||||
y[1] = (r-y[0])-w;
|
||||
return n;
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if(ex==0x7fff) { /* x is inf or NaN */
|
||||
y[0]=y[1]=x-x; return 0;
|
||||
}
|
||||
/* set z = scalbn(|x|,ilogb(x)-23) */
|
||||
u1.e = x;
|
||||
e0 = ex - BIAS - 23; /* e0 = ilogb(|x|)-23; */
|
||||
u1.xbits.expsign = ex - e0;
|
||||
z = u1.e;
|
||||
for(i=0;i<4;i++) {
|
||||
tx[i] = (double)((int32_t)(z));
|
||||
z = (z-tx[i])*two24;
|
||||
}
|
||||
tx[4] = z;
|
||||
nx = 5;
|
||||
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
||||
n = __kernel_rem_pio2(tx,ty,e0,nx,3);
|
||||
t = (long double)ty[2] + ty[1];
|
||||
r = t + ty[0];
|
||||
w = ty[0] - (r - t);
|
||||
if(expsign<0) {y[0] = -r; y[1] = -w; return -n;}
|
||||
y[0] = r; y[1] = w; return n;
|
||||
}
|
|
@ -0,0 +1,102 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2008 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "invtrig.h"
|
||||
|
||||
/*
|
||||
* asinl() and acosl()
|
||||
*/
|
||||
const long double
|
||||
pS0 = 1.66666666666666666666666666666700314e-01L,
|
||||
pS1 = -7.32816946414566252574527475428622708e-01L,
|
||||
pS2 = 1.34215708714992334609030036562143589e+00L,
|
||||
pS3 = -1.32483151677116409805070261790752040e+00L,
|
||||
pS4 = 7.61206183613632558824485341162121989e-01L,
|
||||
pS5 = -2.56165783329023486777386833928147375e-01L,
|
||||
pS6 = 4.80718586374448793411019434585413855e-02L,
|
||||
pS7 = -4.42523267167024279410230886239774718e-03L,
|
||||
pS8 = 1.44551535183911458253205638280410064e-04L,
|
||||
pS9 = -2.10558957916600254061591040482706179e-07L,
|
||||
qS1 = -4.84690167848739751544716485245697428e+00L,
|
||||
qS2 = 9.96619113536172610135016921140206980e+00L,
|
||||
qS3 = -1.13177895428973036660836798461641458e+01L,
|
||||
qS4 = 7.74004374389488266169304117714658761e+00L,
|
||||
qS5 = -3.25871986053534084709023539900339905e+00L,
|
||||
qS6 = 8.27830318881232209752469022352928864e-01L,
|
||||
qS7 = -1.18768052702942805423330715206348004e-01L,
|
||||
qS8 = 8.32600764660522313269101537926539470e-03L,
|
||||
qS9 = -1.99407384882605586705979504567947007e-04L;
|
||||
|
||||
/*
|
||||
* atanl()
|
||||
*/
|
||||
const long double atanhi[] = {
|
||||
4.63647609000806116214256231461214397e-01L,
|
||||
7.85398163397448309615660845819875699e-01L,
|
||||
9.82793723247329067985710611014666038e-01L,
|
||||
1.57079632679489661923132169163975140e+00L,
|
||||
};
|
||||
|
||||
const long double atanlo[] = {
|
||||
4.89509642257333492668618435220297706e-36L,
|
||||
2.16795253253094525619926100651083806e-35L,
|
||||
-2.31288434538183565909319952098066272e-35L,
|
||||
4.33590506506189051239852201302167613e-35L,
|
||||
};
|
||||
|
||||
const long double aT[] = {
|
||||
3.33333333333333333333333333333333125e-01L,
|
||||
-1.99999999999999999999999999999180430e-01L,
|
||||
1.42857142857142857142857142125269827e-01L,
|
||||
-1.11111111111111111111110834490810169e-01L,
|
||||
9.09090909090909090908522355708623681e-02L,
|
||||
-7.69230769230769230696553844935357021e-02L,
|
||||
6.66666666666666660390096773046256096e-02L,
|
||||
-5.88235294117646671706582985209643694e-02L,
|
||||
5.26315789473666478515847092020327506e-02L,
|
||||
-4.76190476189855517021024424991436144e-02L,
|
||||
4.34782608678695085948531993458097026e-02L,
|
||||
-3.99999999632663469330634215991142368e-02L,
|
||||
3.70370363987423702891250829918659723e-02L,
|
||||
-3.44827496515048090726669907612335954e-02L,
|
||||
3.22579620681420149871973710852268528e-02L,
|
||||
-3.03020767654269261041647570626778067e-02L,
|
||||
2.85641979882534783223403715930946138e-02L,
|
||||
-2.69824879726738568189929461383741323e-02L,
|
||||
2.54194698498808542954187110873675769e-02L,
|
||||
-2.35083879708189059926183138130183215e-02L,
|
||||
2.04832358998165364349957325067131428e-02L,
|
||||
-1.54489555488544397858507248612362957e-02L,
|
||||
8.64492360989278761493037861575248038e-03L,
|
||||
-2.58521121597609872727919154569765469e-03L,
|
||||
};
|
||||
|
||||
const long double pi_lo = 8.67181013012378102479704402604335225e-35L;
|
|
@ -0,0 +1,115 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2008 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
#define MANH_SIZE (LDBL_MANH_SIZE + 1)
|
||||
|
||||
/* Approximation thresholds. */
|
||||
#define ASIN_LINEAR (BIAS - 56) /* 2**-56 */
|
||||
#define ACOS_CONST (BIAS - 113) /* 2**-113 */
|
||||
#define ATAN_CONST (BIAS + 113) /* 2**113 */
|
||||
#define ATAN_LINEAR (BIAS - 56) /* 2**-56 */
|
||||
|
||||
/* 0.95 */
|
||||
#define THRESH ((0xe666666666666666ULL>>(64-(MANH_SIZE-1)))|LDBL_NBIT)
|
||||
|
||||
/* Constants shared by the long double inverse trig functions. */
|
||||
#define pS0 _ItL_pS0
|
||||
#define pS1 _ItL_pS1
|
||||
#define pS2 _ItL_pS2
|
||||
#define pS3 _ItL_pS3
|
||||
#define pS4 _ItL_pS4
|
||||
#define pS5 _ItL_pS5
|
||||
#define pS6 _ItL_pS6
|
||||
#define pS7 _ItL_pS7
|
||||
#define pS8 _ItL_pS8
|
||||
#define pS9 _ItL_pS9
|
||||
#define qS1 _ItL_qS1
|
||||
#define qS2 _ItL_qS2
|
||||
#define qS3 _ItL_qS3
|
||||
#define qS4 _ItL_qS4
|
||||
#define qS5 _ItL_qS5
|
||||
#define qS6 _ItL_qS6
|
||||
#define qS7 _ItL_qS7
|
||||
#define qS8 _ItL_qS8
|
||||
#define qS9 _ItL_qS9
|
||||
#define atanhi _ItL_atanhi
|
||||
#define atanlo _ItL_atanlo
|
||||
#define aT _ItL_aT
|
||||
#define pi_lo _ItL_pi_lo
|
||||
|
||||
#define pio2_hi atanhi[3]
|
||||
#define pio2_lo atanlo[3]
|
||||
#define pio4_hi atanhi[1]
|
||||
|
||||
/* Constants shared by the long double inverse trig functions. */
|
||||
extern const long double pS0, pS1, pS2, pS3, pS4, pS5, pS6, pS7, pS8, pS9;
|
||||
extern const long double qS1, qS2, qS3, qS4, qS5, qS6, qS7, qS8, qS9;
|
||||
extern const long double atanhi[], atanlo[], aT[];
|
||||
extern const long double pi_lo;
|
||||
|
||||
static inline long double
|
||||
P(long double x)
|
||||
{
|
||||
|
||||
return (x * (pS0 + x * (pS1 + x * (pS2 + x * (pS3 + x * \
|
||||
(pS4 + x * (pS5 + x * (pS6 + x * (pS7 + x * (pS8 + x * \
|
||||
pS9))))))))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
Q(long double x)
|
||||
{
|
||||
|
||||
return (1.0 + x * (qS1 + x * (qS2 + x * (qS3 + x * (qS4 + x * \
|
||||
(qS5 + x * (qS6 + x * (qS7 + x * (qS8 + x * qS9)))))))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
T_even(long double x)
|
||||
{
|
||||
|
||||
return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * \
|
||||
(aT[8] + x * (aT[10] + x * (aT[12] + x * (aT[14] + x * \
|
||||
(aT[16] + x * (aT[18] + x * (aT[20] + x * aT[22])))))))))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
T_odd(long double x)
|
||||
{
|
||||
|
||||
return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * \
|
||||
(aT[9] + x * (aT[11] + x * (aT[13] + x * (aT[15] + x * \
|
||||
(aT[17] + x * (aT[19] + x * (aT[21] + x * aT[23])))))))))));
|
||||
}
|
|
@ -0,0 +1,59 @@
|
|||
/* From: @(#)k_cos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ld128 version of k_cos.c. See ../src/k_cos.c for most comments.
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
/*
|
||||
* Domain [-0.7854, 0.7854], range ~[-1.17e-39, 1.19e-39]:
|
||||
* |cos(x) - c(x))| < 2**-129.3
|
||||
*
|
||||
* 113-bit precision requires more care than 64-bit precision, since
|
||||
* simple methods give a minimax polynomial with coefficient for x^2
|
||||
* that is 1 ulp below 0.5, but we want it to be precisely 0.5. See
|
||||
* ../ld80/k_cosl.c for more details.
|
||||
*/
|
||||
static const double
|
||||
one = 1.0;
|
||||
static const long double
|
||||
C1 = 4.16666666666666666666666666666666667e-02L,
|
||||
C2 = -1.38888888888888888888888888888888834e-03L,
|
||||
C3 = 2.48015873015873015873015873015446795e-05L,
|
||||
C4 = -2.75573192239858906525573190949988493e-07L,
|
||||
C5 = 2.08767569878680989792098886701451072e-09L,
|
||||
C6 = -1.14707455977297247136657111139971865e-11L,
|
||||
C7 = 4.77947733238738518870113294139830239e-14L,
|
||||
C8 = -1.56192069685858079920640872925306403e-16L,
|
||||
C9 = 4.11031762320473354032038893429515732e-19L,
|
||||
C10= -8.89679121027589608738005163931958096e-22L,
|
||||
C11= 1.61171797801314301767074036661901531e-24L,
|
||||
C12= -2.46748624357670948912574279501044295e-27L;
|
||||
|
||||
long double
|
||||
__kernel_cosl(long double x, long double y)
|
||||
{
|
||||
long double hz,z,r,w;
|
||||
|
||||
z = x*x;
|
||||
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+
|
||||
z*(C8+z*(C9+z*(C10+z*(C11+z*C12)))))))))));
|
||||
hz = 0.5*z;
|
||||
w = one-hz;
|
||||
return w + (((one-w)-hz) + (z*r-x*y));
|
||||
}
|
|
@ -0,0 +1,324 @@
|
|||
/* from: FreeBSD: head/lib/msun/ld128/s_expl.c 251345 2013-06-03 20:09:22Z kargl */
|
||||
|
||||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2009-2013 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ld128 version of k_expl.h. See ../ld80/s_expl.c for most comments.
|
||||
*
|
||||
* See ../src/e_exp.c and ../src/k_exp.h for precision-independent comments
|
||||
* about the secondary kernels.
|
||||
*/
|
||||
|
||||
#define INTERVALS 128
|
||||
#define LOG2_INTERVALS 7
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const double
|
||||
/*
|
||||
* ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication). L1 must
|
||||
* have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
|
||||
* bits zero so that multiplication of it by n is exact.
|
||||
*/
|
||||
INV_L = 1.8466496523378731e+2, /* 0x171547652b82fe.0p-45 */
|
||||
L2 = -1.0253670638894731e-29; /* -0x1.9ff0342542fc3p-97 */
|
||||
static const long double
|
||||
/* 0x1.62e42fefa39ef35793c768000000p-8 */
|
||||
L1 = 5.41521234812457272982212595914567508e-3L;
|
||||
|
||||
/*
|
||||
* XXX values in hex in comments have been lost (or were never present)
|
||||
* from here.
|
||||
*/
|
||||
static const long double
|
||||
/*
|
||||
* Domain [-0.002708, 0.002708], range ~[-2.4021e-38, 2.4234e-38]:
|
||||
* |exp(x) - p(x)| < 2**-124.9
|
||||
* (0.002708 is ln2/(2*INTERVALS) rounded up a little).
|
||||
*
|
||||
* XXX the coeffs aren't very carefully rounded, and I get 3.6 more bits.
|
||||
*/
|
||||
A2 = 0.5,
|
||||
A3 = 1.66666666666666666666666666651085500e-1L,
|
||||
A4 = 4.16666666666666666666666666425885320e-2L,
|
||||
A5 = 8.33333333333333333334522877160175842e-3L,
|
||||
A6 = 1.38888888888888888889971139751596836e-3L;
|
||||
|
||||
static const double
|
||||
A7 = 1.9841269841269470e-4, /* 0x1.a01a01a019f91p-13 */
|
||||
A8 = 2.4801587301585286e-5, /* 0x1.71de3ec75a967p-19 */
|
||||
A9 = 2.7557324277411235e-6, /* 0x1.71de3ec75a967p-19 */
|
||||
A10 = 2.7557333722375069e-7; /* 0x1.27e505ab56259p-22 */
|
||||
|
||||
static const struct {
|
||||
/*
|
||||
* hi must be rounded to at most 106 bits so that multiplication
|
||||
* by r1 in expm1l() is exact, but it is rounded to 88 bits due to
|
||||
* historical accidents.
|
||||
*
|
||||
* XXX it is wasteful to use long double for both hi and lo. ld128
|
||||
* exp2l() uses only float for lo (in a very differently organized
|
||||
* table; ld80 exp2l() is different again. It uses 2 doubles in a
|
||||
* table organized like this one. 1 double and 1 float would
|
||||
* suffice). There are different packing/locality/alignment/caching
|
||||
* problems with these methods.
|
||||
*
|
||||
* XXX C's bad %a format makes the bits unreadable. They happen
|
||||
* to all line up for the hi values 1 before the point and 88
|
||||
* in 22 nybbles, but for the low values the nybbles are shifted
|
||||
* randomly.
|
||||
*/
|
||||
long double hi;
|
||||
long double lo;
|
||||
} tbl[INTERVALS] = {
|
||||
0x1p0L, 0x0p0L,
|
||||
0x1.0163da9fb33356d84a66aep0L, 0x3.36dcdfa4003ec04c360be2404078p-92L,
|
||||
0x1.02c9a3e778060ee6f7cacap0L, 0x4.f7a29bde93d70a2cabc5cb89ba10p-92L,
|
||||
0x1.04315e86e7f84bd738f9a2p0L, 0xd.a47e6ed040bb4bfc05af6455e9b8p-96L,
|
||||
0x1.059b0d31585743ae7c548ep0L, 0xb.68ca417fe53e3495f7df4baf84a0p-92L,
|
||||
0x1.0706b29ddf6ddc6dc403a8p0L, 0x1.d87b27ed07cb8b092ac75e311753p-88L,
|
||||
0x1.0874518759bc808c35f25cp0L, 0x1.9427fa2b041b2d6829d8993a0d01p-88L,
|
||||
0x1.09e3ecac6f3834521e060cp0L, 0x5.84d6b74ba2e023da730e7fccb758p-92L,
|
||||
0x1.0b5586cf9890f6298b92b6p0L, 0x1.1842a98364291408b3ceb0a2a2bbp-88L,
|
||||
0x1.0cc922b7247f7407b705b8p0L, 0x9.3dc5e8aac564e6fe2ef1d431fd98p-92L,
|
||||
0x1.0e3ec32d3d1a2020742e4ep0L, 0x1.8af6a552ac4b358b1129e9f966a4p-88L,
|
||||
0x1.0fb66affed31af232091dcp0L, 0x1.8a1426514e0b627bda694a400a27p-88L,
|
||||
0x1.11301d0125b50a4ebbf1aep0L, 0xd.9318ceac5cc47ab166ee57427178p-92L,
|
||||
0x1.12abdc06c31cbfb92bad32p0L, 0x4.d68e2f7270bdf7cedf94eb1cb818p-92L,
|
||||
0x1.1429aaea92ddfb34101942p0L, 0x1.b2586d01844b389bea7aedd221d4p-88L,
|
||||
0x1.15a98c8a58e512480d573cp0L, 0x1.d5613bf92a2b618ee31b376c2689p-88L,
|
||||
0x1.172b83c7d517adcdf7c8c4p0L, 0x1.0eb14a792035509ff7d758693f24p-88L,
|
||||
0x1.18af9388c8de9bbbf70b9ap0L, 0x3.c2505c97c0102e5f1211941d2840p-92L,
|
||||
0x1.1a35beb6fcb753cb698f68p0L, 0x1.2d1c835a6c30724d5cfae31b84e5p-88L,
|
||||
0x1.1bbe084045cd39ab1e72b4p0L, 0x4.27e35f9acb57e473915519a1b448p-92L,
|
||||
0x1.1d4873168b9aa7805b8028p0L, 0x9.90f07a98b42206e46166cf051d70p-92L,
|
||||
0x1.1ed5022fcd91cb8819ff60p0L, 0x1.121d1e504d36c47474c9b7de6067p-88L,
|
||||
0x1.2063b88628cd63b8eeb028p0L, 0x1.50929d0fc487d21c2b84004264dep-88L,
|
||||
0x1.21f49917ddc962552fd292p0L, 0x9.4bdb4b61ea62477caa1dce823ba0p-92L,
|
||||
0x1.2387a6e75623866c1fadb0p0L, 0x1.c15cb593b0328566902df69e4de2p-88L,
|
||||
0x1.251ce4fb2a63f3582ab7dep0L, 0x9.e94811a9c8afdcf796934bc652d0p-92L,
|
||||
0x1.26b4565e27cdd257a67328p0L, 0x1.d3b249dce4e9186ddd5ff44e6b08p-92L,
|
||||
0x1.284dfe1f5638096cf15cf0p0L, 0x3.ca0967fdaa2e52d7c8106f2e262cp-92L,
|
||||
0x1.29e9df51fdee12c25d15f4p0L, 0x1.a24aa3bca890ac08d203fed80a07p-88L,
|
||||
0x1.2b87fd0dad98ffddea4652p0L, 0x1.8fcab88442fdc3cb6de4519165edp-88L,
|
||||
0x1.2d285a6e4030b40091d536p0L, 0xd.075384589c1cd1b3e4018a6b1348p-92L,
|
||||
0x1.2ecafa93e2f5611ca0f45cp0L, 0x1.523833af611bdcda253c554cf278p-88L,
|
||||
0x1.306fe0a31b7152de8d5a46p0L, 0x3.05c85edecbc27343629f502f1af2p-92L,
|
||||
0x1.32170fc4cd8313539cf1c2p0L, 0x1.008f86dde3220ae17a005b6412bep-88L,
|
||||
0x1.33c08b26416ff4c9c8610cp0L, 0x1.96696bf95d1593039539d94d662bp-88L,
|
||||
0x1.356c55f929ff0c94623476p0L, 0x3.73af38d6d8d6f9506c9bbc93cbc0p-92L,
|
||||
0x1.371a7373aa9caa7145502ep0L, 0x1.4547987e3e12516bf9c699be432fp-88L,
|
||||
0x1.38cae6d05d86585a9cb0d8p0L, 0x1.bed0c853bd30a02790931eb2e8f0p-88L,
|
||||
0x1.3a7db34e59ff6ea1bc9298p0L, 0x1.e0a1d336163fe2f852ceeb134067p-88L,
|
||||
0x1.3c32dc313a8e484001f228p0L, 0xb.58f3775e06ab66353001fae9fca0p-92L,
|
||||
0x1.3dea64c12342235b41223ep0L, 0x1.3d773fba2cb82b8244267c54443fp-92L,
|
||||
0x1.3fa4504ac801ba0bf701aap0L, 0x4.1832fb8c1c8dbdff2c49909e6c60p-92L,
|
||||
0x1.4160a21f72e29f84325b8ep0L, 0x1.3db61fb352f0540e6ba05634413ep-88L,
|
||||
0x1.431f5d950a896dc7044394p0L, 0x1.0ccec81e24b0caff7581ef4127f7p-92L,
|
||||
0x1.44e086061892d03136f408p0L, 0x1.df019fbd4f3b48709b78591d5cb5p-88L,
|
||||
0x1.46a41ed1d005772512f458p0L, 0x1.229d97df404ff21f39c1b594d3a8p-88L,
|
||||
0x1.486a2b5c13cd013c1a3b68p0L, 0x1.062f03c3dd75ce8757f780e6ec99p-88L,
|
||||
0x1.4a32af0d7d3de672d8bcf4p0L, 0x6.f9586461db1d878b1d148bd3ccb8p-92L,
|
||||
0x1.4bfdad5362a271d4397afep0L, 0xc.42e20e0363ba2e159c579f82e4b0p-92L,
|
||||
0x1.4dcb299fddd0d63b36ef1ap0L, 0x9.e0cc484b25a5566d0bd5f58ad238p-92L,
|
||||
0x1.4f9b2769d2ca6ad33d8b68p0L, 0x1.aa073ee55e028497a329a7333dbap-88L,
|
||||
0x1.516daa2cf6641c112f52c8p0L, 0x4.d822190e718226177d7608d20038p-92L,
|
||||
0x1.5342b569d4f81df0a83c48p0L, 0x1.d86a63f4e672a3e429805b049465p-88L,
|
||||
0x1.551a4ca5d920ec52ec6202p0L, 0x4.34ca672645dc6c124d6619a87574p-92L,
|
||||
0x1.56f4736b527da66ecb0046p0L, 0x1.64eb3c00f2f5ab3d801d7cc7272dp-88L,
|
||||
0x1.58d12d497c7fd252bc2b72p0L, 0x1.43bcf2ec936a970d9cc266f0072fp-88L,
|
||||
0x1.5ab07dd48542958c930150p0L, 0x1.91eb345d88d7c81280e069fbdb63p-88L,
|
||||
0x1.5c9268a5946b701c4b1b80p0L, 0x1.6986a203d84e6a4a92f179e71889p-88L,
|
||||
0x1.5e76f15ad21486e9be4c20p0L, 0x3.99766a06548a05829e853bdb2b52p-92L,
|
||||
0x1.605e1b976dc08b076f592ap0L, 0x4.86e3b34ead1b4769df867b9c89ccp-92L,
|
||||
0x1.6247eb03a5584b1f0fa06ep0L, 0x1.d2da42bb1ceaf9f732275b8aef30p-88L,
|
||||
0x1.6434634ccc31fc76f8714cp0L, 0x4.ed9a4e41000307103a18cf7a6e08p-92L,
|
||||
0x1.66238825522249127d9e28p0L, 0x1.b8f314a337f4dc0a3adf1787ff74p-88L,
|
||||
0x1.68155d44ca973081c57226p0L, 0x1.b9f32706bfe4e627d809a85dcc66p-88L,
|
||||
0x1.6a09e667f3bcc908b2fb12p0L, 0x1.66ea957d3e3adec17512775099dap-88L,
|
||||
0x1.6c012750bdabeed76a9980p0L, 0xf.4f33fdeb8b0ecd831106f57b3d00p-96L,
|
||||
0x1.6dfb23c651a2ef220e2cbep0L, 0x1.bbaa834b3f11577ceefbe6c1c411p-92L,
|
||||
0x1.6ff7df9519483cf87e1b4ep0L, 0x1.3e213bff9b702d5aa477c12523cep-88L,
|
||||
0x1.71f75e8ec5f73dd2370f2ep0L, 0xf.0acd6cb434b562d9e8a20adda648p-92L,
|
||||
0x1.73f9a48a58173bd5c9a4e6p0L, 0x8.ab1182ae217f3a7681759553e840p-92L,
|
||||
0x1.75feb564267c8bf6e9aa32p0L, 0x1.a48b27071805e61a17b954a2dad8p-88L,
|
||||
0x1.780694fde5d3f619ae0280p0L, 0x8.58b2bb2bdcf86cd08e35fb04c0f0p-92L,
|
||||
0x1.7a11473eb0186d7d51023ep0L, 0x1.6cda1f5ef42b66977960531e821bp-88L,
|
||||
0x1.7c1ed0130c1327c4933444p0L, 0x1.937562b2dc933d44fc828efd4c9cp-88L,
|
||||
0x1.7e2f336cf4e62105d02ba0p0L, 0x1.5797e170a1427f8fcdf5f3906108p-88L,
|
||||
0x1.80427543e1a11b60de6764p0L, 0x9.a354ea706b8e4d8b718a672bf7c8p-92L,
|
||||
0x1.82589994cce128acf88afap0L, 0xb.34a010f6ad65cbbac0f532d39be0p-92L,
|
||||
0x1.8471a4623c7acce52f6b96p0L, 0x1.c64095370f51f48817914dd78665p-88L,
|
||||
0x1.868d99b4492ec80e41d90ap0L, 0xc.251707484d73f136fb5779656b70p-92L,
|
||||
0x1.88ac7d98a669966530bcdep0L, 0x1.2d4e9d61283ef385de170ab20f96p-88L,
|
||||
0x1.8ace5422aa0db5ba7c55a0p0L, 0x1.92c9bb3e6ed61f2733304a346d8fp-88L,
|
||||
0x1.8cf3216b5448bef2aa1cd0p0L, 0x1.61c55d84a9848f8c453b3ca8c946p-88L,
|
||||
0x1.8f1ae991577362b982745cp0L, 0x7.2ed804efc9b4ae1458ae946099d4p-92L,
|
||||
0x1.9145b0b91ffc588a61b468p0L, 0x1.f6b70e01c2a90229a4c4309ea719p-88L,
|
||||
0x1.93737b0cdc5e4f4501c3f2p0L, 0x5.40a22d2fc4af581b63e8326efe9cp-92L,
|
||||
0x1.95a44cbc8520ee9b483694p0L, 0x1.a0fc6f7c7d61b2b3a22a0eab2cadp-88L,
|
||||
0x1.97d829fde4e4f8b9e920f8p0L, 0x1.1e8bd7edb9d7144b6f6818084cc7p-88L,
|
||||
0x1.9a0f170ca07b9ba3109b8cp0L, 0x4.6737beb19e1eada6825d3c557428p-92L,
|
||||
0x1.9c49182a3f0901c7c46b06p0L, 0x1.1f2be58ddade50c217186c90b457p-88L,
|
||||
0x1.9e86319e323231824ca78ep0L, 0x6.4c6e010f92c082bbadfaf605cfd4p-92L,
|
||||
0x1.a0c667b5de564b29ada8b8p0L, 0xc.ab349aa0422a8da7d4512edac548p-92L,
|
||||
0x1.a309bec4a2d3358c171f76p0L, 0x1.0daad547fa22c26d168ea762d854p-88L,
|
||||
0x1.a5503b23e255c8b424491cp0L, 0xa.f87bc8050a405381703ef7caff50p-92L,
|
||||
0x1.a799e1330b3586f2dfb2b0p0L, 0x1.58f1a98796ce8908ae852236ca94p-88L,
|
||||
0x1.a9e6b5579fdbf43eb243bcp0L, 0x1.ff4c4c58b571cf465caf07b4b9f5p-88L,
|
||||
0x1.ac36bbfd3f379c0db966a2p0L, 0x1.1265fc73e480712d20f8597a8e7bp-88L,
|
||||
0x1.ae89f995ad3ad5e8734d16p0L, 0x1.73205a7fbc3ae675ea440b162d6cp-88L,
|
||||
0x1.b0e07298db66590842acdep0L, 0x1.c6f6ca0e5dcae2aafffa7a0554cbp-88L,
|
||||
0x1.b33a2b84f15faf6bfd0e7ap0L, 0x1.d947c2575781dbb49b1237c87b6ep-88L,
|
||||
0x1.b59728de559398e3881110p0L, 0x1.64873c7171fefc410416be0a6525p-88L,
|
||||
0x1.b7f76f2fb5e46eaa7b081ap0L, 0xb.53c5354c8903c356e4b625aacc28p-92L,
|
||||
0x1.ba5b030a10649840cb3c6ap0L, 0xf.5b47f297203757e1cc6eadc8bad0p-92L,
|
||||
0x1.bcc1e904bc1d2247ba0f44p0L, 0x1.b3d08cd0b20287092bd59be4ad98p-88L,
|
||||
0x1.bf2c25bd71e088408d7024p0L, 0x1.18e3449fa073b356766dfb568ff4p-88L,
|
||||
0x1.c199bdd85529c2220cb12ap0L, 0x9.1ba6679444964a36661240043970p-96L,
|
||||
0x1.c40ab5fffd07a6d14df820p0L, 0xf.1828a5366fd387a7bdd54cdf7300p-92L,
|
||||
0x1.c67f12e57d14b4a2137fd2p0L, 0xf.2b301dd9e6b151a6d1f9d5d5f520p-96L,
|
||||
0x1.c8f6d9406e7b511acbc488p0L, 0x5.c442ddb55820171f319d9e5076a8p-96L,
|
||||
0x1.cb720dcef90691503cbd1ep0L, 0x9.49db761d9559ac0cb6dd3ed599e0p-92L,
|
||||
0x1.cdf0b555dc3f9c44f8958ep0L, 0x1.ac51be515f8c58bdfb6f5740a3a4p-88L,
|
||||
0x1.d072d4a07897b8d0f22f20p0L, 0x1.a158e18fbbfc625f09f4cca40874p-88L,
|
||||
0x1.d2f87080d89f18ade12398p0L, 0x9.ea2025b4c56553f5cdee4c924728p-92L,
|
||||
0x1.d5818dcfba48725da05aeap0L, 0x1.66e0dca9f589f559c0876ff23830p-88L,
|
||||
0x1.d80e316c98397bb84f9d04p0L, 0x8.805f84bec614de269900ddf98d28p-92L,
|
||||
0x1.da9e603db3285708c01a5ap0L, 0x1.6d4c97f6246f0ec614ec95c99392p-88L,
|
||||
0x1.dd321f301b4604b695de3cp0L, 0x6.30a393215299e30d4fb73503c348p-96L,
|
||||
0x1.dfc97337b9b5eb968cac38p0L, 0x1.ed291b7225a944efd5bb5524b927p-88L,
|
||||
0x1.e264614f5a128a12761fa0p0L, 0x1.7ada6467e77f73bf65e04c95e29dp-88L,
|
||||
0x1.e502ee78b3ff6273d13014p0L, 0x1.3991e8f49659e1693be17ae1d2f9p-88L,
|
||||
0x1.e7a51fbc74c834b548b282p0L, 0x1.23786758a84f4956354634a416cep-88L,
|
||||
0x1.ea4afa2a490d9858f73a18p0L, 0xf.5db301f86dea20610ceee13eb7b8p-92L,
|
||||
0x1.ecf482d8e67f08db0312fap0L, 0x1.949cef462010bb4bc4ce72a900dfp-88L,
|
||||
0x1.efa1bee615a27771fd21a8p0L, 0x1.2dac1f6dd5d229ff68e46f27e3dfp-88L,
|
||||
0x1.f252b376bba974e8696fc2p0L, 0x1.6390d4c6ad5476b5162f40e1d9a9p-88L,
|
||||
0x1.f50765b6e4540674f84b76p0L, 0x2.862baff99000dfc4352ba29b8908p-92L,
|
||||
0x1.f7bfdad9cbe138913b4bfep0L, 0x7.2bd95c5ce7280fa4d2344a3f5618p-92L,
|
||||
0x1.fa7c1819e90d82e90a7e74p0L, 0xb.263c1dc060c36f7650b4c0f233a8p-92L,
|
||||
0x1.fd3c22b8f71f10975ba4b2p0L, 0x1.2bcf3a5e12d269d8ad7c1a4a8875p-88L
|
||||
};
|
||||
|
||||
/*
|
||||
* Kernel for expl(x). x must be finite and not tiny or huge.
|
||||
* "tiny" is anything that would make us underflow (|A6*x^6| < ~LDBL_MIN).
|
||||
* "huge" is anything that would make fn*L1 inexact (|x| > ~2**17*ln2).
|
||||
*/
|
||||
static inline void
|
||||
__k_expl(long double x, long double *hip, long double *lop, int *kp)
|
||||
{
|
||||
long double q, r, r1, t;
|
||||
double dr, fn, r2;
|
||||
int n, n2;
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
fn = rnint((double)x * INV_L);
|
||||
n = irint(fn);
|
||||
n2 = (unsigned)n % INTERVALS;
|
||||
/* Depend on the sign bit being propagated: */
|
||||
*kp = n >> LOG2_INTERVALS;
|
||||
r1 = x - fn * L1;
|
||||
r2 = fn * -L2;
|
||||
r = r1 + r2;
|
||||
|
||||
/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
|
||||
dr = r;
|
||||
q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
|
||||
dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
|
||||
t = tbl[n2].lo + tbl[n2].hi;
|
||||
*hip = tbl[n2].hi;
|
||||
*lop = tbl[n2].lo + t * (q + r1);
|
||||
}
|
||||
|
||||
/*
|
||||
* XXX: the rest of the functions are identical for ld80 and ld128.
|
||||
* However, we should use scalbnl() for ld128, since long double
|
||||
* multiplication was very slow on sparc64 and no new evaluation has
|
||||
* been made for aarch64 and/or riscv.
|
||||
*/
|
||||
|
||||
static inline void
|
||||
k_hexpl(long double x, long double *hip, long double *lop)
|
||||
{
|
||||
float twopkm1;
|
||||
int k;
|
||||
|
||||
__k_expl(x, hip, lop, &k);
|
||||
SET_FLOAT_WORD(twopkm1, 0x3f800000 + ((k - 1) << 23));
|
||||
*hip *= twopkm1;
|
||||
*lop *= twopkm1;
|
||||
}
|
||||
|
||||
static inline long double
|
||||
hexpl(long double x)
|
||||
{
|
||||
long double hi, lo, twopkm2;
|
||||
int k;
|
||||
|
||||
twopkm2 = 1;
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
SET_LDBL_EXPSIGN(twopkm2, BIAS + k - 2);
|
||||
return (lo + hi) * 2 * twopkm2;
|
||||
}
|
||||
|
||||
#ifdef _COMPLEX_H
|
||||
/*
|
||||
* See ../src/k_exp.c for details.
|
||||
*/
|
||||
static inline long double complex
|
||||
__ldexp_cexpl(long double complex z, int expt)
|
||||
{
|
||||
long double c, exp_x, hi, lo, s;
|
||||
long double x, y, scale1, scale2;
|
||||
int half_expt, k;
|
||||
|
||||
x = creall(z);
|
||||
y = cimagl(z);
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
|
||||
exp_x = (lo + hi) * 0x1p16382L;
|
||||
expt += k - 16382;
|
||||
|
||||
scale1 = 1;
|
||||
half_expt = expt / 2;
|
||||
SET_LDBL_EXPSIGN(scale1, BIAS + half_expt);
|
||||
scale2 = 1;
|
||||
SET_LDBL_EXPSIGN(scale2, BIAS + expt - half_expt);
|
||||
|
||||
sincosl(y, &s, &c);
|
||||
return (CMPLXL(c * exp_x * scale1 * scale2,
|
||||
s * exp_x * scale1 * scale2));
|
||||
}
|
||||
#endif /* _COMPLEX_H */
|
|
@ -0,0 +1,59 @@
|
|||
/* From: @(#)k_sin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ld128 version of k_sin.c. See ../src/k_sin.c for most comments.
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
half = 0.5;
|
||||
|
||||
/*
|
||||
* Domain [-0.7854, 0.7854], range ~[-1.53e-37, 1.659e-37]
|
||||
* |sin(x)/x - s(x)| < 2**-122.1
|
||||
*
|
||||
* See ../ld80/k_cosl.c for more details about the polynomial.
|
||||
*/
|
||||
static const long double
|
||||
S1 = -0.16666666666666666666666666666666666606732416116558L,
|
||||
S2 = 0.0083333333333333333333333333333331135404851288270047L,
|
||||
S3 = -0.00019841269841269841269841269839935785325638310428717L,
|
||||
S4 = 0.27557319223985890652557316053039946268333231205686e-5L,
|
||||
S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
|
||||
S6 = 0.16059043836821614596571832194524392581082444805729e-9L,
|
||||
S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
|
||||
S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
|
||||
|
||||
static const double
|
||||
S9 = -0.82206352458348947812512122163446202498005154296863e-17,
|
||||
S10 = 0.19572940011906109418080609928334380560135358385256e-19,
|
||||
S11 = -0.38680813379701966970673724299207480965452616911420e-22,
|
||||
S12 = 0.64038150078671872796678569586315881020659912139412e-25;
|
||||
|
||||
long double
|
||||
__kernel_sinl(long double x, long double y, int iy)
|
||||
{
|
||||
long double z,r,v;
|
||||
|
||||
z = x*x;
|
||||
v = z*x;
|
||||
r = S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*(S8+
|
||||
z*(S9+z*(S10+z*(S11+z*S12)))))))));
|
||||
if(iy==0) return x+v*(S1+z*r);
|
||||
else return x-((z*(half*y-v*r)-y)-v*S1);
|
||||
}
|
|
@ -0,0 +1,329 @@
|
|||
/* @(#)s_erf.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See s_erf.c for complete comments.
|
||||
*
|
||||
* Converted to long double by Steven G. Kargl.
|
||||
*/
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* XXX Prevent compilers from erroneously constant folding these: */
|
||||
static const volatile long double tiny = 0x1p-10000L;
|
||||
|
||||
static const double
|
||||
half= 0.5,
|
||||
one = 1,
|
||||
two = 2;
|
||||
/*
|
||||
* In the domain [0, 2**-40], only the first term in the power series
|
||||
* expansion of erf(x) is used. The magnitude of the first neglected
|
||||
* terms is less than 2**-120.
|
||||
*/
|
||||
static const long double
|
||||
efx = 1.28379167095512573896158903121545167e-01L, /* 0xecbff6a7, 0x481dd788, 0xb64d21a8, 0xeb06fc3f */
|
||||
efx8 = 1.02703333676410059116927122497236133e+00L, /* 0xecbff6a7, 0x481dd788, 0xb64d21a8, 0xeb06ff3f */
|
||||
/*
|
||||
* Domain [0, 0.84375], range ~[-1.919e-38, 1.919e-38]:
|
||||
* |(erf(x) - x)/x - pp(x)/qq(x)| < 2**-125.29
|
||||
*/
|
||||
pp0 = 1.28379167095512573896158903121545167e-01L, /* 0x3ffc06eb, 0xa8214db6, 0x88d71d48, 0xa7f6bfec */
|
||||
pp1 = -3.14931554396568573802046931159683404e-01L, /* 0xbffd427d, 0x6ada7263, 0x547eb096, 0x95f37463 */
|
||||
pp2 = -5.27514920282183487103576956956725309e-02L, /* 0xbffab023, 0xe5a271e3, 0xb0e79b01, 0x2f7ac962 */
|
||||
pp3 = -1.13202828509005281355609495523452713e-02L, /* 0xbff872f1, 0x6a5023a1, 0xe08b3884, 0x326af20f */
|
||||
pp4 = -9.18626155872522453865998391206048506e-04L, /* 0xbff4e19f, 0xea5fb024, 0x43247a37, 0xe430b06c */
|
||||
pp5 = -7.87518862406176274922506447157284230e-05L, /* 0xbff14a4f, 0x31a85fe0, 0x7fff2204, 0x09c49b37 */
|
||||
pp6 = -3.42357944472240436548115331090560881e-06L, /* 0xbfeccb81, 0x4b43c336, 0xcd2eb6c2, 0x903f2d87 */
|
||||
pp7 = -1.37317432573890412634717890726745428e-07L, /* 0xbfe826e3, 0x0e915eb6, 0x42aee414, 0xf7e36805 */
|
||||
pp8 = -2.71115170113861755855049008732113726e-09L, /* 0xbfe2749e, 0x2b94fd00, 0xecb4d166, 0x0efb91f8 */
|
||||
pp9 = -3.37925756196555959454018189718117864e-11L, /* 0xbfdc293e, 0x1d9060cb, 0xd043204a, 0x314cd7f0 */
|
||||
qq1 = 4.76672625471551170489978555182449450e-01L, /* 0x3ffde81c, 0xde6531f0, 0x76803bee, 0x526e29e9 */
|
||||
qq2 = 1.06713144672281502058807525850732240e-01L, /* 0x3ffbb518, 0xd7a6bb74, 0xcd9bdd33, 0x7601eee5 */
|
||||
qq3 = 1.47747613127513761102189201923147490e-02L, /* 0x3ff8e423, 0xae527e18, 0xf12cb447, 0x723b4749 */
|
||||
qq4 = 1.39939377672028671891148770908874816e-03L, /* 0x3ff56ed7, 0xba055d84, 0xc21b45c4, 0x388d1812 */
|
||||
qq5 = 9.44302939359455241271983309378738276e-05L, /* 0x3ff18c11, 0xc18c99a4, 0x86d0fe09, 0x46387b4c */
|
||||
qq6 = 4.56199342312522842161301671745365650e-06L, /* 0x3fed3226, 0x73421d05, 0x08875300, 0x32fa1432 */
|
||||
qq7 = 1.53019260483764773845294600092361197e-07L, /* 0x3fe8489b, 0x3a63f627, 0x2b9ad2ce, 0x26516e57 */
|
||||
qq8 = 3.25542691121324805094777901250005508e-09L, /* 0x3fe2bf6c, 0x26d93a29, 0x9142be7c, 0x9f1dd043 */
|
||||
qq9 = 3.37405581964478060434410167262684979e-11L; /* 0x3fdc28c8, 0xfb8fa1be, 0x10e57eec, 0xaa19e49f */
|
||||
|
||||
static const long double
|
||||
erx = 8.42700792949714894142232424201210961e-01L, /* 0x3ffeaf76, 0x7a741088, 0xb0000000, 0x00000000 */
|
||||
/*
|
||||
* Domain [0.84375, 1.25], range ~[-2.521e-36, 2.523e-36]:
|
||||
* |(erf(x) - erx) - pa(x)/qa(x)| < 2**-120.15
|
||||
*/
|
||||
pa0 = -2.48010117891186017024438233323795897e-17L, /* 0xbfc7c97f, 0x77812279, 0x6c877f22, 0xef4bfb2e */
|
||||
pa1 = 4.15107497420594680894327969504526489e-01L, /* 0x3ffda911, 0xf096fbc2, 0x55662005, 0x2337fa64 */
|
||||
pa2 = -3.94180628087084846724448515851892609e-02L, /* 0xbffa42e9, 0xab54528c, 0xad529da1, 0x6efc2af3 */
|
||||
pa3 = 4.48897599625192107295954790681677462e-02L, /* 0x3ffa6fbc, 0xa65edba1, 0x0e4cbcea, 0x73ef9a31 */
|
||||
pa4 = 8.02069252143016600110972019232995528e-02L, /* 0x3ffb4887, 0x0e8b548e, 0x3230b417, 0x11b553b3 */
|
||||
pa5 = -1.02729816533435279443621120242391295e-02L, /* 0xbff850a0, 0x041de3ee, 0xd5bca6c9, 0x4ef5f9f2 */
|
||||
pa6 = 5.70777694530755634864821094419982095e-03L, /* 0x3ff77610, 0x9b501e10, 0x4c978382, 0x742df68f */
|
||||
pa7 = 1.22635150233075521018231779267077071e-03L, /* 0x3ff5417b, 0x0e623682, 0x60327da0, 0x96b9219e */
|
||||
pa8 = 5.36100234820204569428412542856666503e-04L, /* 0x3ff41912, 0x27ceb4c1, 0x1d3298ec, 0x84ced627 */
|
||||
pa9 = -1.97753571846365167177187858667583165e-04L, /* 0xbff29eb8, 0x23f5bcf3, 0x15c83c46, 0xe4fda98b */
|
||||
pa10 = 6.19333039900846970674794789568415105e-05L, /* 0x3ff103c4, 0x60f88e46, 0xc0c9fb02, 0x13cc7fc1 */
|
||||
pa11 = -5.40531400436645861492290270311751349e-06L, /* 0xbfed6abe, 0x9665f8a8, 0xdd0ad3ba, 0xe5dc0ee3 */
|
||||
qa1 = 9.05041313265490487793231810291907851e-01L, /* 0x3ffecf61, 0x93340222, 0xe9930620, 0xc4e61168 */
|
||||
qa2 = 6.79848064708886864767240880834868092e-01L, /* 0x3ffe5c15, 0x0ba858dc, 0xf7900ae9, 0xfea1e09a */
|
||||
qa3 = 4.04720609926471677581066689316516445e-01L, /* 0x3ffd9e6f, 0x145e9b00, 0x6d8c1749, 0xd2928623 */
|
||||
qa4 = 1.69183273898369996364661075664302225e-01L, /* 0x3ffc5a7c, 0xc2a363c1, 0xd6c19097, 0xef9b4063 */
|
||||
qa5 = 7.44476185988067992342479750486764248e-02L, /* 0x3ffb30ef, 0xfc7259ef, 0x1bcbb089, 0x686dd62d */
|
||||
qa6 = 2.02981172725892407200420389604788573e-02L, /* 0x3ff94c90, 0x7976cb0e, 0x21e1d36b, 0x0f09ca2b */
|
||||
qa7 = 6.94281866271607668268269403102277234e-03L, /* 0x3ff7c701, 0x2b193250, 0xc5d46ecc, 0x374843d8 */
|
||||
qa8 = 1.12952275469171559611651594706820034e-03L, /* 0x3ff52818, 0xfd2a7c06, 0xd13e38fd, 0xda4b34f5 */
|
||||
qa9 = 3.13736683241992737197226578597710179e-04L, /* 0x3ff348fa, 0x0cb48d18, 0x051f849b, 0x135ccf74 */
|
||||
qa10 = 1.17037675204033225470121134087771410e-05L, /* 0x3fee88b6, 0x98f47704, 0xa5d8f8f2, 0xc6422e11 */
|
||||
qa11 = 4.61312518293853991439362806880973592e-06L, /* 0x3fed3594, 0xe31db94f, 0x3592b693, 0xed4386b4 */
|
||||
qa12 = -1.02158572037456893687737553657431771e-06L; /* 0xbfeb123a, 0xd60d9b1e, 0x1f6fdeb9, 0x7dc8410a */
|
||||
/*
|
||||
* Domain [1.25,2.85715], range ~[-2.922e-37,2.922e-37]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - ra(x)/sa(x)| < 2**-121.36
|
||||
*/
|
||||
static const long double
|
||||
ra0 = -9.86494292470069009555706994426014461e-03L, /* 0xbff84341, 0x239e8709, 0xe941b06a, 0xcb4b6ec5 */
|
||||
ra1 = -1.13580436992565640457579040117568870e+00L, /* 0xbfff22c4, 0x133f7c0d, 0x72d5e231, 0x2eb1ee3f */
|
||||
ra2 = -4.89744330295291950661185707066921755e+01L, /* 0xc00487cb, 0xa38b4fc2, 0xc136695b, 0xc1df8047 */
|
||||
ra3 = -1.10766149300215937173768072715352140e+03L, /* 0xc00914ea, 0x55e6beb3, 0xabc50e07, 0xb6e5664d */
|
||||
ra4 = -1.49991031232170934967642795601952100e+04L, /* 0xc00cd4b8, 0xd33243e6, 0xffbf6545, 0x3c57ef6e */
|
||||
ra5 = -1.29805749738318462882524181556996692e+05L, /* 0xc00ffb0d, 0xbfeed9b6, 0x5b2a3ff4, 0xe245bd3c */
|
||||
ra6 = -7.42828497044940065828871976644647850e+05L, /* 0xc0126ab5, 0x8fe7caca, 0x473352d9, 0xcd4e0c90 */
|
||||
ra7 = -2.85637299581890734287995171242421106e+06L, /* 0xc0145cad, 0xa7f76fe7, 0x3e358051, 0x1799f927 */
|
||||
ra8 = -7.40674797129824999383748865571026084e+06L, /* 0xc015c412, 0x6fe29c02, 0x298ad158, 0x7d24e45c */
|
||||
ra9 = -1.28653420911930973914078724204151759e+07L, /* 0xc016889e, 0x7c2eb0dc, 0x95d5863b, 0x0aa34dc3 */
|
||||
ra10 = -1.47198163599330179552932489109452638e+07L, /* 0xc016c136, 0x90b84923, 0xf9bcb497, 0x19bbd0f5 */
|
||||
ra11 = -1.07812992258382800318665248311522624e+07L, /* 0xc0164904, 0xe673a113, 0x35d7f079, 0xe13701f3 */
|
||||
ra12 = -4.83545565681708642630419905537756076e+06L, /* 0xc0152721, 0xfea094a8, 0x869eb39d, 0x413d6f13 */
|
||||
ra13 = -1.23956521201673964822976917356685286e+06L, /* 0xc0132ea0, 0xd3646baa, 0x2fe62b0d, 0xbae5ce85 */
|
||||
ra14 = -1.62289333553652417591275333240371812e+05L, /* 0xc0103cf8, 0xaab1e2d6, 0x4c25e014, 0x248d76ab */
|
||||
ra15 = -8.82890392601176969729168894389833110e+03L, /* 0xc00c13e7, 0x3b3d8f94, 0x6fbda6f6, 0xe7049a82 */
|
||||
ra16 = -1.22591866337261720023681535568334619e+02L, /* 0xc005ea5e, 0x12358891, 0xcfa712c5, 0x77f050d4 */
|
||||
sa1 = 6.44508918884710829371852723353794047e+01L, /* 0x400501cd, 0xb69a6c0f, 0x5716de14, 0x47161af6 */
|
||||
sa2 = 1.76118475473171481523704824327358534e+03L, /* 0x4009b84b, 0xd305829f, 0xc4c771b0, 0xbf1f7f9b */
|
||||
sa3 = 2.69448346969488374857087646131950188e+04L, /* 0x400da503, 0x56bacc05, 0x4fdba68d, 0x2cca27e6 */
|
||||
sa4 = 2.56826633369941456778326497384543763e+05L, /* 0x4010f59d, 0x51124428, 0x69c41de6, 0xbd0d5753 */
|
||||
sa5 = 1.60647413092257206847700054645905859e+06L, /* 0x40138834, 0xa2184244, 0x557a1bed, 0x68c9d556 */
|
||||
sa6 = 6.76963075165099718574753447122393797e+06L, /* 0x40159d2f, 0x7b01b0cc, 0x8bac9e95, 0x5d35d56e */
|
||||
sa7 = 1.94295690905361884290986932493647741e+07L, /* 0x40172878, 0xc1172d61, 0x3068501e, 0x2f3c71da */
|
||||
sa8 = 3.79774781017759149060839255547073541e+07L, /* 0x401821be, 0xc30d06fe, 0x410563d7, 0x032111fd */
|
||||
sa9 = 5.00659831846029484248302236457727397e+07L, /* 0x40187df9, 0x1f97a111, 0xc51d6ac2, 0x4b389793 */
|
||||
sa10 = 4.36486287620506484276130525941972541e+07L, /* 0x40184d03, 0x3a618ae0, 0x2a723357, 0xfa45c60a */
|
||||
sa11 = 2.43779678791333894255510508253951934e+07L, /* 0x401773fa, 0x6fe10ee2, 0xc467850d, 0xc6b7ff30 */
|
||||
sa12 = 8.30732360384443202039372372212966542e+06L, /* 0x4015fb09, 0xee6a5631, 0xdd98de7e, 0x8b00461a */
|
||||
sa13 = 1.60160846942050515734192397495105693e+06L, /* 0x40138704, 0x8782bf13, 0x5b8fb315, 0xa898abe5 */
|
||||
sa14 = 1.54255505242533291014555153757001825e+05L, /* 0x40102d47, 0xc0abc98e, 0x843c9490, 0xb4352440 */
|
||||
sa15 = 5.87949220002375547561467275493888824e+03L, /* 0x400b6f77, 0xe00d21d1, 0xec4d41e8, 0x2f8e1673 */
|
||||
sa16 = 4.97272976346793193860385983372237710e+01L; /* 0x40048dd1, 0x816c1b3f, 0x24f540a6, 0x4cfe03cc */
|
||||
/*
|
||||
* Domain [2.85715,9], range ~[-7.886e-37,7.918e-37]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - rb(x)/sb(x)| < 2**-120
|
||||
*/
|
||||
static const long double
|
||||
rb0 = -9.86494292470008707171371994479162369e-3L, /* 0xbff84341, 0x239e86f4, 0x2f57e561, 0xf4469360 */
|
||||
rb1 = -1.57047326624110727986326503729442830L, /* 0xbfff920a, 0x8935bf73, 0x8803b894, 0x4656482d */
|
||||
rb2 = -1.03228196364885474342132255440317065e2L, /* 0xc0059ce9, 0xac4ed0ff, 0x2cff0ff7, 0x5e70d1ab */
|
||||
rb3 = -3.74000570653418227179358710865224376e3L, /* 0xc00ad380, 0x2ebf7835, 0xf6b07ed2, 0x861242f7 */
|
||||
rb4 = -8.35435477739098044190860390632813956e4L, /* 0xc00f4657, 0x8c3ae934, 0x3647d7b3, 0x80e76fb7 */
|
||||
rb5 = -1.21398672055223642118716640216747152e6L, /* 0xc0132862, 0x2b8761c8, 0x27d18c0f, 0x137c9463 */
|
||||
rb6 = -1.17669175877248796101665344873273970e7L, /* 0xc0166719, 0x0b2cea46, 0x81f14174, 0x11602ea5 */
|
||||
rb7 = -7.66108006086998253606773064264599615e7L, /* 0xc019243f, 0x3c26f4f0, 0x1cc05241, 0x3b953728 */
|
||||
rb8 = -3.32547117558141845968704725353130804e8L, /* 0xc01b3d24, 0x42d8ee26, 0x24ef6f3b, 0x604a8c65 */
|
||||
rb9 = -9.41561252426350696802167711221739746e8L, /* 0xc01cc0f8, 0xad23692a, 0x8ddb2310, 0xe9937145 */
|
||||
rb10 = -1.67157110805390944549427329626281063e9L, /* 0xc01d8e88, 0x9a903734, 0x09a55fa3, 0xd205c903 */
|
||||
rb11 = -1.74339631004410841337645931421427373e9L, /* 0xc01d9fa8, 0x77582d2a, 0xc183b8ab, 0x7e00cb05 */
|
||||
rb12 = -9.57655233596934915727573141357471703e8L, /* 0xc01cc8a5, 0x460cc685, 0xd0271fa0, 0x6a70e3da */
|
||||
rb13 = -2.26320062731339353035254704082495066e8L, /* 0xc01aafab, 0xd7d76721, 0xc9720e11, 0x6a8bd489 */
|
||||
rb14 = -1.42777302996263256686002973851837039e7L, /* 0xc016b3b8, 0xc499689f, 0x2b88d965, 0xc32414f9 */
|
||||
sb1 = 1.08512869705594540211033733976348506e2L, /* 0x4005b20d, 0x2db7528d, 0x00d20dcb, 0x858f6191 */
|
||||
sb2 = 5.02757713761390460534494530537572834e3L, /* 0x400b3a39, 0x3bf4a690, 0x3025d28d, 0xfd40a891 */
|
||||
sb3 = 1.31019107205412870059331647078328430e5L, /* 0x400fffcb, 0x1b71d05e, 0x3b28361d, 0x2a3c3690 */
|
||||
sb4 = 2.13021555152296846166736757455018030e6L, /* 0x40140409, 0x3c6984df, 0xc4491d7c, 0xb04aa08d */
|
||||
sb5 = 2.26649105281820861953868568619768286e7L, /* 0x401759d6, 0xce8736f0, 0xf28ad037, 0x2a901e0c */
|
||||
sb6 = 1.61071939490875921812318684143076081e8L, /* 0x401a3338, 0x686fb541, 0x6bd27d06, 0x4f95c9ac */
|
||||
sb7 = 7.66895673844301852676056750497991966e8L, /* 0x401c6daf, 0x31cec121, 0x54699126, 0x4bd9bf9e */
|
||||
sb8 = 2.41884450436101936436023058196042526e9L, /* 0x401e2059, 0x46b0b8d7, 0x87b64cbf, 0x78bc296d */
|
||||
sb9 = 4.92403055884071695093305291535107666e9L, /* 0x401f257e, 0xbe5ed739, 0x39e17346, 0xcadd2e55 */
|
||||
sb10 = 6.18627786365587486459633615573786416e9L, /* 0x401f70bb, 0x1be7a7e7, 0x6a45b5ae, 0x607c70f0 */
|
||||
sb11 = 4.45898013426501378097430226324743199e9L, /* 0x401f09c6, 0xa32643d7, 0xf1724620, 0x9ea46c32 */
|
||||
sb12 = 1.63006115763329848117160344854224975e9L, /* 0x401d84a3, 0x0996887f, 0x65a4f43b, 0x978c1d74 */
|
||||
sb13 = 2.39216717012421697446304015847567721e8L, /* 0x401ac845, 0x09a065c2, 0x30095da7, 0x9d72d6ae */
|
||||
sb14 = 7.84837329009278694937250358810225609e6L; /* 0x4015df06, 0xd5290e15, 0x63031fac, 0x4d9c894c */
|
||||
/*
|
||||
* Domain [9,108], range ~[-5.324e-38,5.340e-38]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - r(x)/s(x)| < 2**-124
|
||||
*/
|
||||
static const long double
|
||||
rc0 = -9.86494292470008707171367567652935673e-3L, /* 0xbff84341, 0x239e86f4, 0x2f57e55b, 0x1aa10fd3 */
|
||||
rc1 = -1.26229447747315096406518846411562266L, /* 0xbfff4325, 0xbb1aab28, 0xda395cd9, 0xfb861c15 */
|
||||
rc2 = -6.13742634438922591780742637728666162e1L, /* 0xc004eafe, 0x7dd51cd8, 0x3c7c5928, 0x751e50cf */
|
||||
rc3 = -1.50455835478908280402912854338421517e3L, /* 0xc0097823, 0xbc15b9ab, 0x3d60745c, 0x523e80a5 */
|
||||
rc4 = -2.04415631865861549920184039902945685e4L, /* 0xc00d3f66, 0x40b3fc04, 0x5388f2ec, 0xb009e1f0 */
|
||||
rc5 = -1.57625662981714582753490610560037638e5L, /* 0xc01033dc, 0xd4dc95b6, 0xfd4da93b, 0xf355b4a9 */
|
||||
rc6 = -6.73473451616752528402917538033283794e5L, /* 0xc01248d8, 0x2e73a4f9, 0xcded49c5, 0xfa3bfeb7 */
|
||||
rc7 = -1.47433165421387483167186683764364857e6L, /* 0xc01367f1, 0xba77a8f7, 0xcfdd0dbb, 0x25d554b3 */
|
||||
rc8 = -1.38811981807868828563794929997744139e6L, /* 0xc01352e5, 0x7d16d9ad, 0xbbdcbf38, 0x38fbc5ea */
|
||||
rc9 = -3.59659700530831825640766479698155060e5L, /* 0xc0115f3a, 0xecd57f45, 0x21f8ad6c, 0x910a5958 */
|
||||
sc1 = 7.72730753022908298637508998072635696e1L, /* 0x40053517, 0xa10d52bc, 0xdabb55b6, 0xbd0328cd */
|
||||
sc2 = 2.36825757341694050500333261769082182e3L, /* 0x400a2808, 0x3e0a9b42, 0x82977842, 0x9c5de29e */
|
||||
sc3 = 3.72210540173034735352888847134073099e4L, /* 0x400e22ca, 0x1ba827ef, 0xac8390d7, 0x1fc39a41 */
|
||||
sc4 = 3.24136032646418336712461033591393412e5L, /* 0x40113c8a, 0x0216e100, 0xc59d1e44, 0xf0e68d9d */
|
||||
sc5 = 1.57836135851134393802505823370009175e6L, /* 0x40138157, 0x95bc7664, 0x17575961, 0xdbe58eeb */
|
||||
sc6 = 4.12881981392063738026679089714182355e6L, /* 0x4014f801, 0x9e82e8d2, 0xb8b3a70e, 0xfd84185d */
|
||||
sc7 = 5.24438427289213488410596395361544142e6L, /* 0x40154017, 0x81177109, 0x2aa6c3b0, 0x1f106625 */
|
||||
sc8 = 2.59909544563616121735963429710382149e6L, /* 0x40143d45, 0xbb90a9b1, 0x12bf9390, 0xa827a700 */
|
||||
sc9 = 2.80930665169282501639651995082335693e5L; /* 0x40111258, 0xaa92222e, 0xa97e3216, 0xa237fa6c */
|
||||
|
||||
long double
|
||||
erfl(long double x)
|
||||
{
|
||||
long double ax,R,S,P,Q,s,y,z,r;
|
||||
uint64_t lx, llx;
|
||||
int32_t i;
|
||||
uint16_t hx;
|
||||
|
||||
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
|
||||
|
||||
if((hx & 0x7fff) == 0x7fff) { /* erfl(nan)=nan */
|
||||
i = (hx>>15)<<1;
|
||||
return (1-i)+one/x; /* erfl(+-inf)=+-1 */
|
||||
}
|
||||
|
||||
ax = fabsl(x);
|
||||
if(ax < 0.84375) {
|
||||
if(ax < 0x1p-40L) {
|
||||
if(ax < 0x1p-16373L)
|
||||
return (8*x+efx8*x)/8; /* avoid spurious underflow */
|
||||
return x + efx*x;
|
||||
}
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*(pp4+z*(pp5+z*(pp6+z*(pp7+
|
||||
z*(pp8+z*pp9))))))));
|
||||
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*(qq5+z*(qq6+z*(qq7+
|
||||
z*(qq8+z*qq9))))))));
|
||||
y = r/s;
|
||||
return x + x*y;
|
||||
}
|
||||
if(ax < 1.25) {
|
||||
s = ax-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*(pa6+s*(pa7+
|
||||
s*(pa8+s*(pa9+s*(pa10+s*pa11))))))))));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*(qa6+s*(qa7+
|
||||
s*(qa8+s*(qa9+s*(qa10+s*(qa11+s*qa12)))))))))));
|
||||
if(x>=0) return (erx + P/Q); else return (-erx - P/Q);
|
||||
}
|
||||
if (ax >= 9) { /* inf>|x|>= 9 */
|
||||
if(x>=0) return (one-tiny); else return (tiny-one);
|
||||
}
|
||||
s = one/(ax*ax);
|
||||
if(ax < 2.85715) { /* |x| < 2.85715 */
|
||||
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*(ra7+
|
||||
s*(ra8+s*(ra9+s*(ra10+s*(ra11+s*(ra12+s*(ra13+s*(ra14+
|
||||
s*(ra15+s*ra16)))))))))))))));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+
|
||||
s*(sa8+s*(sa9+s*(sa10+s*(sa11+s*(sa12+s*(sa13+s*(sa14+
|
||||
s*(sa15+s*sa16)))))))))))))));
|
||||
} else { /* |x| >= 2.85715 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*(rb6+s*(rb7+
|
||||
s*(rb8+s*(rb9+s*(rb10+s*(rb11+s*(rb12+s*(rb13+
|
||||
s*rb14)))))))))))));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*(sb7+
|
||||
s*(sb8+s*(sb9+s*(sb10+s*(sb11+s*(sb12+s*(sb13+
|
||||
s*sb14)))))))))))));
|
||||
}
|
||||
z = (float)ax;
|
||||
r = expl(-z*z-0.5625)*expl((z-ax)*(z+ax)+R/S);
|
||||
if(x>=0) return (one-r/ax); else return (r/ax-one);
|
||||
}
|
||||
|
||||
long double
|
||||
erfcl(long double x)
|
||||
{
|
||||
long double ax,R,S,P,Q,s,y,z,r;
|
||||
uint64_t lx, llx;
|
||||
uint16_t hx;
|
||||
|
||||
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
|
||||
|
||||
if((hx & 0x7fff) == 0x7fff) { /* erfcl(nan)=nan */
|
||||
/* erfcl(+-inf)=0,2 */
|
||||
return ((hx>>15)<<1)+one/x;
|
||||
}
|
||||
|
||||
ax = fabsl(x);
|
||||
if(ax < 0.84375L) {
|
||||
if(ax < 0x1p-34L)
|
||||
return one-x;
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*(pp4+z*(pp5+z*(pp6+z*(pp7+
|
||||
z*(pp8+z*pp9))))))));
|
||||
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*(qq5+z*(qq6+z*(qq7+
|
||||
z*(qq8+z*qq9))))))));
|
||||
y = r/s;
|
||||
if(ax < 0.25L) { /* x<1/4 */
|
||||
return one-(x+x*y);
|
||||
} else {
|
||||
r = x*y;
|
||||
r += (x-half);
|
||||
return half - r;
|
||||
}
|
||||
}
|
||||
if(ax < 1.25L) {
|
||||
s = ax-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*(pa6+s*(pa7+
|
||||
s*(pa8+s*(pa9+s*(pa10+s*pa11))))))))));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*(qa6+s*(qa7+
|
||||
s*(qa8+s*(qa9+s*(qa10+s*(qa11+s*qa12)))))))))));
|
||||
if(x>=0) {
|
||||
z = one-erx; return z - P/Q;
|
||||
} else {
|
||||
z = erx+P/Q; return one+z;
|
||||
}
|
||||
}
|
||||
|
||||
if(ax < 108) { /* |x| < 108 */
|
||||
s = one/(ax*ax);
|
||||
if(ax < 2.85715) { /* |x| < 2.85715 */
|
||||
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*(ra7+
|
||||
s*(ra8+s*(ra9+s*(ra10+s*(ra11+s*(ra12+s*(ra13+s*(ra14+
|
||||
s*(ra15+s*ra16)))))))))))))));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+
|
||||
s*(sa8+s*(sa9+s*(sa10+s*(sa11+s*(sa12+s*(sa13+s*(sa14+
|
||||
s*(sa15+s*sa16)))))))))))))));
|
||||
} else if(ax < 9) {
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*(rb6+s*(rb7+
|
||||
s*(rb8+s*(rb9+s*(rb10+s*(rb11+s*(rb12+s*(rb13+
|
||||
s*rb14)))))))))))));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*(sb7+
|
||||
s*(sb8+s*(sb9+s*(sb10+s*(sb11+s*(sb12+s*(sb13+
|
||||
s*sb14)))))))))))));
|
||||
} else {
|
||||
if(x < -9) return two-tiny; /* x < -9 */
|
||||
R=rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+s*(rc6+s*(rc7+
|
||||
s*(rc8+s*rc9))))))));
|
||||
S=one+s*(sc1+s*(sc2+s*(sc3+s*(sc4+s*(sc5+s*(sc6+s*(sc7+
|
||||
s*(sc8+s*sc9))))))));
|
||||
}
|
||||
z = (float)ax;
|
||||
r = expl(-z*z-0.5625)*expl((z-ax)*(z+ax)+R/S);
|
||||
if(x>0) return r/ax; else return two-r/ax;
|
||||
} else {
|
||||
if(x>0) return tiny*tiny; else return two-tiny;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,429 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2005-2008 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
|
||||
#define TBLBITS 7
|
||||
#define TBLSIZE (1 << TBLBITS)
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
#define EXPMASK (BIAS + LDBL_MAX_EXP)
|
||||
|
||||
static volatile long double
|
||||
huge = 0x1p10000L,
|
||||
twom10000 = 0x1p-10000L;
|
||||
|
||||
static const long double
|
||||
P1 = 0x1.62e42fefa39ef35793c7673007e6p-1L,
|
||||
P2 = 0x1.ebfbdff82c58ea86f16b06ec9736p-3L,
|
||||
P3 = 0x1.c6b08d704a0bf8b33a762bad3459p-5L,
|
||||
P4 = 0x1.3b2ab6fba4e7729ccbbe0b4f3fc2p-7L,
|
||||
P5 = 0x1.5d87fe78a67311071dee13fd11d9p-10L,
|
||||
P6 = 0x1.430912f86c7876f4b663b23c5fe5p-13L;
|
||||
|
||||
static const double
|
||||
P7 = 0x1.ffcbfc588b041p-17,
|
||||
P8 = 0x1.62c0223a5c7c7p-20,
|
||||
P9 = 0x1.b52541ff59713p-24,
|
||||
P10 = 0x1.e4cf56a391e22p-28,
|
||||
redux = 0x1.8p112 / TBLSIZE;
|
||||
|
||||
static const long double tbl[TBLSIZE] = {
|
||||
0x1.6a09e667f3bcc908b2fb1366dfeap-1L,
|
||||
0x1.6c012750bdabeed76a99800f4edep-1L,
|
||||
0x1.6dfb23c651a2ef220e2cbe1bc0d4p-1L,
|
||||
0x1.6ff7df9519483cf87e1b4f3e1e98p-1L,
|
||||
0x1.71f75e8ec5f73dd2370f2ef0b148p-1L,
|
||||
0x1.73f9a48a58173bd5c9a4e68ab074p-1L,
|
||||
0x1.75feb564267c8bf6e9aa33a489a8p-1L,
|
||||
0x1.780694fde5d3f619ae02808592a4p-1L,
|
||||
0x1.7a11473eb0186d7d51023f6ccb1ap-1L,
|
||||
0x1.7c1ed0130c1327c49334459378dep-1L,
|
||||
0x1.7e2f336cf4e62105d02ba1579756p-1L,
|
||||
0x1.80427543e1a11b60de67649a3842p-1L,
|
||||
0x1.82589994cce128acf88afab34928p-1L,
|
||||
0x1.8471a4623c7acce52f6b97c6444cp-1L,
|
||||
0x1.868d99b4492ec80e41d90ac2556ap-1L,
|
||||
0x1.88ac7d98a669966530bcdf2d4cc0p-1L,
|
||||
0x1.8ace5422aa0db5ba7c55a192c648p-1L,
|
||||
0x1.8cf3216b5448bef2aa1cd161c57ap-1L,
|
||||
0x1.8f1ae991577362b982745c72eddap-1L,
|
||||
0x1.9145b0b91ffc588a61b469f6b6a0p-1L,
|
||||
0x1.93737b0cdc5e4f4501c3f2540ae8p-1L,
|
||||
0x1.95a44cbc8520ee9b483695a0e7fep-1L,
|
||||
0x1.97d829fde4e4f8b9e920f91e8eb6p-1L,
|
||||
0x1.9a0f170ca07b9ba3109b8c467844p-1L,
|
||||
0x1.9c49182a3f0901c7c46b071f28dep-1L,
|
||||
0x1.9e86319e323231824ca78e64c462p-1L,
|
||||
0x1.a0c667b5de564b29ada8b8cabbacp-1L,
|
||||
0x1.a309bec4a2d3358c171f770db1f4p-1L,
|
||||
0x1.a5503b23e255c8b424491caf88ccp-1L,
|
||||
0x1.a799e1330b3586f2dfb2b158f31ep-1L,
|
||||
0x1.a9e6b5579fdbf43eb243bdff53a2p-1L,
|
||||
0x1.ac36bbfd3f379c0db966a3126988p-1L,
|
||||
0x1.ae89f995ad3ad5e8734d17731c80p-1L,
|
||||
0x1.b0e07298db66590842acdfc6fb4ep-1L,
|
||||
0x1.b33a2b84f15faf6bfd0e7bd941b0p-1L,
|
||||
0x1.b59728de559398e3881111648738p-1L,
|
||||
0x1.b7f76f2fb5e46eaa7b081ab53ff6p-1L,
|
||||
0x1.ba5b030a10649840cb3c6af5b74cp-1L,
|
||||
0x1.bcc1e904bc1d2247ba0f45b3d06cp-1L,
|
||||
0x1.bf2c25bd71e088408d7025190cd0p-1L,
|
||||
0x1.c199bdd85529c2220cb12a0916bap-1L,
|
||||
0x1.c40ab5fffd07a6d14df820f17deap-1L,
|
||||
0x1.c67f12e57d14b4a2137fd20f2a26p-1L,
|
||||
0x1.c8f6d9406e7b511acbc48805c3f6p-1L,
|
||||
0x1.cb720dcef90691503cbd1e949d0ap-1L,
|
||||
0x1.cdf0b555dc3f9c44f8958fac4f12p-1L,
|
||||
0x1.d072d4a07897b8d0f22f21a13792p-1L,
|
||||
0x1.d2f87080d89f18ade123989ea50ep-1L,
|
||||
0x1.d5818dcfba48725da05aeb66dff8p-1L,
|
||||
0x1.d80e316c98397bb84f9d048807a0p-1L,
|
||||
0x1.da9e603db3285708c01a5b6d480cp-1L,
|
||||
0x1.dd321f301b4604b695de3c0630c0p-1L,
|
||||
0x1.dfc97337b9b5eb968cac39ed284cp-1L,
|
||||
0x1.e264614f5a128a12761fa17adc74p-1L,
|
||||
0x1.e502ee78b3ff6273d130153992d0p-1L,
|
||||
0x1.e7a51fbc74c834b548b2832378a4p-1L,
|
||||
0x1.ea4afa2a490d9858f73a18f5dab4p-1L,
|
||||
0x1.ecf482d8e67f08db0312fb949d50p-1L,
|
||||
0x1.efa1bee615a27771fd21a92dabb6p-1L,
|
||||
0x1.f252b376bba974e8696fc3638f24p-1L,
|
||||
0x1.f50765b6e4540674f84b762861a6p-1L,
|
||||
0x1.f7bfdad9cbe138913b4bfe72bd78p-1L,
|
||||
0x1.fa7c1819e90d82e90a7e74b26360p-1L,
|
||||
0x1.fd3c22b8f71f10975ba4b32bd006p-1L,
|
||||
0x1.0000000000000000000000000000p+0L,
|
||||
0x1.0163da9fb33356d84a66ae336e98p+0L,
|
||||
0x1.02c9a3e778060ee6f7caca4f7a18p+0L,
|
||||
0x1.04315e86e7f84bd738f9a20da442p+0L,
|
||||
0x1.059b0d31585743ae7c548eb68c6ap+0L,
|
||||
0x1.0706b29ddf6ddc6dc403a9d87b1ep+0L,
|
||||
0x1.0874518759bc808c35f25d942856p+0L,
|
||||
0x1.09e3ecac6f3834521e060c584d5cp+0L,
|
||||
0x1.0b5586cf9890f6298b92b7184200p+0L,
|
||||
0x1.0cc922b7247f7407b705b893dbdep+0L,
|
||||
0x1.0e3ec32d3d1a2020742e4f8af794p+0L,
|
||||
0x1.0fb66affed31af232091dd8a169ep+0L,
|
||||
0x1.11301d0125b50a4ebbf1aed9321cp+0L,
|
||||
0x1.12abdc06c31cbfb92bad324d6f84p+0L,
|
||||
0x1.1429aaea92ddfb34101943b2588ep+0L,
|
||||
0x1.15a98c8a58e512480d573dd562aep+0L,
|
||||
0x1.172b83c7d517adcdf7c8c50eb162p+0L,
|
||||
0x1.18af9388c8de9bbbf70b9a3c269cp+0L,
|
||||
0x1.1a35beb6fcb753cb698f692d2038p+0L,
|
||||
0x1.1bbe084045cd39ab1e72b442810ep+0L,
|
||||
0x1.1d4873168b9aa7805b8028990be8p+0L,
|
||||
0x1.1ed5022fcd91cb8819ff61121fbep+0L,
|
||||
0x1.2063b88628cd63b8eeb0295093f6p+0L,
|
||||
0x1.21f49917ddc962552fd29294bc20p+0L,
|
||||
0x1.2387a6e75623866c1fadb1c159c0p+0L,
|
||||
0x1.251ce4fb2a63f3582ab7de9e9562p+0L,
|
||||
0x1.26b4565e27cdd257a673281d3068p+0L,
|
||||
0x1.284dfe1f5638096cf15cf03c9fa0p+0L,
|
||||
0x1.29e9df51fdee12c25d15f5a25022p+0L,
|
||||
0x1.2b87fd0dad98ffddea46538fca24p+0L,
|
||||
0x1.2d285a6e4030b40091d536d0733ep+0L,
|
||||
0x1.2ecafa93e2f5611ca0f45d5239a4p+0L,
|
||||
0x1.306fe0a31b7152de8d5a463063bep+0L,
|
||||
0x1.32170fc4cd8313539cf1c3009330p+0L,
|
||||
0x1.33c08b26416ff4c9c8610d96680ep+0L,
|
||||
0x1.356c55f929ff0c94623476373be4p+0L,
|
||||
0x1.371a7373aa9caa7145502f45452ap+0L,
|
||||
0x1.38cae6d05d86585a9cb0d9bed530p+0L,
|
||||
0x1.3a7db34e59ff6ea1bc9299e0a1fep+0L,
|
||||
0x1.3c32dc313a8e484001f228b58cf0p+0L,
|
||||
0x1.3dea64c12342235b41223e13d7eep+0L,
|
||||
0x1.3fa4504ac801ba0bf701aa417b9cp+0L,
|
||||
0x1.4160a21f72e29f84325b8f3dbacap+0L,
|
||||
0x1.431f5d950a896dc704439410b628p+0L,
|
||||
0x1.44e086061892d03136f409df0724p+0L,
|
||||
0x1.46a41ed1d005772512f459229f0ap+0L,
|
||||
0x1.486a2b5c13cd013c1a3b69062f26p+0L,
|
||||
0x1.4a32af0d7d3de672d8bcf46f99b4p+0L,
|
||||
0x1.4bfdad5362a271d4397afec42e36p+0L,
|
||||
0x1.4dcb299fddd0d63b36ef1a9e19dep+0L,
|
||||
0x1.4f9b2769d2ca6ad33d8b69aa0b8cp+0L,
|
||||
0x1.516daa2cf6641c112f52c84d6066p+0L,
|
||||
0x1.5342b569d4f81df0a83c49d86bf4p+0L,
|
||||
0x1.551a4ca5d920ec52ec620243540cp+0L,
|
||||
0x1.56f4736b527da66ecb004764e61ep+0L,
|
||||
0x1.58d12d497c7fd252bc2b7343d554p+0L,
|
||||
0x1.5ab07dd48542958c93015191e9a8p+0L,
|
||||
0x1.5c9268a5946b701c4b1b81697ed4p+0L,
|
||||
0x1.5e76f15ad21486e9be4c20399d12p+0L,
|
||||
0x1.605e1b976dc08b076f592a487066p+0L,
|
||||
0x1.6247eb03a5584b1f0fa06fd2d9eap+0L,
|
||||
0x1.6434634ccc31fc76f8714c4ee122p+0L,
|
||||
0x1.66238825522249127d9e29b92ea2p+0L,
|
||||
0x1.68155d44ca973081c57227b9f69ep+0L,
|
||||
};
|
||||
|
||||
static const float eps[TBLSIZE] = {
|
||||
-0x1.5c50p-101,
|
||||
-0x1.5d00p-106,
|
||||
0x1.8e90p-102,
|
||||
-0x1.5340p-103,
|
||||
0x1.1bd0p-102,
|
||||
-0x1.4600p-105,
|
||||
-0x1.7a40p-104,
|
||||
0x1.d590p-102,
|
||||
-0x1.d590p-101,
|
||||
0x1.b100p-103,
|
||||
-0x1.0d80p-105,
|
||||
0x1.6b00p-103,
|
||||
-0x1.9f00p-105,
|
||||
0x1.c400p-103,
|
||||
0x1.e120p-103,
|
||||
-0x1.c100p-104,
|
||||
-0x1.9d20p-103,
|
||||
0x1.a800p-108,
|
||||
0x1.4c00p-106,
|
||||
-0x1.9500p-106,
|
||||
0x1.6900p-105,
|
||||
-0x1.29d0p-100,
|
||||
0x1.4c60p-103,
|
||||
0x1.13a0p-102,
|
||||
-0x1.5b60p-103,
|
||||
-0x1.1c40p-103,
|
||||
0x1.db80p-102,
|
||||
0x1.91a0p-102,
|
||||
0x1.dc00p-105,
|
||||
0x1.44c0p-104,
|
||||
0x1.9710p-102,
|
||||
0x1.8760p-103,
|
||||
-0x1.a720p-103,
|
||||
0x1.ed20p-103,
|
||||
-0x1.49c0p-102,
|
||||
-0x1.e000p-111,
|
||||
0x1.86a0p-103,
|
||||
0x1.2b40p-103,
|
||||
-0x1.b400p-108,
|
||||
0x1.1280p-99,
|
||||
-0x1.02d8p-102,
|
||||
-0x1.e3d0p-103,
|
||||
-0x1.b080p-105,
|
||||
-0x1.f100p-107,
|
||||
-0x1.16c0p-105,
|
||||
-0x1.1190p-103,
|
||||
-0x1.a7d2p-100,
|
||||
0x1.3450p-103,
|
||||
-0x1.67c0p-105,
|
||||
0x1.4b80p-104,
|
||||
-0x1.c4e0p-103,
|
||||
0x1.6000p-108,
|
||||
-0x1.3f60p-105,
|
||||
0x1.93f0p-104,
|
||||
0x1.5fe0p-105,
|
||||
0x1.6f80p-107,
|
||||
-0x1.7600p-106,
|
||||
0x1.21e0p-106,
|
||||
-0x1.3a40p-106,
|
||||
-0x1.40c0p-104,
|
||||
-0x1.9860p-105,
|
||||
-0x1.5d40p-108,
|
||||
-0x1.1d70p-106,
|
||||
0x1.2760p-105,
|
||||
0x0.0000p+0,
|
||||
0x1.21e2p-104,
|
||||
-0x1.9520p-108,
|
||||
-0x1.5720p-106,
|
||||
-0x1.4810p-106,
|
||||
-0x1.be00p-109,
|
||||
0x1.0080p-105,
|
||||
-0x1.5780p-108,
|
||||
-0x1.d460p-105,
|
||||
-0x1.6140p-105,
|
||||
0x1.4630p-104,
|
||||
0x1.ad50p-103,
|
||||
0x1.82e0p-105,
|
||||
0x1.1d3cp-101,
|
||||
0x1.6100p-107,
|
||||
0x1.ec30p-104,
|
||||
0x1.f200p-108,
|
||||
0x1.0b40p-103,
|
||||
0x1.3660p-102,
|
||||
0x1.d9d0p-103,
|
||||
-0x1.02d0p-102,
|
||||
0x1.b070p-103,
|
||||
0x1.b9c0p-104,
|
||||
-0x1.01c0p-103,
|
||||
-0x1.dfe0p-103,
|
||||
0x1.1b60p-104,
|
||||
-0x1.ae94p-101,
|
||||
-0x1.3340p-104,
|
||||
0x1.b3d8p-102,
|
||||
-0x1.6e40p-105,
|
||||
-0x1.3670p-103,
|
||||
0x1.c140p-104,
|
||||
0x1.1840p-101,
|
||||
0x1.1ab0p-102,
|
||||
-0x1.a400p-104,
|
||||
0x1.1f00p-104,
|
||||
-0x1.7180p-103,
|
||||
0x1.4ce0p-102,
|
||||
0x1.9200p-107,
|
||||
-0x1.54c0p-103,
|
||||
0x1.1b80p-105,
|
||||
-0x1.1828p-101,
|
||||
0x1.5720p-102,
|
||||
-0x1.a060p-100,
|
||||
0x1.9160p-102,
|
||||
0x1.a280p-104,
|
||||
0x1.3400p-107,
|
||||
0x1.2b20p-102,
|
||||
0x1.7800p-108,
|
||||
0x1.cfd0p-101,
|
||||
0x1.2ef0p-102,
|
||||
-0x1.2760p-99,
|
||||
0x1.b380p-104,
|
||||
0x1.0048p-101,
|
||||
-0x1.60b0p-102,
|
||||
0x1.a1ccp-100,
|
||||
-0x1.a640p-104,
|
||||
-0x1.08a0p-101,
|
||||
0x1.7e60p-102,
|
||||
0x1.22c0p-103,
|
||||
-0x1.7200p-106,
|
||||
0x1.f0f0p-102,
|
||||
0x1.eb4ep-99,
|
||||
0x1.c6e0p-103,
|
||||
};
|
||||
|
||||
/*
|
||||
* exp2l(x): compute the base 2 exponential of x
|
||||
*
|
||||
* Accuracy: Peak error < 0.502 ulp.
|
||||
*
|
||||
* Method: (accurate tables)
|
||||
*
|
||||
* Reduce x:
|
||||
* x = 2**k + y, for integer k and |y| <= 1/2.
|
||||
* Thus we have exp2(x) = 2**k * exp2(y).
|
||||
*
|
||||
* Reduce y:
|
||||
* y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE.
|
||||
* Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]),
|
||||
* with |z - eps[i]| <= 2**-8 + 2**-98 for the table used.
|
||||
*
|
||||
* We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via
|
||||
* a degree-10 minimax polynomial with maximum error under 2**-120.
|
||||
* The values in exp2t[] and eps[] are chosen such that
|
||||
* exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such
|
||||
* that exp2t[i] is accurate to 2**-122.
|
||||
*
|
||||
* Note that the range of i is +-TBLSIZE/2, so we actually index the tables
|
||||
* by i0 = i + TBLSIZE/2.
|
||||
*
|
||||
* This method is due to Gal, with many details due to Gal and Bachelis:
|
||||
*
|
||||
* Gal, S. and Bachelis, B. An Accurate Elementary Mathematical Library
|
||||
* for the IEEE Floating Point Standard. TOMS 17(1), 26-46 (1991).
|
||||
*/
|
||||
long double
|
||||
exp2l(long double x)
|
||||
{
|
||||
union IEEEl2bits u, v;
|
||||
long double r, t, twopk, twopkp10000, z;
|
||||
uint32_t hx, ix, i0;
|
||||
int k;
|
||||
|
||||
u.e = x;
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
hx = u.xbits.expsign;
|
||||
ix = hx & EXPMASK;
|
||||
if (ix >= BIAS + 14) { /* |x| >= 16384 */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (u.xbits.manh != 0
|
||||
|| u.xbits.manl != 0
|
||||
|| (hx & 0x8000) == 0)
|
||||
return (x + x); /* x is NaN or +Inf */
|
||||
else
|
||||
return (0.0); /* x is -Inf */
|
||||
}
|
||||
if (x >= 16384)
|
||||
return (huge * huge); /* overflow */
|
||||
if (x <= -16495)
|
||||
return (twom10000 * twom10000); /* underflow */
|
||||
} else if (ix <= BIAS - 115) { /* |x| < 0x1p-115 */
|
||||
return (1.0 + x);
|
||||
}
|
||||
|
||||
/*
|
||||
* Reduce x, computing z, i0, and k. The low bits of x + redux
|
||||
* contain the 16-bit integer part of the exponent (k) followed by
|
||||
* TBLBITS fractional bits (i0). We use bit tricks to extract these
|
||||
* as integers, then set z to the remainder.
|
||||
*
|
||||
* Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
|
||||
* Then the low-order word of x + redux is 0x000abc12,
|
||||
* We split this into k = 0xabc and i0 = 0x12 (adjusted to
|
||||
* index into the table), then we compute z = 0x0.003456p0.
|
||||
*
|
||||
* XXX If the exponent is negative, the computation of k depends on
|
||||
* '>>' doing sign extension.
|
||||
*/
|
||||
u.e = x + redux;
|
||||
i0 = (u.bits.manl & 0xffffffff) + TBLSIZE / 2;
|
||||
k = (int)i0 >> TBLBITS;
|
||||
i0 = i0 & (TBLSIZE - 1);
|
||||
u.e -= redux;
|
||||
z = x - u.e;
|
||||
v.xbits.manh = 0;
|
||||
v.xbits.manl = 0;
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
v.xbits.expsign = LDBL_MAX_EXP - 1 + k;
|
||||
twopk = v.e;
|
||||
} else {
|
||||
v.xbits.expsign = LDBL_MAX_EXP - 1 + k + 10000;
|
||||
twopkp10000 = v.e;
|
||||
}
|
||||
|
||||
/* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
|
||||
t = tbl[i0]; /* exp2t[i0] */
|
||||
z -= eps[i0]; /* eps[i0] */
|
||||
r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 + z * (P6
|
||||
+ z * (P7 + z * (P8 + z * (P9 + z * P10)))))))));
|
||||
|
||||
/* Scale by 2**k. */
|
||||
if(k >= LDBL_MIN_EXP) {
|
||||
if (k == LDBL_MAX_EXP)
|
||||
return (r * 2.0 * 0x1p16383L);
|
||||
return (r * twopk);
|
||||
} else {
|
||||
return (r * twopkp10000 * twom10000);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,326 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2009-2013 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ld128 version of s_expl.c. See ../ld80/s_expl.c for most comments.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "k_expl.h"
|
||||
|
||||
/* XXX Prevent compilers from erroneously constant folding these: */
|
||||
static const volatile long double
|
||||
huge = 0x1p10000L,
|
||||
tiny = 0x1p-10000L;
|
||||
|
||||
static const long double
|
||||
twom10000 = 0x1p-10000L;
|
||||
|
||||
static const long double
|
||||
/* log(2**16384 - 0.5) rounded towards zero: */
|
||||
/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
|
||||
o_threshold = 11356.523406294143949491931077970763428L,
|
||||
/* log(2**(-16381-64-1)) rounded towards zero: */
|
||||
u_threshold = -11433.462743336297878837243843452621503L;
|
||||
|
||||
long double
|
||||
expl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
long double hi, lo, t, twopk;
|
||||
int k;
|
||||
uint16_t hx, ix;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
ix = hx & 0x7fff;
|
||||
if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000) /* x is -Inf or -NaN */
|
||||
RETURNP(-1 / x);
|
||||
RETURNP(x + x); /* x is +Inf or +NaN */
|
||||
}
|
||||
if (x > o_threshold)
|
||||
RETURNP(huge * huge);
|
||||
if (x < u_threshold)
|
||||
RETURNP(tiny * tiny);
|
||||
} else if (ix < BIAS - 114) { /* |x| < 0x1p-114 */
|
||||
RETURN2P(1, x); /* 1 with inexact iff x != 0 */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
twopk = 1;
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
t = SUM2P(hi, lo);
|
||||
|
||||
/* Scale by 2**k. */
|
||||
/*
|
||||
* XXX sparc64 multiplication was so slow that scalbnl() is faster,
|
||||
* but performance on aarch64 and riscv hasn't yet been quantified.
|
||||
*/
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(t * 2 * 0x1p16383L);
|
||||
SET_LDBL_EXPSIGN(twopk, BIAS + k);
|
||||
RETURNI(t * twopk);
|
||||
} else {
|
||||
SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
|
||||
RETURNI(t * twopk * twom10000);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Our T1 and T2 are chosen to be approximately the points where method
|
||||
* A and method B have the same accuracy. Tang's T1 and T2 are the
|
||||
* points where method A's accuracy changes by a full bit. For Tang,
|
||||
* this drop in accuracy makes method A immediately less accurate than
|
||||
* method B, but our larger INTERVALS makes method A 2 bits more
|
||||
* accurate so it remains the most accurate method significantly
|
||||
* closer to the origin despite losing the full bit in our extended
|
||||
* range for it.
|
||||
*
|
||||
* Split the interval [T1, T2] into two intervals [T1, T3] and [T3, T2].
|
||||
* Setting T3 to 0 would require the |x| < 0x1p-113 condition to appear
|
||||
* in both subintervals, so set T3 = 2**-5, which places the condition
|
||||
* into the [T1, T3] interval.
|
||||
*
|
||||
* XXX we now do this more to (partially) balance the number of terms
|
||||
* in the C and D polys than to avoid checking the condition in both
|
||||
* intervals.
|
||||
*
|
||||
* XXX these micro-optimizations are excessive.
|
||||
*/
|
||||
static const double
|
||||
T1 = -0.1659, /* ~-30.625/128 * log(2) */
|
||||
T2 = 0.1659, /* ~30.625/128 * log(2) */
|
||||
T3 = 0.03125;
|
||||
|
||||
/*
|
||||
* Domain [-0.1659, 0.03125], range ~[2.9134e-44, 1.8404e-37]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-122.03
|
||||
*
|
||||
* XXX none of the long double C or D coeffs except C10 is correctly printed.
|
||||
* If you re-print their values in %.35Le format, the result is always
|
||||
* different. For example, the last 2 digits in C3 should be 59, not 67.
|
||||
* 67 is apparently from rounding an extra-precision value to 36 decimal
|
||||
* places.
|
||||
*/
|
||||
static const long double
|
||||
C3 = 1.66666666666666666666666666666666667e-1L,
|
||||
C4 = 4.16666666666666666666666666666666645e-2L,
|
||||
C5 = 8.33333333333333333333333333333371638e-3L,
|
||||
C6 = 1.38888888888888888888888888891188658e-3L,
|
||||
C7 = 1.98412698412698412698412697235950394e-4L,
|
||||
C8 = 2.48015873015873015873015112487849040e-5L,
|
||||
C9 = 2.75573192239858906525606685484412005e-6L,
|
||||
C10 = 2.75573192239858906612966093057020362e-7L,
|
||||
C11 = 2.50521083854417203619031960151253944e-8L,
|
||||
C12 = 2.08767569878679576457272282566520649e-9L,
|
||||
C13 = 1.60590438367252471783548748824255707e-10L;
|
||||
|
||||
/*
|
||||
* XXX this has 1 more coeff than needed.
|
||||
* XXX can start the double coeffs but not the double mults at C10.
|
||||
* With my coeffs (C10-C17 double; s = best_s):
|
||||
* Domain [-0.1659, 0.03125], range ~[-1.1976e-37, 1.1976e-37]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
|
||||
*/
|
||||
static const double
|
||||
C14 = 1.1470745580491932e-11, /* 0x1.93974a81dae30p-37 */
|
||||
C15 = 7.6471620181090468e-13, /* 0x1.ae7f3820adab1p-41 */
|
||||
C16 = 4.7793721460260450e-14, /* 0x1.ae7cd18a18eacp-45 */
|
||||
C17 = 2.8074757356658877e-15, /* 0x1.949992a1937d9p-49 */
|
||||
C18 = 1.4760610323699476e-16; /* 0x1.545b43aabfbcdp-53 */
|
||||
|
||||
/*
|
||||
* Domain [0.03125, 0.1659], range ~[-2.7676e-37, -1.0367e-38]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-121.44
|
||||
*/
|
||||
static const long double
|
||||
D3 = 1.66666666666666666666666666666682245e-1L,
|
||||
D4 = 4.16666666666666666666666666634228324e-2L,
|
||||
D5 = 8.33333333333333333333333364022244481e-3L,
|
||||
D6 = 1.38888888888888888888887138722762072e-3L,
|
||||
D7 = 1.98412698412698412699085805424661471e-4L,
|
||||
D8 = 2.48015873015873015687993712101479612e-5L,
|
||||
D9 = 2.75573192239858944101036288338208042e-6L,
|
||||
D10 = 2.75573192239853161148064676533754048e-7L,
|
||||
D11 = 2.50521083855084570046480450935267433e-8L,
|
||||
D12 = 2.08767569819738524488686318024854942e-9L,
|
||||
D13 = 1.60590442297008495301927448122499313e-10L;
|
||||
|
||||
/*
|
||||
* XXX this has 1 more coeff than needed.
|
||||
* XXX can start the double coeffs but not the double mults at D11.
|
||||
* With my coeffs (D11-D16 double):
|
||||
* Domain [0.03125, 0.1659], range ~[-1.1980e-37, 1.1980e-37]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| ~< 2**-122.65
|
||||
*/
|
||||
static const double
|
||||
D14 = 1.1470726176204336e-11, /* 0x1.93971dc395d9ep-37 */
|
||||
D15 = 7.6478532249581686e-13, /* 0x1.ae892e3D16fcep-41 */
|
||||
D16 = 4.7628892832607741e-14, /* 0x1.ad00Dfe41feccp-45 */
|
||||
D17 = 3.0524857220358650e-15; /* 0x1.D7e8d886Df921p-49 */
|
||||
|
||||
long double
|
||||
expm1l(long double x)
|
||||
{
|
||||
union IEEEl2bits u, v;
|
||||
long double hx2_hi, hx2_lo, q, r, r1, t, twomk, twopk, x_hi;
|
||||
long double x_lo, x2;
|
||||
double dr, dx, fn, r2;
|
||||
int k, n, n2;
|
||||
uint16_t hx, ix;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
ix = hx & 0x7fff;
|
||||
if (ix >= BIAS + 7) { /* |x| >= 128 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000) /* x is -Inf or -NaN */
|
||||
RETURNP(-1 / x - 1);
|
||||
RETURNP(x + x); /* x is +Inf or +NaN */
|
||||
}
|
||||
if (x > o_threshold)
|
||||
RETURNP(huge * huge);
|
||||
/*
|
||||
* expm1l() never underflows, but it must avoid
|
||||
* unrepresentable large negative exponents. We used a
|
||||
* much smaller threshold for large |x| above than in
|
||||
* expl() so as to handle not so large negative exponents
|
||||
* in the same way as large ones here.
|
||||
*/
|
||||
if (hx & 0x8000) /* x <= -128 */
|
||||
RETURN2P(tiny, -1); /* good for x < -114ln2 - eps */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
if (T1 < x && x < T2) {
|
||||
x2 = x * x;
|
||||
dx = x;
|
||||
|
||||
if (x < T3) {
|
||||
if (ix < BIAS - 113) { /* |x| < 0x1p-113 */
|
||||
/* x (rounded) with inexact if x != 0: */
|
||||
RETURNPI(x == 0 ? x :
|
||||
(0x1p200 * x + fabsl(x)) * 0x1p-200);
|
||||
}
|
||||
q = x * x2 * C3 + x2 * x2 * (C4 + x * (C5 + x * (C6 +
|
||||
x * (C7 + x * (C8 + x * (C9 + x * (C10 +
|
||||
x * (C11 + x * (C12 + x * (C13 +
|
||||
dx * (C14 + dx * (C15 + dx * (C16 +
|
||||
dx * (C17 + dx * C18))))))))))))));
|
||||
} else {
|
||||
q = x * x2 * D3 + x2 * x2 * (D4 + x * (D5 + x * (D6 +
|
||||
x * (D7 + x * (D8 + x * (D9 + x * (D10 +
|
||||
x * (D11 + x * (D12 + x * (D13 +
|
||||
dx * (D14 + dx * (D15 + dx * (D16 +
|
||||
dx * D17)))))))))))));
|
||||
}
|
||||
|
||||
x_hi = (float)x;
|
||||
x_lo = x - x_hi;
|
||||
hx2_hi = x_hi * x_hi / 2;
|
||||
hx2_lo = x_lo * (x + x_hi) / 2;
|
||||
if (ix >= BIAS - 7)
|
||||
RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
|
||||
else
|
||||
RETURN2PI(x, hx2_lo + q + hx2_hi);
|
||||
}
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
fn = rnint((double)x * INV_L);
|
||||
n = irint(fn);
|
||||
n2 = (unsigned)n % INTERVALS;
|
||||
k = n >> LOG2_INTERVALS;
|
||||
r1 = x - fn * L1;
|
||||
r2 = fn * -L2;
|
||||
r = r1 + r2;
|
||||
|
||||
/* Prepare scale factor. */
|
||||
v.e = 1;
|
||||
v.xbits.expsign = BIAS + k;
|
||||
twopk = v.e;
|
||||
|
||||
/*
|
||||
* Evaluate lower terms of
|
||||
* expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
|
||||
*/
|
||||
dr = r;
|
||||
q = r2 + r * r * (A2 + r * (A3 + r * (A4 + r * (A5 + r * (A6 +
|
||||
dr * (A7 + dr * (A8 + dr * (A9 + dr * A10))))))));
|
||||
|
||||
t = tbl[n2].lo + tbl[n2].hi;
|
||||
|
||||
if (k == 0) {
|
||||
t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
|
||||
tbl[n2].hi * r1);
|
||||
RETURNI(t);
|
||||
}
|
||||
if (k == -1) {
|
||||
t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
|
||||
tbl[n2].hi * r1);
|
||||
RETURNI(t / 2);
|
||||
}
|
||||
if (k < -7) {
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
||||
RETURNI(t * twopk - 1);
|
||||
}
|
||||
if (k > 2 * LDBL_MANT_DIG - 1) {
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(t * 2 * 0x1p16383L - 1);
|
||||
RETURNI(t * twopk - 1);
|
||||
}
|
||||
|
||||
v.xbits.expsign = BIAS - k;
|
||||
twomk = v.e;
|
||||
|
||||
if (k > LDBL_MANT_DIG - 1)
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
|
||||
else
|
||||
t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
|
||||
RETURNI(t * twopk);
|
||||
}
|
|
@ -0,0 +1,740 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2007-2013 Bruce D. Evans
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/**
|
||||
* Implementation of the natural logarithm of x for 128-bit format.
|
||||
*
|
||||
* First decompose x into its base 2 representation:
|
||||
*
|
||||
* log(x) = log(X * 2**k), where X is in [1, 2)
|
||||
* = log(X) + k * log(2).
|
||||
*
|
||||
* Let X = X_i + e, where X_i is the center of one of the intervals
|
||||
* [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
|
||||
* and X is in this interval. Then
|
||||
*
|
||||
* log(X) = log(X_i + e)
|
||||
* = log(X_i * (1 + e / X_i))
|
||||
* = log(X_i) + log(1 + e / X_i).
|
||||
*
|
||||
* The values log(X_i) are tabulated below. Let d = e / X_i and use
|
||||
*
|
||||
* log(1 + d) = p(d)
|
||||
*
|
||||
* where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
|
||||
* suitably high degree.
|
||||
*
|
||||
* To get sufficiently small roundoff errors, k * log(2), log(X_i), and
|
||||
* sometimes (if |k| is not large) the first term in p(d) must be evaluated
|
||||
* and added up in extra precision. Extra precision is not needed for the
|
||||
* rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final
|
||||
* error is controlled mainly by the error in the second term in p(d). The
|
||||
* error in this term itself is at most 0.5 ulps from the d*d operation in
|
||||
* it. The error in this term relative to the first term is thus at most
|
||||
* 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of
|
||||
* at most twice this at the point of the final rounding step. Thus the
|
||||
* final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive
|
||||
* testing of a float variant of this function showed a maximum final error
|
||||
* of 0.5008 ulps. Non-exhaustive testing of a double variant of this
|
||||
* function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
|
||||
*
|
||||
* We made the maximum of |d| (and thus the total relative error and the
|
||||
* degree of p(d)) small by using a large number of intervals. Using
|
||||
* centers of intervals instead of endpoints reduces this maximum by a
|
||||
* factor of 2 for a given number of intervals. p(d) is special only
|
||||
* in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
|
||||
* naturally. The most accurate minimax polynomial of a given degree might
|
||||
* be different, but then we wouldn't want it since we would have to do
|
||||
* extra work to avoid roundoff error (especially for P0*d instead of d).
|
||||
*/
|
||||
|
||||
#ifdef DEBUG
|
||||
#include <assert.h>
|
||||
#include <fenv.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#ifndef NO_STRUCT_RETURN
|
||||
#define STRUCT_RETURN
|
||||
#endif
|
||||
#include "math_private.h"
|
||||
|
||||
#if !defined(NO_UTAB) && !defined(NO_UTABL)
|
||||
#define USE_UTAB
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Domain [-0.005280, 0.004838], range ~[-1.1577e-37, 1.1582e-37]:
|
||||
* |log(1 + d)/d - p(d)| < 2**-122.7
|
||||
*/
|
||||
static const long double
|
||||
P2 = -0.5L,
|
||||
P3 = 3.33333333333333333333333333333233795e-1L, /* 0x15555555555555555555555554d42.0p-114L */
|
||||
P4 = -2.49999999999999999999999999941139296e-1L, /* -0x1ffffffffffffffffffffffdab14e.0p-115L */
|
||||
P5 = 2.00000000000000000000000085468039943e-1L, /* 0x19999999999999999999a6d3567f4.0p-115L */
|
||||
P6 = -1.66666666666666666666696142372698408e-1L, /* -0x15555555555555555567267a58e13.0p-115L */
|
||||
P7 = 1.42857142857142857119522943477166120e-1L, /* 0x1249249249249248ed79a0ae434de.0p-115L */
|
||||
P8 = -1.24999999999999994863289015033581301e-1L; /* -0x1fffffffffffffa13e91765e46140.0p-116L */
|
||||
/* Double precision gives ~ 53 + log2(P9 * max(|d|)**8) ~= 120 bits. */
|
||||
static const double
|
||||
P9 = 1.1111111111111401e-1, /* 0x1c71c71c71c7ed.0p-56 */
|
||||
P10 = -1.0000000000040135e-1, /* -0x199999999a0a92.0p-56 */
|
||||
P11 = 9.0909090728136258e-2, /* 0x1745d173962111.0p-56 */
|
||||
P12 = -8.3333318851855284e-2, /* -0x1555551722c7a3.0p-56 */
|
||||
P13 = 7.6928634666404178e-2, /* 0x13b1985204a4ae.0p-56 */
|
||||
P14 = -7.1626810078462499e-2; /* -0x12562276cdc5d0.0p-56 */
|
||||
|
||||
static volatile const double zero = 0;
|
||||
|
||||
#define INTERVALS 128
|
||||
#define LOG2_INTERVALS 7
|
||||
#define TSIZE (INTERVALS + 1)
|
||||
#define G(i) (T[(i)].G)
|
||||
#define F_hi(i) (T[(i)].F_hi)
|
||||
#define F_lo(i) (T[(i)].F_lo)
|
||||
#define ln2_hi F_hi(TSIZE - 1)
|
||||
#define ln2_lo F_lo(TSIZE - 1)
|
||||
#define E(i) (U[(i)].E)
|
||||
#define H(i) (U[(i)].H)
|
||||
|
||||
static const struct {
|
||||
float G; /* 1/(1 + i/128) rounded to 8/9 bits */
|
||||
float F_hi; /* log(1 / G_i) rounded (see below) */
|
||||
/* The compiler will insert 8 bytes of padding here. */
|
||||
long double F_lo; /* next 113 bits for log(1 / G_i) */
|
||||
} T[TSIZE] = {
|
||||
/*
|
||||
* ln2_hi and each F_hi(i) are rounded to a number of bits that
|
||||
* makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
|
||||
*
|
||||
* The last entry (for X just below 2) is used to define ln2_hi
|
||||
* and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
|
||||
* with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
|
||||
* This is needed for accuracy when x is just below 1. (To avoid
|
||||
* special cases, such x are "reduced" strangely to X just below
|
||||
* 2 and dk = -1, and then the exact cancellation is needed
|
||||
* because any the error from any non-exactness would be too
|
||||
* large).
|
||||
*
|
||||
* The relevant range of dk is [-16445, 16383]. The maximum number
|
||||
* of bits in F_hi(i) that works is very dependent on i but has
|
||||
* a minimum of 93. We only need about 12 bits in F_hi(i) for
|
||||
* it to provide enough extra precision.
|
||||
*
|
||||
* We round F_hi(i) to 24 bits so that it can have type float,
|
||||
* mainly to minimize the size of the table. Using all 24 bits
|
||||
* in a float for it automatically satisfies the above constraints.
|
||||
*/
|
||||
0x800000.0p-23, 0, 0,
|
||||
0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6674afa0c4bfe16e8fd.0p-144L,
|
||||
0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83717be918e1119642ab.0p-144L,
|
||||
0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173697cf302cc9476f561.0p-143L,
|
||||
0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e78eba9b1113bc1c18.0p-142L,
|
||||
0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7bfa509bec8da5f22.0p-142L,
|
||||
0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a107674986dcdca6709c.0p-143L,
|
||||
0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb958897a3ea46e84abb3.0p-142L,
|
||||
0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c484993c549c4bf40.0p-151L,
|
||||
0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560d9e9ab3d6ebab580.0p-141L,
|
||||
0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d5037108f4ec21e48cd.0p-142L,
|
||||
0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a70f7a684c596b12.0p-143L,
|
||||
0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da99ded322fb08b8462.0p-141L,
|
||||
0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150ae09996d7bb4653e.0p-143L,
|
||||
0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251aefe0ded34c8318f52.0p-145L,
|
||||
0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d56699c1799a244d4.0p-144L,
|
||||
0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e6766abceccab1d7174.0p-141L,
|
||||
0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f4215f93936b709efb.0p-142L,
|
||||
0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6affd511b534b72a28e.0p-140L,
|
||||
0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1d9b2ef7e68680598.0p-143L,
|
||||
0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b3f46662238a9425a.0p-142L,
|
||||
0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9691aed4d5e3df94.0p-140L,
|
||||
0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c46c186384993e1c93.0p-142L,
|
||||
0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e5697dc6a402a56fce1.0p-141L,
|
||||
0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba9367707ebfa540e45350c.0p-144L,
|
||||
0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d31ef0f4c9d43f79b2.0p-140L,
|
||||
0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b75e7d900b521c48d.0p-141L,
|
||||
0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06508aeb00d2ae3e9.0p-140L,
|
||||
0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3af80485c2f409633c.0p-142L,
|
||||
0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d686581799fbce0b5f19.0p-141L,
|
||||
0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae54f550444ecf8b995.0p-140L,
|
||||
0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc4595412b5d2517aaac13.0p-141L,
|
||||
0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d3a85b5b43c0e727.0p-141L,
|
||||
0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df841a71b79dd5645b46.0p-145L,
|
||||
0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe0bcfbe6d6db9f66.0p-147L,
|
||||
0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa6911c7bafcb4d84fb.0p-141L,
|
||||
0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb328337cc050c6d83b22.0p-140L,
|
||||
0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e5fcf1a212e2a91e.0p-139L,
|
||||
0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f465e5ecab5f2a6f81.0p-139L,
|
||||
0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a0fe396f40f1dda9.0p-141L,
|
||||
0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de945a049a962e66c6.0p-139L,
|
||||
0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5147bdb6ddcaf59c425.0p-141L,
|
||||
0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba46bae9827221dc98.0p-139L,
|
||||
0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b730e28aba001a9b5e0.0p-140L,
|
||||
0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed72e23e13431adc4a5.0p-141L,
|
||||
0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7148e8d80caa10b7.0p-139L,
|
||||
0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c5663663d15faed7771.0p-139L,
|
||||
0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb2438273918db7df5c.0p-141L,
|
||||
0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698298adddd7f32686.0p-141L,
|
||||
0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123615b147a5d47bc208f.0p-142L,
|
||||
0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b263acb4351104631.0p-140L,
|
||||
0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a42423457e22d8c650b355.0p-139L,
|
||||
0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a465dc513b13f567d.0p-143L,
|
||||
0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770633947ffe651e7352f.0p-139L,
|
||||
0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b15228bfe8798d10ff0.0p-142L,
|
||||
0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f088b61a335f5b688c.0p-140L,
|
||||
0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad88e7d353e9967d548.0p-139L,
|
||||
0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf45de06ecebfaf6d.0p-139L,
|
||||
0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab904864092b34edda19a831e.0p-140L,
|
||||
0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333221d8a9b475a6ba.0p-139L,
|
||||
0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fbfe24b633f4e8d84d.0p-140L,
|
||||
0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c89c45003fc5d7807.0p-140L,
|
||||
0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8002f2449e174504.0p-139L,
|
||||
0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a8717d5626e16acc7d.0p-141L,
|
||||
0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3ca87dabf351aa41f4.0p-139L,
|
||||
0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d79f51dcc73014c9.0p-141L,
|
||||
0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac42d1bf9199188e7.0p-141L,
|
||||
0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549dd1160bcc45c7e2c.0p-139L,
|
||||
0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b610665377f15625b6.0p-140L,
|
||||
0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a2d1b2176010478be.0p-140L,
|
||||
0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f0c95dd83626d7333.0p-142L,
|
||||
0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b67ccb006a5b9890ea.0p-140L,
|
||||
0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f56db28da4d629d00a.0p-140L,
|
||||
0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d8f4d60c713346641.0p-140L,
|
||||
0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d3b3d406b6cbf3ce5.0p-140L,
|
||||
0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd73692609040ccc2.0p-139L,
|
||||
0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f7301901b8ad85c25afd09.0p-139L,
|
||||
0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cc8a4dfb804de6867.0p-140L,
|
||||
0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d42f78d3e65d3727.0p-141L,
|
||||
0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af269647b783d88999.0p-139L,
|
||||
0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e063714615f7cc91d.0p-144L,
|
||||
0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade02951686d5373aec.0p-139L,
|
||||
0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1649349630531502.0p-139L,
|
||||
0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c5320619fb9433d841.0p-139L,
|
||||
0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f0bdff99f932b273.0p-138L,
|
||||
0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e54e78103a2bc1767.0p-141L,
|
||||
0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b7d7f47ddb45c5a3.0p-139L,
|
||||
0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb82873b04a9af1dd692c.0p-138L,
|
||||
0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9b9770d8cb6573540.0p-138L,
|
||||
0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f002e836dfd47bd41.0p-139L,
|
||||
0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd5cd7cc94306fb3ff.0p-140L,
|
||||
0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de2b41eeebd550702.0p-138L,
|
||||
0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f45275c917a30df4ac9.0p-138L,
|
||||
0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af71a89df4e6df2e93b.0p-139L,
|
||||
0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfdec367828734cae5.0p-139L,
|
||||
0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f76b87333891e0dec4.0p-138L,
|
||||
0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a263e3bf446c6e3f69.0p-140L,
|
||||
0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d723a4c7380a448d8.0p-139L,
|
||||
0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3236f330972da2a7a87.0p-139L,
|
||||
0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d21148c6002becd3.0p-139L,
|
||||
0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c336af90e00533323ba.0p-139L,
|
||||
0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf2f105a89060046aa.0p-138L,
|
||||
0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf162409d8ea99d4c0.0p-139L,
|
||||
0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507b9dc10dac743ad7a.0p-138L,
|
||||
0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e97c4990b23d9ac1f5.0p-139L,
|
||||
0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea74540bdd2aa99a42.0p-138L,
|
||||
0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f9527e6aba8f2d783c1.0p-138L,
|
||||
0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe7ba81c664c107e0.0p-138L,
|
||||
0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576aad348ae79867223.0p-138L,
|
||||
0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a246726b304ccae56.0p-139L,
|
||||
0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c2f9b47466d6123fe.0p-139L,
|
||||
0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f38b4619a2483399.0p-141L,
|
||||
0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3597043be78eaf49.0p-139L,
|
||||
0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d204147dc69a07a649.0p-138L,
|
||||
0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c008d3602a7b41c6e8.0p-139L,
|
||||
0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541aca7d5844606b2421.0p-139L,
|
||||
0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4571acbcfb03f16daf4.0p-138L,
|
||||
0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c0a345ad743ae1ae.0p-140L,
|
||||
0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d749362382a7688479e24.0p-140L,
|
||||
0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce532661ea9643a3a2d378.0p-139L,
|
||||
0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d257530a682b80490.0p-139L,
|
||||
0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b35ba3e1f868fd0b5e.0p-140L,
|
||||
0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3303dd481779df69.0p-139L,
|
||||
0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900345a85d2d86161742e.0p-140L,
|
||||
0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f79b026b64b42caa1.0p-140L,
|
||||
0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a82ab19f77652d977a.0p-141L,
|
||||
0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b48d7b98c1cf7234.0p-138L,
|
||||
0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a197e9c7359dd94152f.0p-138L,
|
||||
0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c3898cff81a12a17e2.0p-141L,
|
||||
};
|
||||
|
||||
#ifdef USE_UTAB
|
||||
static const struct {
|
||||
float H; /* 1 + i/INTERVALS (exact) */
|
||||
float E; /* H(i) * G(i) - 1 (exact) */
|
||||
} U[TSIZE] = {
|
||||
0x800000.0p-23, 0,
|
||||
0x810000.0p-23, -0x800000.0p-37,
|
||||
0x820000.0p-23, -0x800000.0p-35,
|
||||
0x830000.0p-23, -0x900000.0p-34,
|
||||
0x840000.0p-23, -0x800000.0p-33,
|
||||
0x850000.0p-23, -0xc80000.0p-33,
|
||||
0x860000.0p-23, -0xa00000.0p-36,
|
||||
0x870000.0p-23, 0x940000.0p-33,
|
||||
0x880000.0p-23, 0x800000.0p-35,
|
||||
0x890000.0p-23, -0xc80000.0p-34,
|
||||
0x8a0000.0p-23, 0xe00000.0p-36,
|
||||
0x8b0000.0p-23, 0x900000.0p-33,
|
||||
0x8c0000.0p-23, -0x800000.0p-35,
|
||||
0x8d0000.0p-23, -0xe00000.0p-33,
|
||||
0x8e0000.0p-23, 0x880000.0p-33,
|
||||
0x8f0000.0p-23, -0xa80000.0p-34,
|
||||
0x900000.0p-23, -0x800000.0p-35,
|
||||
0x910000.0p-23, 0x800000.0p-37,
|
||||
0x920000.0p-23, 0x900000.0p-35,
|
||||
0x930000.0p-23, 0xd00000.0p-35,
|
||||
0x940000.0p-23, 0xe00000.0p-35,
|
||||
0x950000.0p-23, 0xc00000.0p-35,
|
||||
0x960000.0p-23, 0xe00000.0p-36,
|
||||
0x970000.0p-23, -0x800000.0p-38,
|
||||
0x980000.0p-23, -0xc00000.0p-35,
|
||||
0x990000.0p-23, -0xd00000.0p-34,
|
||||
0x9a0000.0p-23, 0x880000.0p-33,
|
||||
0x9b0000.0p-23, 0xe80000.0p-35,
|
||||
0x9c0000.0p-23, -0x800000.0p-35,
|
||||
0x9d0000.0p-23, 0xb40000.0p-33,
|
||||
0x9e0000.0p-23, 0x880000.0p-34,
|
||||
0x9f0000.0p-23, -0xe00000.0p-35,
|
||||
0xa00000.0p-23, 0x800000.0p-33,
|
||||
0xa10000.0p-23, -0x900000.0p-36,
|
||||
0xa20000.0p-23, -0xb00000.0p-33,
|
||||
0xa30000.0p-23, -0xa00000.0p-36,
|
||||
0xa40000.0p-23, 0x800000.0p-33,
|
||||
0xa50000.0p-23, -0xf80000.0p-35,
|
||||
0xa60000.0p-23, 0x880000.0p-34,
|
||||
0xa70000.0p-23, -0x900000.0p-33,
|
||||
0xa80000.0p-23, -0x800000.0p-35,
|
||||
0xa90000.0p-23, 0x900000.0p-34,
|
||||
0xaa0000.0p-23, 0xa80000.0p-33,
|
||||
0xab0000.0p-23, -0xac0000.0p-34,
|
||||
0xac0000.0p-23, -0x800000.0p-37,
|
||||
0xad0000.0p-23, 0xf80000.0p-35,
|
||||
0xae0000.0p-23, 0xf80000.0p-34,
|
||||
0xaf0000.0p-23, -0xac0000.0p-33,
|
||||
0xb00000.0p-23, -0x800000.0p-33,
|
||||
0xb10000.0p-23, -0xb80000.0p-34,
|
||||
0xb20000.0p-23, -0x800000.0p-34,
|
||||
0xb30000.0p-23, -0xb00000.0p-35,
|
||||
0xb40000.0p-23, -0x800000.0p-35,
|
||||
0xb50000.0p-23, -0xe00000.0p-36,
|
||||
0xb60000.0p-23, -0x800000.0p-35,
|
||||
0xb70000.0p-23, -0xb00000.0p-35,
|
||||
0xb80000.0p-23, -0x800000.0p-34,
|
||||
0xb90000.0p-23, -0xb80000.0p-34,
|
||||
0xba0000.0p-23, -0x800000.0p-33,
|
||||
0xbb0000.0p-23, -0xac0000.0p-33,
|
||||
0xbc0000.0p-23, 0x980000.0p-33,
|
||||
0xbd0000.0p-23, 0xbc0000.0p-34,
|
||||
0xbe0000.0p-23, 0xe00000.0p-36,
|
||||
0xbf0000.0p-23, -0xb80000.0p-35,
|
||||
0xc00000.0p-23, -0x800000.0p-33,
|
||||
0xc10000.0p-23, 0xa80000.0p-33,
|
||||
0xc20000.0p-23, 0x900000.0p-34,
|
||||
0xc30000.0p-23, -0x800000.0p-35,
|
||||
0xc40000.0p-23, -0x900000.0p-33,
|
||||
0xc50000.0p-23, 0x820000.0p-33,
|
||||
0xc60000.0p-23, 0x800000.0p-38,
|
||||
0xc70000.0p-23, -0x820000.0p-33,
|
||||
0xc80000.0p-23, 0x800000.0p-33,
|
||||
0xc90000.0p-23, -0xa00000.0p-36,
|
||||
0xca0000.0p-23, -0xb00000.0p-33,
|
||||
0xcb0000.0p-23, 0x840000.0p-34,
|
||||
0xcc0000.0p-23, -0xd00000.0p-34,
|
||||
0xcd0000.0p-23, 0x800000.0p-33,
|
||||
0xce0000.0p-23, -0xe00000.0p-35,
|
||||
0xcf0000.0p-23, 0xa60000.0p-33,
|
||||
0xd00000.0p-23, -0x800000.0p-35,
|
||||
0xd10000.0p-23, 0xb40000.0p-33,
|
||||
0xd20000.0p-23, -0x800000.0p-35,
|
||||
0xd30000.0p-23, 0xaa0000.0p-33,
|
||||
0xd40000.0p-23, -0xe00000.0p-35,
|
||||
0xd50000.0p-23, 0x880000.0p-33,
|
||||
0xd60000.0p-23, -0xd00000.0p-34,
|
||||
0xd70000.0p-23, 0x9c0000.0p-34,
|
||||
0xd80000.0p-23, -0xb00000.0p-33,
|
||||
0xd90000.0p-23, -0x800000.0p-38,
|
||||
0xda0000.0p-23, 0xa40000.0p-33,
|
||||
0xdb0000.0p-23, -0xdc0000.0p-34,
|
||||
0xdc0000.0p-23, 0xc00000.0p-35,
|
||||
0xdd0000.0p-23, 0xca0000.0p-33,
|
||||
0xde0000.0p-23, -0xb80000.0p-34,
|
||||
0xdf0000.0p-23, 0xd00000.0p-35,
|
||||
0xe00000.0p-23, 0xc00000.0p-33,
|
||||
0xe10000.0p-23, -0xf40000.0p-34,
|
||||
0xe20000.0p-23, 0x800000.0p-37,
|
||||
0xe30000.0p-23, 0x860000.0p-33,
|
||||
0xe40000.0p-23, -0xc80000.0p-33,
|
||||
0xe50000.0p-23, -0xa80000.0p-34,
|
||||
0xe60000.0p-23, 0xe00000.0p-36,
|
||||
0xe70000.0p-23, 0x880000.0p-33,
|
||||
0xe80000.0p-23, -0xe00000.0p-33,
|
||||
0xe90000.0p-23, -0xfc0000.0p-34,
|
||||
0xea0000.0p-23, -0x800000.0p-35,
|
||||
0xeb0000.0p-23, 0xe80000.0p-35,
|
||||
0xec0000.0p-23, 0x900000.0p-33,
|
||||
0xed0000.0p-23, 0xe20000.0p-33,
|
||||
0xee0000.0p-23, -0xac0000.0p-33,
|
||||
0xef0000.0p-23, -0xc80000.0p-34,
|
||||
0xf00000.0p-23, -0x800000.0p-35,
|
||||
0xf10000.0p-23, 0x800000.0p-35,
|
||||
0xf20000.0p-23, 0xb80000.0p-34,
|
||||
0xf30000.0p-23, 0x940000.0p-33,
|
||||
0xf40000.0p-23, 0xc80000.0p-33,
|
||||
0xf50000.0p-23, -0xf20000.0p-33,
|
||||
0xf60000.0p-23, -0xc80000.0p-33,
|
||||
0xf70000.0p-23, -0xa20000.0p-33,
|
||||
0xf80000.0p-23, -0x800000.0p-33,
|
||||
0xf90000.0p-23, -0xc40000.0p-34,
|
||||
0xfa0000.0p-23, -0x900000.0p-34,
|
||||
0xfb0000.0p-23, -0xc80000.0p-35,
|
||||
0xfc0000.0p-23, -0x800000.0p-35,
|
||||
0xfd0000.0p-23, -0x900000.0p-36,
|
||||
0xfe0000.0p-23, -0x800000.0p-37,
|
||||
0xff0000.0p-23, -0x800000.0p-39,
|
||||
0x800000.0p-22, 0,
|
||||
};
|
||||
#endif /* USE_UTAB */
|
||||
|
||||
#ifdef STRUCT_RETURN
|
||||
#define RETURN1(rp, v) do { \
|
||||
(rp)->hi = (v); \
|
||||
(rp)->lo_set = 0; \
|
||||
return; \
|
||||
} while (0)
|
||||
|
||||
#define RETURN2(rp, h, l) do { \
|
||||
(rp)->hi = (h); \
|
||||
(rp)->lo = (l); \
|
||||
(rp)->lo_set = 1; \
|
||||
return; \
|
||||
} while (0)
|
||||
|
||||
struct ld {
|
||||
long double hi;
|
||||
long double lo;
|
||||
int lo_set;
|
||||
};
|
||||
#else
|
||||
#define RETURN1(rp, v) RETURNF(v)
|
||||
#define RETURN2(rp, h, l) RETURNI((h) + (l))
|
||||
#endif
|
||||
|
||||
#ifdef STRUCT_RETURN
|
||||
static inline __always_inline void
|
||||
k_logl(long double x, struct ld *rp)
|
||||
#else
|
||||
long double
|
||||
logl(long double x)
|
||||
#endif
|
||||
{
|
||||
long double d, val_hi, val_lo;
|
||||
double dd, dk;
|
||||
uint64_t lx, llx;
|
||||
int i, k;
|
||||
uint16_t hx;
|
||||
|
||||
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
|
||||
k = -16383;
|
||||
#if 0 /* Hard to do efficiently. Don't do it until we support all modes. */
|
||||
if (x == 1)
|
||||
RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */
|
||||
#endif
|
||||
if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */
|
||||
if (((hx & 0x7fff) | lx | llx) == 0)
|
||||
RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */
|
||||
if (hx != 0)
|
||||
/* log(neg or NaN) = qNaN: */
|
||||
RETURN1(rp, (x - x) / zero);
|
||||
x *= 0x1.0p113; /* subnormal; scale up x */
|
||||
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
|
||||
k = -16383 - 113;
|
||||
} else if (hx >= 0x7fff)
|
||||
RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */
|
||||
#ifndef STRUCT_RETURN
|
||||
ENTERI();
|
||||
#endif
|
||||
k += hx;
|
||||
dk = k;
|
||||
|
||||
/* Scale x to be in [1, 2). */
|
||||
SET_LDBL_EXPSIGN(x, 0x3fff);
|
||||
|
||||
/* 0 <= i <= INTERVALS: */
|
||||
#define L2I (49 - LOG2_INTERVALS)
|
||||
i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
|
||||
|
||||
/*
|
||||
* -0.005280 < d < 0.004838. In particular, the infinite-
|
||||
* precision |d| is <= 2**-7. Rounding of G(i) to 8 bits
|
||||
* ensures that d is representable without extra precision for
|
||||
* this bound on |d| (since when this calculation is expressed
|
||||
* as x*G(i)-1, the multiplication needs as many extra bits as
|
||||
* G(i) has and the subtraction cancels 8 bits). But for
|
||||
* most i (107 cases out of 129), the infinite-precision |d|
|
||||
* is <= 2**-8. G(i) is rounded to 9 bits for such i to give
|
||||
* better accuracy (this works by improving the bound on |d|,
|
||||
* which in turn allows rounding to 9 bits in more cases).
|
||||
* This is only important when the original x is near 1 -- it
|
||||
* lets us avoid using a special method to give the desired
|
||||
* accuracy for such x.
|
||||
*/
|
||||
if (0)
|
||||
d = x * G(i) - 1;
|
||||
else {
|
||||
#ifdef USE_UTAB
|
||||
d = (x - H(i)) * G(i) + E(i);
|
||||
#else
|
||||
long double x_hi;
|
||||
double x_lo;
|
||||
|
||||
/*
|
||||
* Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
|
||||
* G(i) has at most 9 bits, so the splitting point is not
|
||||
* critical.
|
||||
*/
|
||||
INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
|
||||
llx & 0xffffffffff000000ULL);
|
||||
x_lo = x - x_hi;
|
||||
d = x_hi * G(i) - 1 + x_lo * G(i);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Our algorithm depends on exact cancellation of F_lo(i) and
|
||||
* F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
|
||||
* at the end of the table. This and other technical complications
|
||||
* make it difficult to avoid the double scaling in (dk*ln2) *
|
||||
* log(base) for base != e without losing more accuracy and/or
|
||||
* efficiency than is gained.
|
||||
*/
|
||||
/*
|
||||
* Use double precision operations wherever possible, since
|
||||
* long double operations are emulated and were very slow on
|
||||
* the old sparc64 and unknown on the newer aarch64 and riscv
|
||||
* machines. Also, don't try to improve parallelism by
|
||||
* increasing the number of operations, since any parallelism
|
||||
* on such machines is needed for the emulation. Horner's
|
||||
* method is good for this, and is also good for accuracy.
|
||||
* Horner's method doesn't handle the `lo' term well, either
|
||||
* for efficiency or accuracy. However, for accuracy we
|
||||
* evaluate d * d * P2 separately to take advantage of by P2
|
||||
* being exact, and this gives a good place to sum the 'lo'
|
||||
* term too.
|
||||
*/
|
||||
dd = (double)d;
|
||||
val_lo = d * d * d * (P3 +
|
||||
d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
|
||||
dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
|
||||
dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo) + d * d * P2;
|
||||
val_hi = d;
|
||||
#ifdef DEBUG
|
||||
if (fetestexcept(FE_UNDERFLOW))
|
||||
breakpoint();
|
||||
#endif
|
||||
|
||||
_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
|
||||
RETURN2(rp, val_hi, val_lo);
|
||||
}
|
||||
|
||||
long double
|
||||
log1pl(long double x)
|
||||
{
|
||||
long double d, d_hi, f_lo, val_hi, val_lo;
|
||||
long double f_hi, twopminusk;
|
||||
double d_lo, dd, dk;
|
||||
uint64_t lx, llx;
|
||||
int i, k;
|
||||
int16_t ax, hx;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
|
||||
if (hx < 0x3fff) { /* x < 1, or x neg NaN */
|
||||
ax = hx & 0x7fff;
|
||||
if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */
|
||||
if (ax == 0x3fff && (lx | llx) == 0)
|
||||
RETURNP(-1 / zero); /* log1p(-1) = -Inf */
|
||||
/* log1p(x < 1, or x NaN) = qNaN: */
|
||||
RETURNP((x - x) / (x - x));
|
||||
}
|
||||
if (ax <= 0x3f8d) { /* |x| < 2**-113 */
|
||||
if ((int)x == 0)
|
||||
RETURNP(x); /* x with inexact if x != 0 */
|
||||
}
|
||||
f_hi = 1;
|
||||
f_lo = x;
|
||||
} else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */
|
||||
RETURNP(x + x); /* log1p(Inf or NaN) = Inf or qNaN */
|
||||
} else if (hx < 0x40e1) { /* 1 <= x < 2**226 */
|
||||
f_hi = x;
|
||||
f_lo = 1;
|
||||
} else { /* 2**226 <= x < +Inf */
|
||||
f_hi = x;
|
||||
f_lo = 0; /* avoid underflow of the P3 term */
|
||||
}
|
||||
ENTERI();
|
||||
x = f_hi + f_lo;
|
||||
f_lo = (f_hi - x) + f_lo;
|
||||
|
||||
EXTRACT_LDBL128_WORDS(hx, lx, llx, x);
|
||||
k = -16383;
|
||||
|
||||
k += hx;
|
||||
dk = k;
|
||||
|
||||
SET_LDBL_EXPSIGN(x, 0x3fff);
|
||||
twopminusk = 1;
|
||||
SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
|
||||
f_lo *= twopminusk;
|
||||
|
||||
i = (lx + (1LL << (L2I - 2))) >> (L2I - 1);
|
||||
|
||||
/*
|
||||
* x*G(i)-1 (with a reduced x) can be represented exactly, as
|
||||
* above, but now we need to evaluate the polynomial on d =
|
||||
* (x+f_lo)*G(i)-1 and extra precision is needed for that.
|
||||
* Since x+x_lo is a hi+lo decomposition and subtracting 1
|
||||
* doesn't lose too many bits, an inexact calculation for
|
||||
* f_lo*G(i) is good enough.
|
||||
*/
|
||||
if (0)
|
||||
d_hi = x * G(i) - 1;
|
||||
else {
|
||||
#ifdef USE_UTAB
|
||||
d_hi = (x - H(i)) * G(i) + E(i);
|
||||
#else
|
||||
long double x_hi;
|
||||
double x_lo;
|
||||
|
||||
INSERT_LDBL128_WORDS(x_hi, 0x3fff, lx,
|
||||
llx & 0xffffffffff000000ULL);
|
||||
x_lo = x - x_hi;
|
||||
d_hi = x_hi * G(i) - 1 + x_lo * G(i);
|
||||
#endif
|
||||
}
|
||||
d_lo = f_lo * G(i);
|
||||
|
||||
/*
|
||||
* This is _2sumF(d_hi, d_lo) inlined. The condition
|
||||
* (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
|
||||
* always satisifed, so it is not clear that this works, but
|
||||
* it works in practice. It works even if it gives a wrong
|
||||
* normalized d_lo, since |d_lo| > |d_hi| implies that i is
|
||||
* nonzero and d is tiny, so the F(i) term dominates d_lo.
|
||||
* In float precision:
|
||||
* (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
|
||||
* And if d is only a little tinier than that, we would have
|
||||
* another underflow problem for the P3 term; this is also ruled
|
||||
* out by exhaustive testing.)
|
||||
*/
|
||||
d = d_hi + d_lo;
|
||||
d_lo = d_hi - d + d_lo;
|
||||
d_hi = d;
|
||||
|
||||
dd = (double)d;
|
||||
val_lo = d * d * d * (P3 +
|
||||
d * (P4 + d * (P5 + d * (P6 + d * (P7 + d * (P8 +
|
||||
dd * (P9 + dd * (P10 + dd * (P11 + dd * (P12 + dd * (P13 +
|
||||
dd * P14))))))))))) + (F_lo(i) + dk * ln2_lo + d_lo) + d * d * P2;
|
||||
val_hi = d_hi;
|
||||
#ifdef DEBUG
|
||||
if (fetestexcept(FE_UNDERFLOW))
|
||||
breakpoint();
|
||||
#endif
|
||||
|
||||
_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
|
||||
RETURN2PI(val_hi, val_lo);
|
||||
}
|
||||
|
||||
#ifdef STRUCT_RETURN
|
||||
|
||||
long double
|
||||
logl(long double x)
|
||||
{
|
||||
struct ld r;
|
||||
|
||||
ENTERI();
|
||||
DOPRINT_START(&x);
|
||||
k_logl(x, &r);
|
||||
RETURNSPI(&r);
|
||||
}
|
||||
|
||||
/*
|
||||
* 29+113 bit decompositions. The bits are distributed so that the products
|
||||
* of the hi terms are exact in double precision. The types are chosen so
|
||||
* that the products of the hi terms are done in at least double precision,
|
||||
* without any explicit conversions. More natural choices would require a
|
||||
* slow long double precision multiplication.
|
||||
*/
|
||||
static const double
|
||||
invln10_hi = 4.3429448176175356e-1, /* 0x1bcb7b15000000.0p-54 */
|
||||
invln2_hi = 1.4426950402557850e0; /* 0x17154765000000.0p-52 */
|
||||
static const long double
|
||||
invln10_lo = 1.41498268538580090791605082294397000e-10L, /* 0x137287195355baaafad33dc323ee3.0p-145L */
|
||||
invln2_lo = 6.33178418956604368501892137426645911e-10L, /* 0x15c17f0bbbe87fed0691d3e88eb57.0p-143L */
|
||||
invln10_lo_plus_hi = invln10_lo + invln10_hi,
|
||||
invln2_lo_plus_hi = invln2_lo + invln2_hi;
|
||||
|
||||
long double
|
||||
log10l(long double x)
|
||||
{
|
||||
struct ld r;
|
||||
long double hi, lo;
|
||||
|
||||
ENTERI();
|
||||
DOPRINT_START(&x);
|
||||
k_logl(x, &r);
|
||||
if (!r.lo_set)
|
||||
RETURNPI(r.hi);
|
||||
_2sumF(r.hi, r.lo);
|
||||
hi = (float)r.hi;
|
||||
lo = r.lo + (r.hi - hi);
|
||||
RETURN2PI(invln10_hi * hi,
|
||||
invln10_lo_plus_hi * lo + invln10_lo * hi);
|
||||
}
|
||||
|
||||
long double
|
||||
log2l(long double x)
|
||||
{
|
||||
struct ld r;
|
||||
long double hi, lo;
|
||||
|
||||
ENTERI();
|
||||
DOPRINT_START(&x);
|
||||
k_logl(x, &r);
|
||||
if (!r.lo_set)
|
||||
RETURNPI(r.hi);
|
||||
_2sumF(r.hi, r.lo);
|
||||
hi = (float)r.hi;
|
||||
lo = r.lo + (r.hi - hi);
|
||||
RETURN2PI(invln2_hi * hi,
|
||||
invln2_lo_plus_hi * lo + invln2_lo * hi);
|
||||
}
|
||||
|
||||
#endif /* STRUCT_RETURN */
|
|
@ -0,0 +1,113 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
* Copyright (c) 1985, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See bsdsrc/b_exp.c for implementation details.
|
||||
*
|
||||
* bsdrc/b_exp.c converted to long double by Steven G. Kargl.
|
||||
*/
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const union IEEEl2bits
|
||||
p0u = LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-01L),
|
||||
p1u = LD80C(0xb60b60b60b60b59a, -9, -2.77777777777777775377e-03L),
|
||||
p2u = LD80C(0x8ab355e008a3cfce, -14, 6.61375661375629297465e-05L),
|
||||
p3u = LD80C(0xddebbc994b0c1376, -20, -1.65343915327882529784e-06L),
|
||||
p4u = LD80C(0xb354784cb4ef4c41, -25, 4.17535101591534118469e-08L),
|
||||
p5u = LD80C(0x913e8a718382ce75, -30, -1.05679137034774806475e-09L),
|
||||
p6u = LD80C(0xe8f0042aa134502e, -36, 2.64819349895429516863e-11L);
|
||||
#define p1 (p0u.e)
|
||||
#define p2 (p1u.e)
|
||||
#define p3 (p2u.e)
|
||||
#define p4 (p3u.e)
|
||||
#define p5 (p4u.e)
|
||||
#define p6 (p5u.e)
|
||||
#define p7 (p6u.e)
|
||||
|
||||
/*
|
||||
* lnhuge = (LDBL_MAX_EXP + 9) * log(2.)
|
||||
* lntiny = (LDBL_MIN_EXP - 64 - 10) * log(2.)
|
||||
* invln2 = 1 / log(2.)
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
ln2hiu = LD80C(0xb17217f700000000, -1, 6.93147180369123816490e-01L),
|
||||
ln2lou = LD80C(0xd1cf79abc9e3b398, -33, 1.90821492927058781614e-10L),
|
||||
lnhugeu = LD80C(0xb18b0c0330a8fad9, 13, 1.13627617309191834574e+04L),
|
||||
lntinyu = LD80C(0xb236f28a68bc3bd7, 13, -1.14057368561139000667e+04L),
|
||||
invln2u = LD80C(0xb8aa3b295c17f0bc, 0, 1.44269504088896340739e+00L);
|
||||
#define ln2hi (ln2hiu.e)
|
||||
#define ln2lo (ln2lou.e)
|
||||
#define lnhuge (lnhugeu.e)
|
||||
#define lntiny (lntinyu.e)
|
||||
#define invln2 (invln2u.e)
|
||||
|
||||
/* returns exp(r = x + c) for |c| < |x| with no overlap. */
|
||||
|
||||
static long double
|
||||
__exp__D(long double x, long double c)
|
||||
{
|
||||
long double hi, lo, z;
|
||||
int k;
|
||||
|
||||
if (x != x) /* x is NaN. */
|
||||
return(x);
|
||||
|
||||
if (x <= lnhuge) {
|
||||
if (x >= lntiny) {
|
||||
/* argument reduction: x --> x - k*ln2 */
|
||||
z = invln2 * x;
|
||||
k = z + copysignl(0.5L, x);
|
||||
|
||||
/*
|
||||
* Express (x + c) - k * ln2 as hi - lo.
|
||||
* Let x = hi - lo rounded.
|
||||
*/
|
||||
hi = x - k * ln2hi; /* Exact. */
|
||||
lo = k * ln2lo - c;
|
||||
x = hi - lo;
|
||||
|
||||
/* Return 2^k*[1+x+x*c/(2+c)] */
|
||||
z = x * x;
|
||||
c = x - z * (p1 + z * (p2 + z * (p3 + z * (p4 +
|
||||
z * (p5 + z * (p6 + z * p7))))));
|
||||
c = (x * c) / (2 - c);
|
||||
|
||||
return (ldexpl(1 + (hi - (lo - c)), k));
|
||||
} else {
|
||||
/* exp(-INF) is 0. exp(-big) underflows to 0. */
|
||||
return (isfinite(x) ? ldexpl(1., -5000) : 0);
|
||||
}
|
||||
} else
|
||||
/* exp(INF) is INF, exp(+big#) overflows to INF */
|
||||
return (isfinite(x) ? ldexpl(1., 5000) : x);
|
||||
}
|
|
@ -0,0 +1,375 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
* Copyright (c) 1992, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See bsdsrc/b_log.c for implementation details.
|
||||
*
|
||||
* bsdrc/b_log.c converted to long double by Steven G. Kargl.
|
||||
*/
|
||||
|
||||
#define N 128
|
||||
|
||||
/*
|
||||
* Coefficients in the polynomial approximation of log(1+f/F).
|
||||
* Domain of x is [0,1./256] with 2**(-84.48) precision.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
a1u = LD80C(0xaaaaaaaaaaaaaaab, -4, 8.33333333333333333356e-02L),
|
||||
a2u = LD80C(0xcccccccccccccd29, -7, 1.25000000000000000781e-02L),
|
||||
a3u = LD80C(0x9249249241ed3764, -9, 2.23214285711721994134e-03L),
|
||||
a4u = LD80C(0xe38e959e1e7e01cf, -12, 4.34030476540000360640e-04L);
|
||||
#define A1 (a1u.e)
|
||||
#define A2 (a2u.e)
|
||||
#define A3 (a3u.e)
|
||||
#define A4 (a4u.e)
|
||||
|
||||
/*
|
||||
* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
|
||||
* Used for generation of extend precision logarithms.
|
||||
* The constant 35184372088832 is 2^45, so the divide is exact.
|
||||
* It ensures correct reading of logF_head, even for inaccurate
|
||||
* decimal-to-binary conversion routines. (Everybody gets the
|
||||
* right answer for integers less than 2^53.)
|
||||
* Values for log(F) were generated using error < 10^-57 absolute
|
||||
* with the bc -l package.
|
||||
*/
|
||||
|
||||
static double logF_head[N+1] = {
|
||||
0.,
|
||||
.007782140442060381246,
|
||||
.015504186535963526694,
|
||||
.023167059281547608406,
|
||||
.030771658666765233647,
|
||||
.038318864302141264488,
|
||||
.045809536031242714670,
|
||||
.053244514518837604555,
|
||||
.060624621816486978786,
|
||||
.067950661908525944454,
|
||||
.075223421237524235039,
|
||||
.082443669210988446138,
|
||||
.089612158689760690322,
|
||||
.096729626458454731618,
|
||||
.103796793681567578460,
|
||||
.110814366340264314203,
|
||||
.117783035656430001836,
|
||||
.124703478501032805070,
|
||||
.131576357788617315236,
|
||||
.138402322859292326029,
|
||||
.145182009844575077295,
|
||||
.151916042025732167530,
|
||||
.158605030176659056451,
|
||||
.165249572895390883786,
|
||||
.171850256926518341060,
|
||||
.178407657472689606947,
|
||||
.184922338493834104156,
|
||||
.191394852999565046047,
|
||||
.197825743329758552135,
|
||||
.204215541428766300668,
|
||||
.210564769107350002741,
|
||||
.216873938300523150246,
|
||||
.223143551314024080056,
|
||||
.229374101064877322642,
|
||||
.235566071312860003672,
|
||||
.241719936886966024758,
|
||||
.247836163904594286577,
|
||||
.253915209980732470285,
|
||||
.259957524436686071567,
|
||||
.265963548496984003577,
|
||||
.271933715484010463114,
|
||||
.277868451003087102435,
|
||||
.283768173130738432519,
|
||||
.289633292582948342896,
|
||||
.295464212893421063199,
|
||||
.301261330578199704177,
|
||||
.307025035294827830512,
|
||||
.312755710004239517729,
|
||||
.318453731118097493890,
|
||||
.324119468654316733591,
|
||||
.329753286372579168528,
|
||||
.335355541920762334484,
|
||||
.340926586970454081892,
|
||||
.346466767346100823488,
|
||||
.351976423156884266063,
|
||||
.357455888922231679316,
|
||||
.362905493689140712376,
|
||||
.368325561158599157352,
|
||||
.373716409793814818840,
|
||||
.379078352934811846353,
|
||||
.384411698910298582632,
|
||||
.389716751140440464951,
|
||||
.394993808240542421117,
|
||||
.400243164127459749579,
|
||||
.405465108107819105498,
|
||||
.410659924985338875558,
|
||||
.415827895143593195825,
|
||||
.420969294644237379543,
|
||||
.426084395310681429691,
|
||||
.431173464818130014464,
|
||||
.436236766774527495726,
|
||||
.441274560805140936281,
|
||||
.446287102628048160113,
|
||||
.451274644139630254358,
|
||||
.456237433481874177232,
|
||||
.461175715122408291790,
|
||||
.466089729924533457960,
|
||||
.470979715219073113985,
|
||||
.475845904869856894947,
|
||||
.480688529345570714212,
|
||||
.485507815781602403149,
|
||||
.490303988045525329653,
|
||||
.495077266798034543171,
|
||||
.499827869556611403822,
|
||||
.504556010751912253908,
|
||||
.509261901790523552335,
|
||||
.513945751101346104405,
|
||||
.518607764208354637958,
|
||||
.523248143765158602036,
|
||||
.527867089620485785417,
|
||||
.532464798869114019908,
|
||||
.537041465897345915436,
|
||||
.541597282432121573947,
|
||||
.546132437597407260909,
|
||||
.550647117952394182793,
|
||||
.555141507540611200965,
|
||||
.559615787935399566777,
|
||||
.564070138285387656651,
|
||||
.568504735352689749561,
|
||||
.572919753562018740922,
|
||||
.577315365035246941260,
|
||||
.581691739635061821900,
|
||||
.586049045003164792433,
|
||||
.590387446602107957005,
|
||||
.594707107746216934174,
|
||||
.599008189645246602594,
|
||||
.603290851438941899687,
|
||||
.607555250224322662688,
|
||||
.611801541106615331955,
|
||||
.616029877215623855590,
|
||||
.620240409751204424537,
|
||||
.624433288012369303032,
|
||||
.628608659422752680256,
|
||||
.632766669570628437213,
|
||||
.636907462236194987781,
|
||||
.641031179420679109171,
|
||||
.645137961373620782978,
|
||||
.649227946625615004450,
|
||||
.653301272011958644725,
|
||||
.657358072709030238911,
|
||||
.661398482245203922502,
|
||||
.665422632544505177065,
|
||||
.669430653942981734871,
|
||||
.673422675212350441142,
|
||||
.677398823590920073911,
|
||||
.681359224807238206267,
|
||||
.685304003098281100392,
|
||||
.689233281238557538017,
|
||||
.693147180560117703862
|
||||
};
|
||||
|
||||
static double logF_tail[N+1] = {
|
||||
0.,
|
||||
-.00000000000000543229938420049,
|
||||
.00000000000000172745674997061,
|
||||
-.00000000000001323017818229233,
|
||||
-.00000000000001154527628289872,
|
||||
-.00000000000000466529469958300,
|
||||
.00000000000005148849572685810,
|
||||
-.00000000000002532168943117445,
|
||||
-.00000000000005213620639136504,
|
||||
-.00000000000001819506003016881,
|
||||
.00000000000006329065958724544,
|
||||
.00000000000008614512936087814,
|
||||
-.00000000000007355770219435028,
|
||||
.00000000000009638067658552277,
|
||||
.00000000000007598636597194141,
|
||||
.00000000000002579999128306990,
|
||||
-.00000000000004654729747598444,
|
||||
-.00000000000007556920687451336,
|
||||
.00000000000010195735223708472,
|
||||
-.00000000000017319034406422306,
|
||||
-.00000000000007718001336828098,
|
||||
.00000000000010980754099855238,
|
||||
-.00000000000002047235780046195,
|
||||
-.00000000000008372091099235912,
|
||||
.00000000000014088127937111135,
|
||||
.00000000000012869017157588257,
|
||||
.00000000000017788850778198106,
|
||||
.00000000000006440856150696891,
|
||||
.00000000000016132822667240822,
|
||||
-.00000000000007540916511956188,
|
||||
-.00000000000000036507188831790,
|
||||
.00000000000009120937249914984,
|
||||
.00000000000018567570959796010,
|
||||
-.00000000000003149265065191483,
|
||||
-.00000000000009309459495196889,
|
||||
.00000000000017914338601329117,
|
||||
-.00000000000001302979717330866,
|
||||
.00000000000023097385217586939,
|
||||
.00000000000023999540484211737,
|
||||
.00000000000015393776174455408,
|
||||
-.00000000000036870428315837678,
|
||||
.00000000000036920375082080089,
|
||||
-.00000000000009383417223663699,
|
||||
.00000000000009433398189512690,
|
||||
.00000000000041481318704258568,
|
||||
-.00000000000003792316480209314,
|
||||
.00000000000008403156304792424,
|
||||
-.00000000000034262934348285429,
|
||||
.00000000000043712191957429145,
|
||||
-.00000000000010475750058776541,
|
||||
-.00000000000011118671389559323,
|
||||
.00000000000037549577257259853,
|
||||
.00000000000013912841212197565,
|
||||
.00000000000010775743037572640,
|
||||
.00000000000029391859187648000,
|
||||
-.00000000000042790509060060774,
|
||||
.00000000000022774076114039555,
|
||||
.00000000000010849569622967912,
|
||||
-.00000000000023073801945705758,
|
||||
.00000000000015761203773969435,
|
||||
.00000000000003345710269544082,
|
||||
-.00000000000041525158063436123,
|
||||
.00000000000032655698896907146,
|
||||
-.00000000000044704265010452446,
|
||||
.00000000000034527647952039772,
|
||||
-.00000000000007048962392109746,
|
||||
.00000000000011776978751369214,
|
||||
-.00000000000010774341461609578,
|
||||
.00000000000021863343293215910,
|
||||
.00000000000024132639491333131,
|
||||
.00000000000039057462209830700,
|
||||
-.00000000000026570679203560751,
|
||||
.00000000000037135141919592021,
|
||||
-.00000000000017166921336082431,
|
||||
-.00000000000028658285157914353,
|
||||
-.00000000000023812542263446809,
|
||||
.00000000000006576659768580062,
|
||||
-.00000000000028210143846181267,
|
||||
.00000000000010701931762114254,
|
||||
.00000000000018119346366441110,
|
||||
.00000000000009840465278232627,
|
||||
-.00000000000033149150282752542,
|
||||
-.00000000000018302857356041668,
|
||||
-.00000000000016207400156744949,
|
||||
.00000000000048303314949553201,
|
||||
-.00000000000071560553172382115,
|
||||
.00000000000088821239518571855,
|
||||
-.00000000000030900580513238244,
|
||||
-.00000000000061076551972851496,
|
||||
.00000000000035659969663347830,
|
||||
.00000000000035782396591276383,
|
||||
-.00000000000046226087001544578,
|
||||
.00000000000062279762917225156,
|
||||
.00000000000072838947272065741,
|
||||
.00000000000026809646615211673,
|
||||
-.00000000000010960825046059278,
|
||||
.00000000000002311949383800537,
|
||||
-.00000000000058469058005299247,
|
||||
-.00000000000002103748251144494,
|
||||
-.00000000000023323182945587408,
|
||||
-.00000000000042333694288141916,
|
||||
-.00000000000043933937969737844,
|
||||
.00000000000041341647073835565,
|
||||
.00000000000006841763641591466,
|
||||
.00000000000047585534004430641,
|
||||
.00000000000083679678674757695,
|
||||
-.00000000000085763734646658640,
|
||||
.00000000000021913281229340092,
|
||||
-.00000000000062242842536431148,
|
||||
-.00000000000010983594325438430,
|
||||
.00000000000065310431377633651,
|
||||
-.00000000000047580199021710769,
|
||||
-.00000000000037854251265457040,
|
||||
.00000000000040939233218678664,
|
||||
.00000000000087424383914858291,
|
||||
.00000000000025218188456842882,
|
||||
-.00000000000003608131360422557,
|
||||
-.00000000000050518555924280902,
|
||||
.00000000000078699403323355317,
|
||||
-.00000000000067020876961949060,
|
||||
.00000000000016108575753932458,
|
||||
.00000000000058527188436251509,
|
||||
-.00000000000035246757297904791,
|
||||
-.00000000000018372084495629058,
|
||||
.00000000000088606689813494916,
|
||||
.00000000000066486268071468700,
|
||||
.00000000000063831615170646519,
|
||||
.00000000000025144230728376072,
|
||||
-.00000000000017239444525614834
|
||||
};
|
||||
/*
|
||||
* Extra precision variant, returning struct {double a, b;};
|
||||
* log(x) = a + b to 63 bits, with 'a' rounded to 24 bits.
|
||||
*/
|
||||
static struct Double
|
||||
__log__D(long double x)
|
||||
{
|
||||
int m, j;
|
||||
long double F, f, g, q, u, v, u1, u2;
|
||||
struct Double r;
|
||||
|
||||
/*
|
||||
* Argument reduction: 1 <= g < 2; x/2^m = g;
|
||||
* y = F*(1 + f/F) for |f| <= 2^-8
|
||||
*/
|
||||
g = frexpl(x, &m);
|
||||
g *= 2;
|
||||
m--;
|
||||
if (m == DBL_MIN_EXP - 1) {
|
||||
j = ilogbl(g);
|
||||
m += j;
|
||||
g = ldexpl(g, -j);
|
||||
}
|
||||
j = N * (g - 1) + 0.5L;
|
||||
F = (1.L / N) * j + 1;
|
||||
f = g - F;
|
||||
|
||||
g = 1 / (2 * F + f);
|
||||
u = 2 * f * g;
|
||||
v = u * u;
|
||||
q = u * v * (A1 + v * (A2 + v * (A3 + v * A4)));
|
||||
if (m | j) {
|
||||
u1 = u + 513;
|
||||
u1 -= 513;
|
||||
} else {
|
||||
u1 = (float)u;
|
||||
}
|
||||
u2 = (2 * (f - F * u1) - u1 * f) * g;
|
||||
|
||||
u1 += m * (long double)logF_head[N] + logF_head[j];
|
||||
|
||||
u2 += logF_tail[j];
|
||||
u2 += q;
|
||||
u2 += logF_tail[N] * m;
|
||||
r.a = (float)(u1 + u2); /* Only difference is here. */
|
||||
r.b = (u1 - r.a) + u2;
|
||||
return (r);
|
||||
}
|
|
@ -0,0 +1,419 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
* Copyright (c) 1992, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The original code, FreeBSD's old svn r93211, contain the following
|
||||
* attribution:
|
||||
*
|
||||
* This code by P. McIlroy, Oct 1992;
|
||||
*
|
||||
* The financial support of UUNET Communications Services is greatfully
|
||||
* acknowledged.
|
||||
*
|
||||
* bsdrc/b_tgamma.c converted to long double by Steven G. Kargl.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See bsdsrc/t_tgamma.c for implementation details.
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#if LDBL_MAX_EXP != 0x4000
|
||||
#error "Unsupported long double format"
|
||||
#endif
|
||||
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* Used in b_log.c and below. */
|
||||
struct Double {
|
||||
long double a;
|
||||
long double b;
|
||||
};
|
||||
|
||||
#include "b_logl.c"
|
||||
#include "b_expl.c"
|
||||
|
||||
static const double zero = 0.;
|
||||
static const volatile double tiny = 1e-300;
|
||||
/*
|
||||
* x >= 6
|
||||
*
|
||||
* Use the asymptotic approximation (Stirling's formula) adjusted for
|
||||
* equal-ripples:
|
||||
*
|
||||
* log(G(x)) ~= (x-0.5)*(log(x)-1) + 0.5(log(2*pi)-1) + 1/x*P(1/(x*x))
|
||||
*
|
||||
* Keep extra precision in multiplying (x-.5)(log(x)-1), to avoid
|
||||
* premature round-off.
|
||||
*
|
||||
* Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The following is a decomposition of 0.5 * (log(2*pi) - 1) into the
|
||||
* first 12 bits in ln2pi_hi and the trailing 64 bits in ln2pi_lo. The
|
||||
* variables are clearly misnamed.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
ln2pi_hiu = LD80C(0xd680000000000000, -2, 4.18945312500000000000e-01L),
|
||||
ln2pi_lou = LD80C(0xe379b414b596d687, -18, -6.77929532725821967032e-06L);
|
||||
#define ln2pi_hi (ln2pi_hiu.e)
|
||||
#define ln2pi_lo (ln2pi_lou.e)
|
||||
|
||||
static const union IEEEl2bits
|
||||
Pa0u = LD80C(0xaaaaaaaaaaaaaaaa, -4, 8.33333333333333333288e-02L),
|
||||
Pa1u = LD80C(0xb60b60b60b5fcd59, -9, -2.77777777777776516326e-03L),
|
||||
Pa2u = LD80C(0xd00d00cffbb47014, -11, 7.93650793635429639018e-04L),
|
||||
Pa3u = LD80C(0x9c09c07c0805343e, -11, -5.95238087960599252215e-04L),
|
||||
Pa4u = LD80C(0xdca8d31f8e6e5e8f, -11, 8.41749082509607342883e-04L),
|
||||
Pa5u = LD80C(0xfb4d4289632f1638, -10, -1.91728055205541624556e-03L),
|
||||
Pa6u = LD80C(0xd15a4ba04078d3f8, -8, 6.38893788027752396194e-03L),
|
||||
Pa7u = LD80C(0xe877283110bcad95, -6, -2.83771309846297590312e-02L),
|
||||
Pa8u = LD80C(0x8da97eed13717af8, -3, 1.38341887683837576925e-01L),
|
||||
Pa9u = LD80C(0xf093b1c1584e30ce, -2, -4.69876818515470146031e-01L);
|
||||
#define Pa0 (Pa0u.e)
|
||||
#define Pa1 (Pa1u.e)
|
||||
#define Pa2 (Pa2u.e)
|
||||
#define Pa3 (Pa3u.e)
|
||||
#define Pa4 (Pa4u.e)
|
||||
#define Pa5 (Pa5u.e)
|
||||
#define Pa6 (Pa6u.e)
|
||||
#define Pa7 (Pa7u.e)
|
||||
#define Pa8 (Pa8u.e)
|
||||
#define Pa9 (Pa9u.e)
|
||||
|
||||
static struct Double
|
||||
large_gam(long double x)
|
||||
{
|
||||
long double p, z, thi, tlo, xhi, xlo;
|
||||
long double logx;
|
||||
struct Double u;
|
||||
|
||||
z = 1 / (x * x);
|
||||
p = Pa0 + z * (Pa1 + z * (Pa2 + z * (Pa3 + z * (Pa4 + z * (Pa5 +
|
||||
z * (Pa6 + z * (Pa7 + z * (Pa8 + z * Pa9))))))));
|
||||
p = p / x;
|
||||
|
||||
u = __log__D(x);
|
||||
u.a -= 1;
|
||||
|
||||
/* Split (x - 0.5) in high and low parts. */
|
||||
x -= 0.5L;
|
||||
xhi = (float)x;
|
||||
xlo = x - xhi;
|
||||
|
||||
/* Compute t = (x-.5)*(log(x)-1) in extra precision. */
|
||||
thi = xhi * u.a;
|
||||
tlo = xlo * u.a + x * u.b;
|
||||
|
||||
/* Compute thi + tlo + ln2pi_hi + ln2pi_lo + p. */
|
||||
tlo += ln2pi_lo;
|
||||
tlo += p;
|
||||
u.a = ln2pi_hi + tlo;
|
||||
u.a += thi;
|
||||
u.b = thi - u.a;
|
||||
u.b += ln2pi_hi;
|
||||
u.b += tlo;
|
||||
return (u);
|
||||
}
|
||||
/*
|
||||
* Rational approximation, A0 + x * x * P(x) / Q(x), on the interval
|
||||
* [1.066.., 2.066..] accurate to 4.25e-19.
|
||||
*
|
||||
* Returns r.a + r.b = a0 + (z + c)^2 * p / q, with r.a truncated.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
a0_hiu = LD80C(0xe2b6e4153a57746c, -1, 8.85603194410888700265e-01L),
|
||||
a0_lou = LD80C(0x851566d40f32c76d, -66, 1.40907742727049706207e-20L);
|
||||
#define a0_hi (a0_hiu.e)
|
||||
#define a0_lo (a0_lou.e)
|
||||
|
||||
static const union IEEEl2bits
|
||||
P0u = LD80C(0xdb629fb9bbdc1c1d, -2, 4.28486815855585429733e-01L),
|
||||
P1u = LD80C(0xe6f4f9f5641aa6be, -3, 2.25543885805587730552e-01L),
|
||||
P2u = LD80C(0xead1bd99fdaf7cc1, -6, 2.86644652514293482381e-02L),
|
||||
P3u = LD80C(0x9ccc8b25838ab1e0, -8, 4.78512567772456362048e-03L),
|
||||
P4u = LD80C(0x8f0c4383ef9ce72a, -9, 2.18273781132301146458e-03L),
|
||||
P5u = LD80C(0xe732ab2c0a2778da, -13, 2.20487522485636008928e-04L),
|
||||
P6u = LD80C(0xce70b27ca822b297, -16, 2.46095923774929264284e-05L),
|
||||
P7u = LD80C(0xa309e2e16fb63663, -19, 2.42946473022376182921e-06L),
|
||||
P8u = LD80C(0xaf9c110efb2c633d, -23, 1.63549217667765869987e-07L),
|
||||
Q1u = LD80C(0xd4d7422719f48f15, -1, 8.31409582658993993626e-01L),
|
||||
Q2u = LD80C(0xe13138ea404f1268, -5, -5.49785826915643198508e-02L),
|
||||
Q3u = LD80C(0xd1c6cc91989352c0, -4, -1.02429960435139887683e-01L),
|
||||
Q4u = LD80C(0xa7e9435a84445579, -7, 1.02484853505908820524e-02L),
|
||||
Q5u = LD80C(0x83c7c34db89b7bda, -8, 4.02161632832052872697e-03L),
|
||||
Q6u = LD80C(0xbed06bf6e1c14e5b, -11, -7.27898206351223022157e-04L),
|
||||
Q7u = LD80C(0xef05bf841d4504c0, -18, 7.12342421869453515194e-06L),
|
||||
Q8u = LD80C(0xf348d08a1ff53cb1, -19, 3.62522053809474067060e-06L);
|
||||
#define P0 (P0u.e)
|
||||
#define P1 (P1u.e)
|
||||
#define P2 (P2u.e)
|
||||
#define P3 (P3u.e)
|
||||
#define P4 (P4u.e)
|
||||
#define P5 (P5u.e)
|
||||
#define P6 (P6u.e)
|
||||
#define P7 (P7u.e)
|
||||
#define P8 (P8u.e)
|
||||
#define Q1 (Q1u.e)
|
||||
#define Q2 (Q2u.e)
|
||||
#define Q3 (Q3u.e)
|
||||
#define Q4 (Q4u.e)
|
||||
#define Q5 (Q5u.e)
|
||||
#define Q6 (Q6u.e)
|
||||
#define Q7 (Q7u.e)
|
||||
#define Q8 (Q8u.e)
|
||||
|
||||
static struct Double
|
||||
ratfun_gam(long double z, long double c)
|
||||
{
|
||||
long double p, q, thi, tlo;
|
||||
struct Double r;
|
||||
|
||||
q = 1 + z * (Q1 + z * (Q2 + z * (Q3 + z * (Q4 + z * (Q5 +
|
||||
z * (Q6 + z * (Q7 + z * Q8)))))));
|
||||
p = P0 + z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 +
|
||||
z * (P6 + z * (P7 + z * P8)))))));
|
||||
p = p / q;
|
||||
|
||||
/* Split z into high and low parts. */
|
||||
thi = (float)z;
|
||||
tlo = (z - thi) + c;
|
||||
tlo *= (thi + z);
|
||||
|
||||
/* Split (z+c)^2 into high and low parts. */
|
||||
thi *= thi;
|
||||
q = thi;
|
||||
thi = (float)thi;
|
||||
tlo += (q - thi);
|
||||
|
||||
/* Split p/q into high and low parts. */
|
||||
r.a = (float)p;
|
||||
r.b = p - r.a;
|
||||
|
||||
tlo = tlo * p + thi * r.b + a0_lo;
|
||||
thi *= r.a; /* t = (z+c)^2*(P/Q) */
|
||||
r.a = (float)(thi + a0_hi);
|
||||
r.b = ((a0_hi - r.a) + thi) + tlo;
|
||||
return (r); /* r = a0 + t */
|
||||
}
|
||||
/*
|
||||
* x < 6
|
||||
*
|
||||
* Use argument reduction G(x+1) = xG(x) to reach the range [1.066124,
|
||||
* 2.066124]. Use a rational approximation centered at the minimum
|
||||
* (x0+1) to ensure monotonicity.
|
||||
*
|
||||
* Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
|
||||
* It also has correct monotonicity.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
xm1u = LD80C(0xec5b0c6ad7c7edc3, -2, 4.61632144968362341254e-01L);
|
||||
#define x0 (xm1u.e)
|
||||
|
||||
static const double
|
||||
left = -0.3955078125; /* left boundary for rat. approx */
|
||||
|
||||
static long double
|
||||
small_gam(long double x)
|
||||
{
|
||||
long double t, y, ym1;
|
||||
struct Double yy, r;
|
||||
|
||||
y = x - 1;
|
||||
|
||||
if (y <= 1 + (left + x0)) {
|
||||
yy = ratfun_gam(y - x0, 0);
|
||||
return (yy.a + yy.b);
|
||||
}
|
||||
|
||||
r.a = (float)y;
|
||||
yy.a = r.a - 1;
|
||||
y = y - 1 ;
|
||||
r.b = yy.b = y - yy.a;
|
||||
|
||||
/* Argument reduction: G(x+1) = x*G(x) */
|
||||
for (ym1 = y - 1; ym1 > left + x0; y = ym1--, yy.a--) {
|
||||
t = r.a * yy.a;
|
||||
r.b = r.a * yy.b + y * r.b;
|
||||
r.a = (float)t;
|
||||
r.b += (t - r.a);
|
||||
}
|
||||
|
||||
/* Return r*tgamma(y). */
|
||||
yy = ratfun_gam(y - x0, 0);
|
||||
y = r.b * (yy.a + yy.b) + r.a * yy.b;
|
||||
y += yy.a * r.a;
|
||||
return (y);
|
||||
}
|
||||
/*
|
||||
* Good on (0, 1+x0+left]. Accurate to 1 ulp.
|
||||
*/
|
||||
static long double
|
||||
smaller_gam(long double x)
|
||||
{
|
||||
long double d, rhi, rlo, t, xhi, xlo;
|
||||
struct Double r;
|
||||
|
||||
if (x < x0 + left) {
|
||||
t = (float)x;
|
||||
d = (t + x) * (x - t);
|
||||
t *= t;
|
||||
xhi = (float)(t + x);
|
||||
xlo = x - xhi;
|
||||
xlo += t;
|
||||
xlo += d;
|
||||
t = 1 - x0;
|
||||
t += x;
|
||||
d = 1 - x0;
|
||||
d -= t;
|
||||
d += x;
|
||||
x = xhi + xlo;
|
||||
} else {
|
||||
xhi = (float)x;
|
||||
xlo = x - xhi;
|
||||
t = x - x0;
|
||||
d = - x0 - t;
|
||||
d += x;
|
||||
}
|
||||
|
||||
r = ratfun_gam(t, d);
|
||||
d = (float)(r.a / x);
|
||||
r.a -= d * xhi;
|
||||
r.a -= d * xlo;
|
||||
r.a += r.b;
|
||||
|
||||
return (d + r.a / x);
|
||||
}
|
||||
/*
|
||||
* x < 0
|
||||
*
|
||||
* Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)).
|
||||
* At negative integers, return NaN and raise invalid.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
|
||||
#define pi (piu.e)
|
||||
|
||||
static long double
|
||||
neg_gam(long double x)
|
||||
{
|
||||
int sgn = 1;
|
||||
struct Double lg, lsine;
|
||||
long double y, z;
|
||||
|
||||
y = ceill(x);
|
||||
if (y == x) /* Negative integer. */
|
||||
return ((x - x) / zero);
|
||||
|
||||
z = y - x;
|
||||
if (z > 0.5)
|
||||
z = 1 - z;
|
||||
|
||||
y = y / 2;
|
||||
if (y == ceill(y))
|
||||
sgn = -1;
|
||||
|
||||
if (z < 0.25)
|
||||
z = sinpil(z);
|
||||
else
|
||||
z = cospil(0.5 - z);
|
||||
|
||||
/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
|
||||
if (x < -1753) {
|
||||
|
||||
if (x < -1760)
|
||||
return (sgn * tiny * tiny);
|
||||
y = expl(lgammal(x) / 2);
|
||||
y *= y;
|
||||
return (sgn < 0 ? -y : y);
|
||||
}
|
||||
|
||||
|
||||
y = 1 - x;
|
||||
if (1 - y == x)
|
||||
y = tgammal(y);
|
||||
else /* 1-x is inexact */
|
||||
y = - x * tgammal(-x);
|
||||
|
||||
if (sgn < 0) y = -y;
|
||||
return (pi / (y * z));
|
||||
}
|
||||
/*
|
||||
* xmax comes from lgamma(xmax) - emax * log(2) = 0.
|
||||
* static const float xmax = 35.040095f
|
||||
* static const double xmax = 171.624376956302725;
|
||||
* ld80: LD80C(0xdb718c066b352e20, 10, 1.75554834290446291689e+03L),
|
||||
* ld128: 1.75554834290446291700388921607020320e+03L,
|
||||
*
|
||||
* iota is a sloppy threshold to isolate x = 0.
|
||||
*/
|
||||
static const double xmax = 1755.54834290446291689;
|
||||
static const double iota = 0x1p-116;
|
||||
|
||||
long double
|
||||
tgammal(long double x)
|
||||
{
|
||||
struct Double u;
|
||||
|
||||
ENTERI();
|
||||
|
||||
if (x >= 6) {
|
||||
if (x > xmax)
|
||||
RETURNI(x / zero);
|
||||
u = large_gam(x);
|
||||
RETURNI(__exp__D(u.a, u.b));
|
||||
}
|
||||
|
||||
if (x >= 1 + left + x0)
|
||||
RETURNI(small_gam(x));
|
||||
|
||||
if (x > iota)
|
||||
RETURNI(smaller_gam(x));
|
||||
|
||||
if (x > -iota) {
|
||||
if (x != 0)
|
||||
u.a = 1 - tiny; /* raise inexact */
|
||||
RETURNI(1 / x);
|
||||
}
|
||||
|
||||
if (!isfinite(x))
|
||||
RETURNI(x - x); /* x is NaN or -Inf */
|
||||
|
||||
RETURNI(neg_gam(x));
|
||||
}
|
|
@ -0,0 +1,358 @@
|
|||
/* @(#)e_lgamma_r.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See e_lgamma_r.c for complete comments.
|
||||
*
|
||||
* Converted to long double by Steven G. Kargl.
|
||||
*/
|
||||
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const volatile double vzero = 0;
|
||||
|
||||
static const double
|
||||
zero= 0,
|
||||
half= 0.5,
|
||||
one = 1;
|
||||
|
||||
static const union IEEEl2bits
|
||||
piu = LD80C(0xc90fdaa22168c235, 1, 3.14159265358979323851e+00L);
|
||||
#define pi (piu.e)
|
||||
/*
|
||||
* Domain y in [0x1p-70, 0.27], range ~[-4.5264e-22, 4.5264e-22]:
|
||||
* |(lgamma(2 - y) + y / 2) / y - a(y)| < 2**-70.9
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
a0u = LD80C(0x9e233f1bed863d26, -4, 7.72156649015328606028e-02L),
|
||||
a1u = LD80C(0xa51a6625307d3249, -2, 3.22467033424113218889e-01L),
|
||||
a2u = LD80C(0x89f000d2abafda8c, -4, 6.73523010531979398946e-02L),
|
||||
a3u = LD80C(0xa8991563eca75f26, -6, 2.05808084277991211934e-02L),
|
||||
a4u = LD80C(0xf2027e10634ce6b6, -8, 7.38555102796070454026e-03L),
|
||||
a5u = LD80C(0xbd6eb76dd22187f4, -9, 2.89051035162703932972e-03L),
|
||||
a6u = LD80C(0x9c562ab05e0458ed, -10, 1.19275351624639999297e-03L),
|
||||
a7u = LD80C(0x859baed93ee48e46, -11, 5.09674593842117925320e-04L),
|
||||
a8u = LD80C(0xe9f28a4432949af2, -13, 2.23109648015769155122e-04L),
|
||||
a9u = LD80C(0xd12ad0d9b93c6bb0, -14, 9.97387167479808509830e-05L),
|
||||
a10u= LD80C(0xb7522643c78a219b, -15, 4.37071076331030136818e-05L),
|
||||
a11u= LD80C(0xca024dcdece2cb79, -16, 2.40813493372040143061e-05L),
|
||||
a12u= LD80C(0xbb90fb6968ebdbf9, -19, 2.79495621083634031729e-06L),
|
||||
a13u= LD80C(0xba1c9ffeeae07b37, -17, 1.10931287015513924136e-05L);
|
||||
#define a0 (a0u.e)
|
||||
#define a1 (a1u.e)
|
||||
#define a2 (a2u.e)
|
||||
#define a3 (a3u.e)
|
||||
#define a4 (a4u.e)
|
||||
#define a5 (a5u.e)
|
||||
#define a6 (a6u.e)
|
||||
#define a7 (a7u.e)
|
||||
#define a8 (a8u.e)
|
||||
#define a9 (a9u.e)
|
||||
#define a10 (a10u.e)
|
||||
#define a11 (a11u.e)
|
||||
#define a12 (a12u.e)
|
||||
#define a13 (a13u.e)
|
||||
/*
|
||||
* Domain x in [tc-0.24, tc+0.28], range ~[-6.1205e-22, 6.1205e-22]:
|
||||
* |(lgamma(x) - tf) - t(x - tc)| < 2**-70.5
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
tcu = LD80C(0xbb16c31ab5f1fb71, 0, 1.46163214496836234128e+00L),
|
||||
tfu = LD80C(0xf8cdcde61c520e0f, -4, -1.21486290535849608093e-01L),
|
||||
ttu = LD80C(0xd46ee54b27d4de99, -69, -2.81152980996018785880e-21L),
|
||||
t0u = LD80C(0x80b9406556a62a6b, -68, 3.40728634996055147231e-21L),
|
||||
t1u = LD80C(0xc7e9c6f6df3f8c39, -67, -1.05833162742737073665e-20L),
|
||||
t2u = LD80C(0xf7b95e4771c55d51, -2, 4.83836122723810583532e-01L),
|
||||
t3u = LD80C(0x97213c6e35e119ff, -3, -1.47587722994530691476e-01L),
|
||||
t4u = LD80C(0x845a14a6a81dc94b, -4, 6.46249402389135358063e-02L),
|
||||
t5u = LD80C(0x864d46fa89997796, -5, -3.27885410884846056084e-02L),
|
||||
t6u = LD80C(0x93373cbd00297438, -6, 1.79706751150707171293e-02L),
|
||||
t7u = LD80C(0xa8fcfca7eddc8d1d, -7, -1.03142230361450732547e-02L),
|
||||
t8u = LD80C(0xc7e7015ff4bc45af, -8, 6.10053603296546099193e-03L),
|
||||
t9u = LD80C(0xf178d2247adc5093, -9, -3.68456964904901200152e-03L),
|
||||
t10u = LD80C(0x94188d58f12e5e9f, -9, 2.25976420273774583089e-03L),
|
||||
t11u = LD80C(0xb7cbaef14e1406f1, -10, -1.40224943666225639823e-03L),
|
||||
t12u = LD80C(0xe63a671e6704ea4d, -11, 8.78250640744776944887e-04L),
|
||||
t13u = LD80C(0x914b6c9cae61783e, -11, -5.54255012657716808811e-04L),
|
||||
t14u = LD80C(0xb858f5bdb79276fe, -12, 3.51614951536825927370e-04L),
|
||||
t15u = LD80C(0xea73e744c34b9591, -13, -2.23591563824520112236e-04L),
|
||||
t16u = LD80C(0x99aeabb0d67ba835, -13, 1.46562869351659194136e-04L),
|
||||
t17u = LD80C(0xd7c6938325db2024, -14, -1.02889866046435680588e-04L),
|
||||
t18u = LD80C(0xe24cb1e3b0474775, -15, 5.39540265505221957652e-05L);
|
||||
#define tc (tcu.e)
|
||||
#define tf (tfu.e)
|
||||
#define tt (ttu.e)
|
||||
#define t0 (t0u.e)
|
||||
#define t1 (t1u.e)
|
||||
#define t2 (t2u.e)
|
||||
#define t3 (t3u.e)
|
||||
#define t4 (t4u.e)
|
||||
#define t5 (t5u.e)
|
||||
#define t6 (t6u.e)
|
||||
#define t7 (t7u.e)
|
||||
#define t8 (t8u.e)
|
||||
#define t9 (t9u.e)
|
||||
#define t10 (t10u.e)
|
||||
#define t11 (t11u.e)
|
||||
#define t12 (t12u.e)
|
||||
#define t13 (t13u.e)
|
||||
#define t14 (t14u.e)
|
||||
#define t15 (t15u.e)
|
||||
#define t16 (t16u.e)
|
||||
#define t17 (t17u.e)
|
||||
#define t18 (t18u.e)
|
||||
/*
|
||||
* Domain y in [-0.1, 0.232], range ~[-8.1938e-22, 8.3815e-22]:
|
||||
* |(lgamma(1 + y) + 0.5 * y) / y - u(y) / v(y)| < 2**-71.2
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
u0u = LD80C(0x9e233f1bed863d27, -4, -7.72156649015328606095e-02L),
|
||||
u1u = LD80C(0x98280ee45e4ddd3d, -1, 5.94361239198682739769e-01L),
|
||||
u2u = LD80C(0xe330c8ead4130733, 0, 1.77492629495841234275e+00L),
|
||||
u3u = LD80C(0xd4a213f1a002ec52, 0, 1.66119622514818078064e+00L),
|
||||
u4u = LD80C(0xa5a9ca6f5bc62163, -1, 6.47122051417476492989e-01L),
|
||||
u5u = LD80C(0xc980e49cd5b019e6, -4, 9.83903751718671509455e-02L),
|
||||
u6u = LD80C(0xff636a8bdce7025b, -9, 3.89691687802305743450e-03L),
|
||||
v1u = LD80C(0xbd109c533a19fbf5, 1, 2.95413883330948556544e+00L),
|
||||
v2u = LD80C(0xd295cbf96f31f099, 1, 3.29039286955665403176e+00L),
|
||||
v3u = LD80C(0xdab8bcfee40496cb, 0, 1.70876276441416471410e+00L),
|
||||
v4u = LD80C(0xd2f2dc3638567e9f, -2, 4.12009126299534668571e-01L),
|
||||
v5u = LD80C(0xa07d9b0851070f41, -5, 3.91822868305682491442e-02L),
|
||||
v6u = LD80C(0xe3cd8318f7adb2c4, -11, 8.68998648222144351114e-04L);
|
||||
#define u0 (u0u.e)
|
||||
#define u1 (u1u.e)
|
||||
#define u2 (u2u.e)
|
||||
#define u3 (u3u.e)
|
||||
#define u4 (u4u.e)
|
||||
#define u5 (u5u.e)
|
||||
#define u6 (u6u.e)
|
||||
#define v1 (v1u.e)
|
||||
#define v2 (v2u.e)
|
||||
#define v3 (v3u.e)
|
||||
#define v4 (v4u.e)
|
||||
#define v5 (v5u.e)
|
||||
#define v6 (v6u.e)
|
||||
/*
|
||||
* Domain x in (2, 3], range ~[-3.3648e-22, 3.4416e-22]:
|
||||
* |(lgamma(y+2) - 0.5 * y) / y - s(y)/r(y)| < 2**-72.3
|
||||
* with y = x - 2.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
s0u = LD80C(0x9e233f1bed863d27, -4, -7.72156649015328606095e-02L),
|
||||
s1u = LD80C(0xd3ff0dcc7fa91f94, -3, 2.07027640921219389860e-01L),
|
||||
s2u = LD80C(0xb2bb62782478ef31, -2, 3.49085881391362090549e-01L),
|
||||
s3u = LD80C(0xb49f7438c4611a74, -3, 1.76389518704213357954e-01L),
|
||||
s4u = LD80C(0x9a957008fa27ecf9, -5, 3.77401710862930008071e-02L),
|
||||
s5u = LD80C(0xda9b389a6ca7a7ac, -9, 3.33566791452943399399e-03L),
|
||||
s6u = LD80C(0xbc7a2263faf59c14, -14, 8.98728786745638844395e-05L),
|
||||
r1u = LD80C(0xbf5cff5b11477d4d, 0, 1.49502555796294337722e+00L),
|
||||
r2u = LD80C(0xd9aec89de08e3da6, -1, 8.50323236984473285866e-01L),
|
||||
r3u = LD80C(0xeab7ae5057c443f9, -3, 2.29216312078225806131e-01L),
|
||||
r4u = LD80C(0xf29707d9bd2b1e37, -6, 2.96130326586640089145e-02L),
|
||||
r5u = LD80C(0xd376c2f09736c5a3, -10, 1.61334161411590662495e-03L),
|
||||
r6u = LD80C(0xc985983d0cd34e3d, -16, 2.40232770710953450636e-05L),
|
||||
r7u = LD80C(0xe5c7a4f7fc2ef13d, -25, -5.34997929289167573510e-08L);
|
||||
#define s0 (s0u.e)
|
||||
#define s1 (s1u.e)
|
||||
#define s2 (s2u.e)
|
||||
#define s3 (s3u.e)
|
||||
#define s4 (s4u.e)
|
||||
#define s5 (s5u.e)
|
||||
#define s6 (s6u.e)
|
||||
#define r1 (r1u.e)
|
||||
#define r2 (r2u.e)
|
||||
#define r3 (r3u.e)
|
||||
#define r4 (r4u.e)
|
||||
#define r5 (r5u.e)
|
||||
#define r6 (r6u.e)
|
||||
#define r7 (r7u.e)
|
||||
/*
|
||||
* Domain z in [8, 0x1p70], range ~[-3.0235e-22, 3.0563e-22]:
|
||||
* |lgamma(x) - (x - 0.5) * (log(x) - 1) - w(1/x)| < 2**-71.7
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
w0u = LD80C(0xd67f1c864beb4a69, -2, 4.18938533204672741776e-01L),
|
||||
w1u = LD80C(0xaaaaaaaaaaaaaaa1, -4, 8.33333333333333332678e-02L),
|
||||
w2u = LD80C(0xb60b60b60b5491c9, -9, -2.77777777777760927870e-03L),
|
||||
w3u = LD80C(0xd00d00cf58aede4c, -11, 7.93650793490637233668e-04L),
|
||||
w4u = LD80C(0x9c09bf626783d4a5, -11, -5.95238023926039051268e-04L),
|
||||
w5u = LD80C(0xdca7cadc5baa517b, -11, 8.41733700408000822962e-04L),
|
||||
w6u = LD80C(0xfb060e361e1ffd07, -10, -1.91515849570245136604e-03L),
|
||||
w7u = LD80C(0xcbd5101bb58d1f2b, -8, 6.22046743903262649294e-03L),
|
||||
w8u = LD80C(0xad27a668d32c821b, -6, -2.11370706734662081843e-02L);
|
||||
#define w0 (w0u.e)
|
||||
#define w1 (w1u.e)
|
||||
#define w2 (w2u.e)
|
||||
#define w3 (w3u.e)
|
||||
#define w4 (w4u.e)
|
||||
#define w5 (w5u.e)
|
||||
#define w6 (w6u.e)
|
||||
#define w7 (w7u.e)
|
||||
#define w8 (w8u.e)
|
||||
|
||||
static long double
|
||||
sin_pil(long double x)
|
||||
{
|
||||
volatile long double vz;
|
||||
long double y,z;
|
||||
uint64_t n;
|
||||
uint16_t hx;
|
||||
|
||||
y = -x;
|
||||
|
||||
vz = y+0x1p63;
|
||||
z = vz-0x1p63;
|
||||
if (z == y)
|
||||
return zero;
|
||||
|
||||
vz = y+0x1p61;
|
||||
EXTRACT_LDBL80_WORDS(hx,n,vz);
|
||||
z = vz-0x1p61;
|
||||
if (z > y) {
|
||||
z -= 0.25; /* adjust to round down */
|
||||
n--;
|
||||
}
|
||||
n &= 7; /* octant of y mod 2 */
|
||||
y = y - z + n * 0.25; /* y mod 2 */
|
||||
|
||||
switch (n) {
|
||||
case 0: y = __kernel_sinl(pi*y,zero,0); break;
|
||||
case 1:
|
||||
case 2: y = __kernel_cosl(pi*(0.5-y),zero); break;
|
||||
case 3:
|
||||
case 4: y = __kernel_sinl(pi*(one-y),zero,0); break;
|
||||
case 5:
|
||||
case 6: y = -__kernel_cosl(pi*(y-1.5),zero); break;
|
||||
default: y = __kernel_sinl(pi*(y-2.0),zero,0); break;
|
||||
}
|
||||
return -y;
|
||||
}
|
||||
|
||||
long double
|
||||
lgammal_r(long double x, int *signgamp)
|
||||
{
|
||||
long double nadj,p,p1,p2,q,r,t,w,y,z;
|
||||
uint64_t lx;
|
||||
int i;
|
||||
uint16_t hx,ix;
|
||||
|
||||
EXTRACT_LDBL80_WORDS(hx,lx,x);
|
||||
|
||||
/* purge +-Inf and NaNs */
|
||||
*signgamp = 1;
|
||||
ix = hx&0x7fff;
|
||||
if(ix==0x7fff) return x*x;
|
||||
|
||||
ENTERI();
|
||||
|
||||
/* purge +-0 and tiny arguments */
|
||||
*signgamp = 1-2*(hx>>15);
|
||||
if(ix<0x3fff-67) { /* |x|<2**-(p+3), return -log(|x|) */
|
||||
if((ix|lx)==0)
|
||||
RETURNI(one/vzero);
|
||||
RETURNI(-logl(fabsl(x)));
|
||||
}
|
||||
|
||||
/* purge negative integers and start evaluation for other x < 0 */
|
||||
if(hx&0x8000) {
|
||||
*signgamp = 1;
|
||||
if(ix>=0x3fff+63) /* |x|>=2**(p-1), must be -integer */
|
||||
RETURNI(one/vzero);
|
||||
t = sin_pil(x);
|
||||
if(t==zero) RETURNI(one/vzero); /* -integer */
|
||||
nadj = logl(pi/fabsl(t*x));
|
||||
if(t<zero) *signgamp = -1;
|
||||
x = -x;
|
||||
}
|
||||
|
||||
/* purge 1 and 2 */
|
||||
if((ix==0x3fff || ix==0x4000) && lx==0x8000000000000000ULL) r = 0;
|
||||
/* for x < 2.0 */
|
||||
else if(ix<0x4000) {
|
||||
/*
|
||||
* XXX Supposedly, one can use the following information to replace the
|
||||
* XXX FP rational expressions. A similar approach is appropriate
|
||||
* XXX for ld128, but one (may need?) needs to consider llx, too.
|
||||
*
|
||||
* 8.9999961853027344e-01 3ffe e666600000000000
|
||||
* 7.3159980773925781e-01 3ffe bb4a200000000000
|
||||
* 2.3163998126983643e-01 3ffc ed33080000000000
|
||||
* 1.7316312789916992e+00 3fff dda6180000000000
|
||||
* 1.2316322326660156e+00 3fff 9da6200000000000
|
||||
*/
|
||||
if(x<8.9999961853027344e-01) {
|
||||
r = -logl(x);
|
||||
if(x>=7.3159980773925781e-01) {y = 1-x; i= 0;}
|
||||
else if(x>=2.3163998126983643e-01) {y= x-(tc-1); i=1;}
|
||||
else {y = x; i=2;}
|
||||
} else {
|
||||
r = 0;
|
||||
if(x>=1.7316312789916992e+00) {y=2-x;i=0;}
|
||||
else if(x>=1.2316322326660156e+00) {y=x-tc;i=1;}
|
||||
else {y=x-1;i=2;}
|
||||
}
|
||||
switch(i) {
|
||||
case 0:
|
||||
z = y*y;
|
||||
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*(a10+z*a12)))));
|
||||
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*(a11+z*a13))))));
|
||||
p = y*p1+p2;
|
||||
r += p-y/2; break;
|
||||
case 1:
|
||||
p = t0+y*t1+tt+y*y*(t2+y*(t3+y*(t4+y*(t5+y*(t6+y*(t7+y*(t8+
|
||||
y*(t9+y*(t10+y*(t11+y*(t12+y*(t13+y*(t14+y*(t15+y*(t16+
|
||||
y*(t17+y*t18))))))))))))))));
|
||||
r += tf + p; break;
|
||||
case 2:
|
||||
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*(u5+y*u6))))));
|
||||
p2 = 1+y*(v1+y*(v2+y*(v3+y*(v4+y*(v5+y*v6)))));
|
||||
r += p1/p2-y/2;
|
||||
}
|
||||
}
|
||||
/* x < 8.0 */
|
||||
else if(ix<0x4002) {
|
||||
i = x;
|
||||
y = x-i;
|
||||
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
|
||||
q = 1+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*(r6+y*r7))))));
|
||||
r = y/2+p/q;
|
||||
z = 1; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
switch(i) {
|
||||
case 7: z *= (y+6); /* FALLTHRU */
|
||||
case 6: z *= (y+5); /* FALLTHRU */
|
||||
case 5: z *= (y+4); /* FALLTHRU */
|
||||
case 4: z *= (y+3); /* FALLTHRU */
|
||||
case 3: z *= (y+2); /* FALLTHRU */
|
||||
r += logl(z); break;
|
||||
}
|
||||
/* 8.0 <= x < 2**(p+3) */
|
||||
} else if (ix<0x3fff+67) {
|
||||
t = logl(x);
|
||||
z = one/x;
|
||||
y = z*z;
|
||||
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*(w6+y*(w7+y*w8)))))));
|
||||
r = (x-half)*(t-one)+w;
|
||||
/* 2**(p+3) <= x <= inf */
|
||||
} else
|
||||
r = x*(logl(x)-1);
|
||||
if(hx&0x8000) r = nadj - r;
|
||||
RETURNI(r);
|
||||
}
|
|
@ -0,0 +1,662 @@
|
|||
/*-
|
||||
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
/*
|
||||
* Polynomial evaluator:
|
||||
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
|
||||
*/
|
||||
static inline long double
|
||||
__polevll(long double x, long double *PP, int n)
|
||||
{
|
||||
long double y;
|
||||
long double *P;
|
||||
|
||||
P = PP;
|
||||
y = *P++;
|
||||
do {
|
||||
y = y * x + *P++;
|
||||
} while (--n);
|
||||
|
||||
return (y);
|
||||
}
|
||||
|
||||
/*
|
||||
* Polynomial evaluator:
|
||||
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
|
||||
*/
|
||||
static inline long double
|
||||
__p1evll(long double x, long double *PP, int n)
|
||||
{
|
||||
long double y;
|
||||
long double *P;
|
||||
|
||||
P = PP;
|
||||
n -= 1;
|
||||
y = x + *P++;
|
||||
do {
|
||||
y = y * x + *P++;
|
||||
} while (--n);
|
||||
|
||||
return (y);
|
||||
}
|
||||
|
||||
/* powl.c
|
||||
*
|
||||
* Power function, long double precision
|
||||
*
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* long double x, y, z, powl();
|
||||
*
|
||||
* z = powl( x, y );
|
||||
*
|
||||
*
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* Computes x raised to the yth power. Analytically,
|
||||
*
|
||||
* x**y = exp( y log(x) ).
|
||||
*
|
||||
* Following Cody and Waite, this program uses a lookup table
|
||||
* of 2**-i/32 and pseudo extended precision arithmetic to
|
||||
* obtain several extra bits of accuracy in both the logarithm
|
||||
* and the exponential.
|
||||
*
|
||||
*
|
||||
*
|
||||
* ACCURACY:
|
||||
*
|
||||
* The relative error of pow(x,y) can be estimated
|
||||
* by y dl ln(2), where dl is the absolute error of
|
||||
* the internally computed base 2 logarithm. At the ends
|
||||
* of the approximation interval the logarithm equal 1/32
|
||||
* and its relative error is about 1 lsb = 1.1e-19. Hence
|
||||
* the predicted relative error in the result is 2.3e-21 y .
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
*
|
||||
* IEEE +-1000 40000 2.8e-18 3.7e-19
|
||||
* .001 < x < 1000, with log(x) uniformly distributed.
|
||||
* -1000 < y < 1000, y uniformly distributed.
|
||||
*
|
||||
* IEEE 0,8700 60000 6.5e-18 1.0e-18
|
||||
* 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
|
||||
*
|
||||
*
|
||||
* ERROR MESSAGES:
|
||||
*
|
||||
* message condition value returned
|
||||
* pow overflow x**y > MAXNUM INFINITY
|
||||
* pow underflow x**y < 1/MAXNUM 0.0
|
||||
* pow domain x<0 and y noninteger 0.0
|
||||
*
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
/* Table size */
|
||||
#define NXT 32
|
||||
/* log2(Table size) */
|
||||
#define LNXT 5
|
||||
|
||||
/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
|
||||
* on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
|
||||
*/
|
||||
static long double P[] = {
|
||||
8.3319510773868690346226E-4L,
|
||||
4.9000050881978028599627E-1L,
|
||||
1.7500123722550302671919E0L,
|
||||
1.4000100839971580279335E0L,
|
||||
};
|
||||
static long double Q[] = {
|
||||
/* 1.0000000000000000000000E0L,*/
|
||||
5.2500282295834889175431E0L,
|
||||
8.4000598057587009834666E0L,
|
||||
4.2000302519914740834728E0L,
|
||||
};
|
||||
/* A[i] = 2^(-i/32), rounded to IEEE long double precision.
|
||||
* If i is even, A[i] + B[i/2] gives additional accuracy.
|
||||
*/
|
||||
static long double A[33] = {
|
||||
1.0000000000000000000000E0L,
|
||||
9.7857206208770013448287E-1L,
|
||||
9.5760328069857364691013E-1L,
|
||||
9.3708381705514995065011E-1L,
|
||||
9.1700404320467123175367E-1L,
|
||||
8.9735453750155359320742E-1L,
|
||||
8.7812608018664974155474E-1L,
|
||||
8.5930964906123895780165E-1L,
|
||||
8.4089641525371454301892E-1L,
|
||||
8.2287773907698242225554E-1L,
|
||||
8.0524516597462715409607E-1L,
|
||||
7.8799042255394324325455E-1L,
|
||||
7.7110541270397041179298E-1L,
|
||||
7.5458221379671136985669E-1L,
|
||||
7.3841307296974965571198E-1L,
|
||||
7.2259040348852331001267E-1L,
|
||||
7.0710678118654752438189E-1L,
|
||||
6.9195494098191597746178E-1L,
|
||||
6.7712777346844636413344E-1L,
|
||||
6.6261832157987064729696E-1L,
|
||||
6.4841977732550483296079E-1L,
|
||||
6.3452547859586661129850E-1L,
|
||||
6.2092890603674202431705E-1L,
|
||||
6.0762367999023443907803E-1L,
|
||||
5.9460355750136053334378E-1L,
|
||||
5.8186242938878875689693E-1L,
|
||||
5.6939431737834582684856E-1L,
|
||||
5.5719337129794626814472E-1L,
|
||||
5.4525386633262882960438E-1L,
|
||||
5.3357020033841180906486E-1L,
|
||||
5.2213689121370692017331E-1L,
|
||||
5.1094857432705833910408E-1L,
|
||||
5.0000000000000000000000E-1L,
|
||||
};
|
||||
static long double B[17] = {
|
||||
0.0000000000000000000000E0L,
|
||||
2.6176170809902549338711E-20L,
|
||||
-1.0126791927256478897086E-20L,
|
||||
1.3438228172316276937655E-21L,
|
||||
1.2207982955417546912101E-20L,
|
||||
-6.3084814358060867200133E-21L,
|
||||
1.3164426894366316434230E-20L,
|
||||
-1.8527916071632873716786E-20L,
|
||||
1.8950325588932570796551E-20L,
|
||||
1.5564775779538780478155E-20L,
|
||||
6.0859793637556860974380E-21L,
|
||||
-2.0208749253662532228949E-20L,
|
||||
1.4966292219224761844552E-20L,
|
||||
3.3540909728056476875639E-21L,
|
||||
-8.6987564101742849540743E-22L,
|
||||
-1.2327176863327626135542E-20L,
|
||||
0.0000000000000000000000E0L,
|
||||
};
|
||||
|
||||
/* 2^x = 1 + x P(x),
|
||||
* on the interval -1/32 <= x <= 0
|
||||
*/
|
||||
static long double R[] = {
|
||||
1.5089970579127659901157E-5L,
|
||||
1.5402715328927013076125E-4L,
|
||||
1.3333556028915671091390E-3L,
|
||||
9.6181291046036762031786E-3L,
|
||||
5.5504108664798463044015E-2L,
|
||||
2.4022650695910062854352E-1L,
|
||||
6.9314718055994530931447E-1L,
|
||||
};
|
||||
|
||||
#define douba(k) A[k]
|
||||
#define doubb(k) B[k]
|
||||
#define MEXP (NXT*16384.0L)
|
||||
/* The following if denormal numbers are supported, else -MEXP: */
|
||||
#define MNEXP (-NXT*(16384.0L+64.0L))
|
||||
/* log2(e) - 1 */
|
||||
#define LOG2EA 0.44269504088896340735992L
|
||||
|
||||
#define F W
|
||||
#define Fa Wa
|
||||
#define Fb Wb
|
||||
#define G W
|
||||
#define Ga Wa
|
||||
#define Gb u
|
||||
#define H W
|
||||
#define Ha Wb
|
||||
#define Hb Wb
|
||||
|
||||
static const long double MAXLOGL = 1.1356523406294143949492E4L;
|
||||
static const long double MINLOGL = -1.13994985314888605586758E4L;
|
||||
static const long double LOGE2L = 6.9314718055994530941723E-1L;
|
||||
static volatile long double z;
|
||||
static long double w, W, Wa, Wb, ya, yb, u;
|
||||
static const long double huge = 0x1p10000L;
|
||||
#if 0 /* XXX Prevent gcc from erroneously constant folding this. */
|
||||
static const long double twom10000 = 0x1p-10000L;
|
||||
#else
|
||||
static volatile long double twom10000 = 0x1p-10000L;
|
||||
#endif
|
||||
|
||||
static long double reducl( long double );
|
||||
static long double powil ( long double, int );
|
||||
|
||||
long double
|
||||
powl(long double x, long double y)
|
||||
{
|
||||
/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
|
||||
int i, nflg, iyflg, yoddint;
|
||||
long e;
|
||||
|
||||
if( y == 0.0L )
|
||||
return( 1.0L );
|
||||
|
||||
if( x == 1.0L )
|
||||
return( 1.0L );
|
||||
|
||||
if( isnan(x) )
|
||||
return ( nan_mix(x, y) );
|
||||
if( isnan(y) )
|
||||
return ( nan_mix(x, y) );
|
||||
|
||||
if( y == 1.0L )
|
||||
return( x );
|
||||
|
||||
if( !isfinite(y) && x == -1.0L )
|
||||
return( 1.0L );
|
||||
|
||||
if( y >= LDBL_MAX )
|
||||
{
|
||||
if( x > 1.0L )
|
||||
return( INFINITY );
|
||||
if( x > 0.0L && x < 1.0L )
|
||||
return( 0.0L );
|
||||
if( x < -1.0L )
|
||||
return( INFINITY );
|
||||
if( x > -1.0L && x < 0.0L )
|
||||
return( 0.0L );
|
||||
}
|
||||
if( y <= -LDBL_MAX )
|
||||
{
|
||||
if( x > 1.0L )
|
||||
return( 0.0L );
|
||||
if( x > 0.0L && x < 1.0L )
|
||||
return( INFINITY );
|
||||
if( x < -1.0L )
|
||||
return( 0.0L );
|
||||
if( x > -1.0L && x < 0.0L )
|
||||
return( INFINITY );
|
||||
}
|
||||
if( x >= LDBL_MAX )
|
||||
{
|
||||
if( y > 0.0L )
|
||||
return( INFINITY );
|
||||
return( 0.0L );
|
||||
}
|
||||
|
||||
w = floorl(y);
|
||||
/* Set iyflg to 1 if y is an integer. */
|
||||
iyflg = 0;
|
||||
if( w == y )
|
||||
iyflg = 1;
|
||||
|
||||
/* Test for odd integer y. */
|
||||
yoddint = 0;
|
||||
if( iyflg )
|
||||
{
|
||||
ya = fabsl(y);
|
||||
ya = floorl(0.5L * ya);
|
||||
yb = 0.5L * fabsl(w);
|
||||
if( ya != yb )
|
||||
yoddint = 1;
|
||||
}
|
||||
|
||||
if( x <= -LDBL_MAX )
|
||||
{
|
||||
if( y > 0.0L )
|
||||
{
|
||||
if( yoddint )
|
||||
return( -INFINITY );
|
||||
return( INFINITY );
|
||||
}
|
||||
if( y < 0.0L )
|
||||
{
|
||||
if( yoddint )
|
||||
return( -0.0L );
|
||||
return( 0.0 );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
nflg = 0; /* flag = 1 if x<0 raised to integer power */
|
||||
if( x <= 0.0L )
|
||||
{
|
||||
if( x == 0.0L )
|
||||
{
|
||||
if( y < 0.0 )
|
||||
{
|
||||
if( signbit(x) && yoddint )
|
||||
return( -INFINITY );
|
||||
return( INFINITY );
|
||||
}
|
||||
if( y > 0.0 )
|
||||
{
|
||||
if( signbit(x) && yoddint )
|
||||
return( -0.0L );
|
||||
return( 0.0 );
|
||||
}
|
||||
if( y == 0.0L )
|
||||
return( 1.0L ); /* 0**0 */
|
||||
else
|
||||
return( 0.0L ); /* 0**y */
|
||||
}
|
||||
else
|
||||
{
|
||||
if( iyflg == 0 )
|
||||
return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
|
||||
nflg = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* Integer power of an integer. */
|
||||
|
||||
if( iyflg )
|
||||
{
|
||||
i = w;
|
||||
w = floorl(x);
|
||||
if( (w == x) && (fabsl(y) < 32768.0) )
|
||||
{
|
||||
w = powil( x, (int) y );
|
||||
return( w );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( nflg )
|
||||
x = fabsl(x);
|
||||
|
||||
/* separate significand from exponent */
|
||||
x = frexpl( x, &i );
|
||||
e = i;
|
||||
|
||||
/* find significand in antilog table A[] */
|
||||
i = 1;
|
||||
if( x <= douba(17) )
|
||||
i = 17;
|
||||
if( x <= douba(i+8) )
|
||||
i += 8;
|
||||
if( x <= douba(i+4) )
|
||||
i += 4;
|
||||
if( x <= douba(i+2) )
|
||||
i += 2;
|
||||
if( x >= douba(1) )
|
||||
i = -1;
|
||||
i += 1;
|
||||
|
||||
|
||||
/* Find (x - A[i])/A[i]
|
||||
* in order to compute log(x/A[i]):
|
||||
*
|
||||
* log(x) = log( a x/a ) = log(a) + log(x/a)
|
||||
*
|
||||
* log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a
|
||||
*/
|
||||
x -= douba(i);
|
||||
x -= doubb(i/2);
|
||||
x /= douba(i);
|
||||
|
||||
|
||||
/* rational approximation for log(1+v):
|
||||
*
|
||||
* log(1+v) = v - v**2/2 + v**3 P(v) / Q(v)
|
||||
*/
|
||||
z = x*x;
|
||||
w = x * ( z * __polevll( x, P, 3 ) / __p1evll( x, Q, 3 ) );
|
||||
w = w - ldexpl( z, -1 ); /* w - 0.5 * z */
|
||||
|
||||
/* Convert to base 2 logarithm:
|
||||
* multiply by log2(e) = 1 + LOG2EA
|
||||
*/
|
||||
z = LOG2EA * w;
|
||||
z += w;
|
||||
z += LOG2EA * x;
|
||||
z += x;
|
||||
|
||||
/* Compute exponent term of the base 2 logarithm. */
|
||||
w = -i;
|
||||
w = ldexpl( w, -LNXT ); /* divide by NXT */
|
||||
w += e;
|
||||
/* Now base 2 log of x is w + z. */
|
||||
|
||||
/* Multiply base 2 log by y, in extended precision. */
|
||||
|
||||
/* separate y into large part ya
|
||||
* and small part yb less than 1/NXT
|
||||
*/
|
||||
ya = reducl(y);
|
||||
yb = y - ya;
|
||||
|
||||
/* (w+z)(ya+yb)
|
||||
* = w*ya + w*yb + z*y
|
||||
*/
|
||||
F = z * y + w * yb;
|
||||
Fa = reducl(F);
|
||||
Fb = F - Fa;
|
||||
|
||||
G = Fa + w * ya;
|
||||
Ga = reducl(G);
|
||||
Gb = G - Ga;
|
||||
|
||||
H = Fb + Gb;
|
||||
Ha = reducl(H);
|
||||
w = ldexpl( Ga+Ha, LNXT );
|
||||
|
||||
/* Test the power of 2 for overflow */
|
||||
if( w > MEXP )
|
||||
return (huge * huge); /* overflow */
|
||||
|
||||
if( w < MNEXP )
|
||||
return (twom10000 * twom10000); /* underflow */
|
||||
|
||||
e = w;
|
||||
Hb = H - Ha;
|
||||
|
||||
if( Hb > 0.0L )
|
||||
{
|
||||
e += 1;
|
||||
Hb -= (1.0L/NXT); /*0.0625L;*/
|
||||
}
|
||||
|
||||
/* Now the product y * log2(x) = Hb + e/NXT.
|
||||
*
|
||||
* Compute base 2 exponential of Hb,
|
||||
* where -0.0625 <= Hb <= 0.
|
||||
*/
|
||||
z = Hb * __polevll( Hb, R, 6 ); /* z = 2**Hb - 1 */
|
||||
|
||||
/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
|
||||
* Find lookup table entry for the fractional power of 2.
|
||||
*/
|
||||
if( e < 0 )
|
||||
i = 0;
|
||||
else
|
||||
i = 1;
|
||||
i = e/NXT + i;
|
||||
e = NXT*i - e;
|
||||
w = douba( e );
|
||||
z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */
|
||||
z = z + w;
|
||||
z = ldexpl( z, i ); /* multiply by integer power of 2 */
|
||||
|
||||
if( nflg )
|
||||
{
|
||||
/* For negative x,
|
||||
* find out if the integer exponent
|
||||
* is odd or even.
|
||||
*/
|
||||
w = ldexpl( y, -1 );
|
||||
w = floorl(w);
|
||||
w = ldexpl( w, 1 );
|
||||
if( w != y )
|
||||
z = -z; /* odd exponent */
|
||||
}
|
||||
|
||||
return( z );
|
||||
}
|
||||
|
||||
|
||||
/* Find a multiple of 1/NXT that is within 1/NXT of x. */
|
||||
static inline long double
|
||||
reducl(long double x)
|
||||
{
|
||||
long double t;
|
||||
|
||||
t = ldexpl( x, LNXT );
|
||||
t = floorl( t );
|
||||
t = ldexpl( t, -LNXT );
|
||||
return(t);
|
||||
}
|
||||
|
||||
/* powil.c
|
||||
*
|
||||
* Real raised to integer power, long double precision
|
||||
*
|
||||
*
|
||||
*
|
||||
* SYNOPSIS:
|
||||
*
|
||||
* long double x, y, powil();
|
||||
* int n;
|
||||
*
|
||||
* y = powil( x, n );
|
||||
*
|
||||
*
|
||||
*
|
||||
* DESCRIPTION:
|
||||
*
|
||||
* Returns argument x raised to the nth power.
|
||||
* The routine efficiently decomposes n as a sum of powers of
|
||||
* two. The desired power is a product of two-to-the-kth
|
||||
* powers of x. Thus to compute the 32767 power of x requires
|
||||
* 28 multiplications instead of 32767 multiplications.
|
||||
*
|
||||
*
|
||||
*
|
||||
* ACCURACY:
|
||||
*
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic x domain n domain # trials peak rms
|
||||
* IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18
|
||||
* IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18
|
||||
* IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17
|
||||
*
|
||||
* Returns MAXNUM on overflow, zero on underflow.
|
||||
*
|
||||
*/
|
||||
|
||||
static long double
|
||||
powil(long double x, int nn)
|
||||
{
|
||||
long double ww, y;
|
||||
long double s;
|
||||
int n, e, sign, asign, lx;
|
||||
|
||||
if( x == 0.0L )
|
||||
{
|
||||
if( nn == 0 )
|
||||
return( 1.0L );
|
||||
else if( nn < 0 )
|
||||
return( LDBL_MAX );
|
||||
else
|
||||
return( 0.0L );
|
||||
}
|
||||
|
||||
if( nn == 0 )
|
||||
return( 1.0L );
|
||||
|
||||
|
||||
if( x < 0.0L )
|
||||
{
|
||||
asign = -1;
|
||||
x = -x;
|
||||
}
|
||||
else
|
||||
asign = 0;
|
||||
|
||||
|
||||
if( nn < 0 )
|
||||
{
|
||||
sign = -1;
|
||||
n = -nn;
|
||||
}
|
||||
else
|
||||
{
|
||||
sign = 1;
|
||||
n = nn;
|
||||
}
|
||||
|
||||
/* Overflow detection */
|
||||
|
||||
/* Calculate approximate logarithm of answer */
|
||||
s = x;
|
||||
s = frexpl( s, &lx );
|
||||
e = (lx - 1)*n;
|
||||
if( (e == 0) || (e > 64) || (e < -64) )
|
||||
{
|
||||
s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
|
||||
s = (2.9142135623730950L * s - 0.5L + lx) * nn * LOGE2L;
|
||||
}
|
||||
else
|
||||
{
|
||||
s = LOGE2L * e;
|
||||
}
|
||||
|
||||
if( s > MAXLOGL )
|
||||
return (huge * huge); /* overflow */
|
||||
|
||||
if( s < MINLOGL )
|
||||
return (twom10000 * twom10000); /* underflow */
|
||||
/* Handle tiny denormal answer, but with less accuracy
|
||||
* since roundoff error in 1.0/x will be amplified.
|
||||
* The precise demarcation should be the gradual underflow threshold.
|
||||
*/
|
||||
if( s < (-MAXLOGL+2.0L) )
|
||||
{
|
||||
x = 1.0L/x;
|
||||
sign = -sign;
|
||||
}
|
||||
|
||||
/* First bit of the power */
|
||||
if( n & 1 )
|
||||
y = x;
|
||||
|
||||
else
|
||||
{
|
||||
y = 1.0L;
|
||||
asign = 0;
|
||||
}
|
||||
|
||||
ww = x;
|
||||
n >>= 1;
|
||||
while( n )
|
||||
{
|
||||
ww = ww * ww; /* arg to the 2-to-the-kth power */
|
||||
if( n & 1 ) /* if that bit is set, then include in product */
|
||||
y *= ww;
|
||||
n >>= 1;
|
||||
}
|
||||
|
||||
if( asign )
|
||||
y = -y; /* odd power of negative number */
|
||||
if( sign < 0 )
|
||||
y = 1.0L/y;
|
||||
return(y);
|
||||
}
|
|
@ -0,0 +1,143 @@
|
|||
/* From: @(#)e_rem_pio2.c 1.4 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/* ld80 version of __ieee754_rem_pio2l(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __kernel_rem_pio2()
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "../ld/fpmath.h"
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
/*
|
||||
* invpio2: 64 bits of 2/pi
|
||||
* pio2_1: first 39 bits of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 39 bits of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 39 bits of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
static const double
|
||||
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
pio2_1 = 1.57079632679597125389e+00, /* 0x3FF921FB, 0x54444000 */
|
||||
pio2_2 = -1.07463465549783099519e-12, /* -0x12e7b967674000.0p-92 */
|
||||
pio2_3 = 6.36831716351370313614e-25; /* 0x18a2e037074000.0p-133 */
|
||||
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
/* Long double constants are slow on these arches, and broken on i386. */
|
||||
static const volatile double
|
||||
invpio2hi = 6.3661977236758138e-01, /* 0x145f306dc9c883.0p-53 */
|
||||
invpio2lo = -3.9356538861223811e-17, /* -0x16b00000000000.0p-107 */
|
||||
pio2_1thi = -1.0746346554971943e-12, /* -0x12e7b9676733af.0p-92 */
|
||||
pio2_1tlo = 8.8451028997905949e-29, /* 0x1c080000000000.0p-146 */
|
||||
pio2_2thi = 6.3683171635109499e-25, /* 0x18a2e03707344a.0p-133 */
|
||||
pio2_2tlo = 2.3183081793789774e-41, /* 0x10280000000000.0p-187 */
|
||||
pio2_3thi = -2.7529965190440717e-37, /* -0x176b7ed8fbbacc.0p-174 */
|
||||
pio2_3tlo = -4.2006647512740502e-54; /* -0x19c00000000000.0p-230 */
|
||||
#define invpio2 ((long double)invpio2hi + invpio2lo)
|
||||
#define pio2_1t ((long double)pio2_1thi + pio2_1tlo)
|
||||
#define pio2_2t ((long double)pio2_2thi + pio2_2tlo)
|
||||
#define pio2_3t ((long double)pio2_3thi + pio2_3tlo)
|
||||
#else
|
||||
static const long double
|
||||
invpio2 = 6.36619772367581343076e-01L, /* 0xa2f9836e4e44152a.0p-64 */
|
||||
pio2_1t = -1.07463465549719416346e-12L, /* -0x973dcb3b399d747f.0p-103 */
|
||||
pio2_2t = 6.36831716351095013979e-25L, /* 0xc51701b839a25205.0p-144 */
|
||||
pio2_3t = -2.75299651904407171810e-37L; /* -0xbb5bf6c7ddd660ce.0p-185 */
|
||||
#endif
|
||||
|
||||
static inline __always_inline int
|
||||
__ieee754_rem_pio2l(long double x, long double *y)
|
||||
{
|
||||
union IEEEl2bits u,u1;
|
||||
long double z,w,t,r,fn;
|
||||
double tx[3],ty[2];
|
||||
int e0,ex,i,j,nx,n;
|
||||
int16_t expsign;
|
||||
|
||||
u.e = x;
|
||||
expsign = u.xbits.expsign;
|
||||
ex = expsign & 0x7fff;
|
||||
if (ex < BIAS + 25 || (ex == BIAS + 25 && u.bits.manh < 0xc90fdaa2)) {
|
||||
/* |x| ~< 2^25*(pi/2), medium size */
|
||||
fn = rnintl(x*invpio2);
|
||||
n = irint(fn);
|
||||
r = x-fn*pio2_1;
|
||||
w = fn*pio2_1t; /* 1st round good to 102 bit */
|
||||
{
|
||||
union IEEEl2bits u2;
|
||||
int ex1;
|
||||
j = ex;
|
||||
y[0] = r-w;
|
||||
u2.e = y[0];
|
||||
ex1 = u2.xbits.expsign & 0x7fff;
|
||||
i = j-ex1;
|
||||
if(i>22) { /* 2nd iteration needed, good to 141 */
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
r = t-w;
|
||||
w = fn*pio2_2t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
u2.e = y[0];
|
||||
ex1 = u2.xbits.expsign & 0x7fff;
|
||||
i = j-ex1;
|
||||
if(i>61) { /* 3rd iteration need, 180 bits acc */
|
||||
t = r; /* will cover all possible cases */
|
||||
w = fn*pio2_3;
|
||||
r = t-w;
|
||||
w = fn*pio2_3t-((t-r)-w);
|
||||
y[0] = r-w;
|
||||
}
|
||||
}
|
||||
}
|
||||
y[1] = (r-y[0])-w;
|
||||
return n;
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if(ex==0x7fff) { /* x is inf or NaN */
|
||||
y[0]=y[1]=x-x; return 0;
|
||||
}
|
||||
/* set z = scalbn(|x|,ilogb(x)-23) */
|
||||
u1.e = x;
|
||||
e0 = ex - BIAS - 23; /* e0 = ilogb(|x|)-23; */
|
||||
u1.xbits.expsign = ex - e0;
|
||||
z = u1.e;
|
||||
for(i=0;i<2;i++) {
|
||||
tx[i] = (double)((int32_t)(z));
|
||||
z = (z-tx[i])*two24;
|
||||
}
|
||||
tx[2] = z;
|
||||
nx = 3;
|
||||
while(tx[nx-1]==zero) nx--; /* skip zero term */
|
||||
n = __kernel_rem_pio2(tx,ty,e0,nx,2);
|
||||
r = (long double)ty[0] + ty[1];
|
||||
w = ty[1] - (r - ty[0]);
|
||||
if(expsign<0) {y[0] = -r; y[1] = -w; return -n;}
|
||||
y[0] = r; y[1] = w; return n;
|
||||
}
|
|
@ -0,0 +1,84 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2008 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include "invtrig.h"
|
||||
|
||||
/*
|
||||
* asinl() and acosl()
|
||||
*/
|
||||
const long double
|
||||
pS0 = 1.66666666666666666631e-01L,
|
||||
pS1 = -4.16313987993683104320e-01L,
|
||||
pS2 = 3.69068046323246813704e-01L,
|
||||
pS3 = -1.36213932016738603108e-01L,
|
||||
pS4 = 1.78324189708471965733e-02L,
|
||||
pS5 = -2.19216428382605211588e-04L,
|
||||
pS6 = -7.10526623669075243183e-06L,
|
||||
qS1 = -2.94788392796209867269e+00L,
|
||||
qS2 = 3.27309890266528636716e+00L,
|
||||
qS3 = -1.68285799854822427013e+00L,
|
||||
qS4 = 3.90699412641738801874e-01L,
|
||||
qS5 = -3.14365703596053263322e-02L;
|
||||
|
||||
/*
|
||||
* atanl()
|
||||
*/
|
||||
const long double atanhi[] = {
|
||||
4.63647609000806116202e-01L,
|
||||
7.85398163397448309628e-01L,
|
||||
9.82793723247329067960e-01L,
|
||||
1.57079632679489661926e+00L,
|
||||
};
|
||||
|
||||
const long double atanlo[] = {
|
||||
1.18469937025062860669e-20L,
|
||||
-1.25413940316708300586e-20L,
|
||||
2.55232234165405176172e-20L,
|
||||
-2.50827880633416601173e-20L,
|
||||
};
|
||||
|
||||
const long double aT[] = {
|
||||
3.33333333333333333017e-01L,
|
||||
-1.99999999999999632011e-01L,
|
||||
1.42857142857046531280e-01L,
|
||||
-1.11111111100562372733e-01L,
|
||||
9.09090902935647302252e-02L,
|
||||
-7.69230552476207730353e-02L,
|
||||
6.66661718042406260546e-02L,
|
||||
-5.88158892835030888692e-02L,
|
||||
5.25499891539726639379e-02L,
|
||||
-4.70119845393155721494e-02L,
|
||||
4.03539201366454414072e-02L,
|
||||
-2.91303858419364158725e-02L,
|
||||
1.24822046299269234080e-02L,
|
||||
};
|
||||
|
||||
const long double pi_lo = -5.01655761266833202345e-20L;
|
|
@ -0,0 +1,116 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2008 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*
|
||||
* $FreeBSD$
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
#define MANH_SIZE LDBL_MANH_SIZE
|
||||
|
||||
/* Approximation thresholds. */
|
||||
#define ASIN_LINEAR (BIAS - 32) /* 2**-32 */
|
||||
#define ACOS_CONST (BIAS - 65) /* 2**-65 */
|
||||
#define ATAN_CONST (BIAS + 65) /* 2**65 */
|
||||
#define ATAN_LINEAR (BIAS - 32) /* 2**-32 */
|
||||
|
||||
/* 0.95 */
|
||||
#define THRESH ((0xe666666666666666ULL>>(64-(MANH_SIZE-1)))|LDBL_NBIT)
|
||||
|
||||
/* Constants shared by the long double inverse trig functions. */
|
||||
#define pS0 _ItL_pS0
|
||||
#define pS1 _ItL_pS1
|
||||
#define pS2 _ItL_pS2
|
||||
#define pS3 _ItL_pS3
|
||||
#define pS4 _ItL_pS4
|
||||
#define pS5 _ItL_pS5
|
||||
#define pS6 _ItL_pS6
|
||||
#define qS1 _ItL_qS1
|
||||
#define qS2 _ItL_qS2
|
||||
#define qS3 _ItL_qS3
|
||||
#define qS4 _ItL_qS4
|
||||
#define qS5 _ItL_qS5
|
||||
#define atanhi _ItL_atanhi
|
||||
#define atanlo _ItL_atanlo
|
||||
#define aT _ItL_aT
|
||||
#define pi_lo _ItL_pi_lo
|
||||
|
||||
#define pio2_hi atanhi[3]
|
||||
#define pio2_lo atanlo[3]
|
||||
#define pio4_hi atanhi[1]
|
||||
|
||||
#ifdef STRUCT_DECLS
|
||||
typedef struct longdouble {
|
||||
uint64_t mant;
|
||||
uint16_t expsign;
|
||||
} LONGDOUBLE;
|
||||
#else
|
||||
typedef long double LONGDOUBLE;
|
||||
#endif
|
||||
|
||||
extern const LONGDOUBLE pS0, pS1, pS2, pS3, pS4, pS5, pS6;
|
||||
extern const LONGDOUBLE qS1, qS2, qS3, qS4, qS5;
|
||||
extern const LONGDOUBLE atanhi[], atanlo[], aT[];
|
||||
extern const LONGDOUBLE pi_lo;
|
||||
|
||||
#ifndef STRUCT_DECLS
|
||||
|
||||
static inline long double
|
||||
P(long double x)
|
||||
{
|
||||
|
||||
return (x * (pS0 + x * (pS1 + x * (pS2 + x * (pS3 + x * \
|
||||
(pS4 + x * (pS5 + x * pS6)))))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
Q(long double x)
|
||||
{
|
||||
|
||||
return (1.0 + x * (qS1 + x * (qS2 + x * (qS3 + x * (qS4 + x * qS5)))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
T_even(long double x)
|
||||
{
|
||||
|
||||
return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * \
|
||||
(aT[8] + x * (aT[10] + x * aT[12]))))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
T_odd(long double x)
|
||||
{
|
||||
|
||||
return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * \
|
||||
(aT[9] + x * aT[11])))));
|
||||
}
|
||||
|
||||
#endif
|
|
@ -0,0 +1,78 @@
|
|||
/* From: @(#)k_cos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ld80 version of k_cos.c. See ../src/k_cos.c for most comments.
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
/*
|
||||
* Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
|
||||
* |cos(x) - c(x)| < 2**-75.1
|
||||
*
|
||||
* The coefficients of c(x) were generated by a pari-gp script using
|
||||
* a Remez algorithm that searches for the best higher coefficients
|
||||
* after rounding leading coefficients to a specified precision.
|
||||
*
|
||||
* Simpler methods like Chebyshev or basic Remez barely suffice for
|
||||
* cos() in 64-bit precision, because we want the coefficient of x^2
|
||||
* to be precisely -0.5 so that multiplying by it is exact, and plain
|
||||
* rounding of the coefficients of a good polynomial approximation only
|
||||
* gives this up to about 64-bit precision. Plain rounding also gives
|
||||
* a mediocre approximation for the coefficient of x^4, but a rounding
|
||||
* error of 0.5 ulps for this coefficient would only contribute ~0.01
|
||||
* ulps to the final error, so this is unimportant. Rounding errors in
|
||||
* higher coefficients are even less important.
|
||||
*
|
||||
* In fact, coefficients above the x^4 one only need to have 53-bit
|
||||
* precision, and this is more efficient. We get this optimization
|
||||
* almost for free from the complications needed to search for the best
|
||||
* higher coefficients.
|
||||
*/
|
||||
static const double
|
||||
one = 1.0;
|
||||
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
/* Long double constants are slow on these arches, and broken on i386. */
|
||||
static const volatile double
|
||||
C1hi = 0.041666666666666664, /* 0x15555555555555.0p-57 */
|
||||
C1lo = 2.2598839032744733e-18; /* 0x14d80000000000.0p-111 */
|
||||
#define C1 ((long double)C1hi + C1lo)
|
||||
#else
|
||||
static const long double
|
||||
C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */
|
||||
#endif
|
||||
|
||||
static const double
|
||||
C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
|
||||
C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */
|
||||
C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */
|
||||
C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */
|
||||
C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */
|
||||
C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */
|
||||
|
||||
long double
|
||||
__kernel_cosl(long double x, long double y)
|
||||
{
|
||||
long double hz,z,r,w;
|
||||
|
||||
z = x*x;
|
||||
r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
|
||||
hz = 0.5*z;
|
||||
w = one-hz;
|
||||
return w + (((one-w)-hz) + (z*r-x*y));
|
||||
}
|
|
@ -0,0 +1,42 @@
|
|||
/*-
|
||||
* Copyright (c) 2017 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See ../src/k_cospi.c for implementation details.
|
||||
*/
|
||||
|
||||
static inline long double
|
||||
__kernel_cospil(long double x)
|
||||
{
|
||||
long double hi, lo;
|
||||
|
||||
hi = (float)x;
|
||||
lo = x - hi;
|
||||
lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
|
||||
hi *= pi_hi;
|
||||
_2sumF(hi, lo);
|
||||
return (__kernel_cosl(hi, lo));
|
||||
}
|
|
@ -0,0 +1,301 @@
|
|||
/* from: FreeBSD: head/lib/msun/ld80/s_expl.c 251343 2013-06-03 19:51:32Z kargl */
|
||||
|
||||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2009-2013 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See s_expl.c for more comments about __k_expl().
|
||||
*
|
||||
* See ../src/e_exp.c and ../src/k_exp.h for precision-independent comments
|
||||
* about the secondary kernels.
|
||||
*/
|
||||
|
||||
#define INTERVALS 128
|
||||
#define LOG2_INTERVALS 7
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static const double
|
||||
/*
|
||||
* ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication). L1 must
|
||||
* have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
|
||||
* bits zero so that multiplication of it by n is exact.
|
||||
*/
|
||||
INV_L = 1.8466496523378731e+2, /* 0x171547652b82fe.0p-45 */
|
||||
L1 = 5.4152123484527692e-3, /* 0x162e42ff000000.0p-60 */
|
||||
L2 = -3.2819649005320973e-13, /* -0x1718432a1b0e26.0p-94 */
|
||||
/*
|
||||
* Domain [-0.002708, 0.002708], range ~[-5.7136e-24, 5.7110e-24]:
|
||||
* |exp(x) - p(x)| < 2**-77.2
|
||||
* (0.002708 is ln2/(2*INTERVALS) rounded up a little).
|
||||
*/
|
||||
A2 = 0.5,
|
||||
A3 = 1.6666666666666119e-1, /* 0x15555555555490.0p-55 */
|
||||
A4 = 4.1666666666665887e-2, /* 0x155555555554e5.0p-57 */
|
||||
A5 = 8.3333354987869413e-3, /* 0x1111115b789919.0p-59 */
|
||||
A6 = 1.3888891738560272e-3; /* 0x16c16c651633ae.0p-62 */
|
||||
|
||||
/*
|
||||
* 2^(i/INTERVALS) for i in [0,INTERVALS] is represented by two values where
|
||||
* the first 53 bits of the significand are stored in hi and the next 53
|
||||
* bits are in lo. Tang's paper states that the trailing 6 bits of hi must
|
||||
* be zero for his algorithm in both single and double precision, because
|
||||
* the table is re-used in the implementation of expm1() where a floating
|
||||
* point addition involving hi must be exact. Here hi is double, so
|
||||
* converting it to long double gives 11 trailing zero bits.
|
||||
*/
|
||||
static const struct {
|
||||
double hi;
|
||||
double lo;
|
||||
} tbl[INTERVALS] = {
|
||||
{ 0x1p+0, 0x0p+0 },
|
||||
/*
|
||||
* XXX hi is rounded down, and the formatting is not quite normal.
|
||||
* But I rather like both. The 0x1.*p format is good for 4N+1
|
||||
* mantissa bits. Rounding down makes the lo terms positive,
|
||||
* so that the columnar formatting can be simpler.
|
||||
*/
|
||||
{ 0x1.0163da9fb3335p+0, 0x1.b61299ab8cdb7p-54 },
|
||||
{ 0x1.02c9a3e778060p+0, 0x1.dcdef95949ef4p-53 },
|
||||
{ 0x1.04315e86e7f84p+0, 0x1.7ae71f3441b49p-53 },
|
||||
{ 0x1.059b0d3158574p+0, 0x1.d73e2a475b465p-55 },
|
||||
{ 0x1.0706b29ddf6ddp+0, 0x1.8db880753b0f6p-53 },
|
||||
{ 0x1.0874518759bc8p+0, 0x1.186be4bb284ffp-57 },
|
||||
{ 0x1.09e3ecac6f383p+0, 0x1.1487818316136p-54 },
|
||||
{ 0x1.0b5586cf9890fp+0, 0x1.8a62e4adc610bp-54 },
|
||||
{ 0x1.0cc922b7247f7p+0, 0x1.01edc16e24f71p-54 },
|
||||
{ 0x1.0e3ec32d3d1a2p+0, 0x1.03a1727c57b53p-59 },
|
||||
{ 0x1.0fb66affed31ap+0, 0x1.e464123bb1428p-53 },
|
||||
{ 0x1.11301d0125b50p+0, 0x1.49d77e35db263p-53 },
|
||||
{ 0x1.12abdc06c31cbp+0, 0x1.f72575a649ad2p-53 },
|
||||
{ 0x1.1429aaea92ddfp+0, 0x1.66820328764b1p-53 },
|
||||
{ 0x1.15a98c8a58e51p+0, 0x1.2406ab9eeab0ap-55 },
|
||||
{ 0x1.172b83c7d517ap+0, 0x1.b9bef918a1d63p-53 },
|
||||
{ 0x1.18af9388c8de9p+0, 0x1.777ee1734784ap-53 },
|
||||
{ 0x1.1a35beb6fcb75p+0, 0x1.e5b4c7b4968e4p-55 },
|
||||
{ 0x1.1bbe084045cd3p+0, 0x1.3563ce56884fcp-53 },
|
||||
{ 0x1.1d4873168b9aap+0, 0x1.e016e00a2643cp-54 },
|
||||
{ 0x1.1ed5022fcd91cp+0, 0x1.71033fec2243ap-53 },
|
||||
{ 0x1.2063b88628cd6p+0, 0x1.dc775814a8495p-55 },
|
||||
{ 0x1.21f49917ddc96p+0, 0x1.2a97e9494a5eep-55 },
|
||||
{ 0x1.2387a6e756238p+0, 0x1.9b07eb6c70573p-54 },
|
||||
{ 0x1.251ce4fb2a63fp+0, 0x1.ac155bef4f4a4p-55 },
|
||||
{ 0x1.26b4565e27cddp+0, 0x1.2bd339940e9d9p-55 },
|
||||
{ 0x1.284dfe1f56380p+0, 0x1.2d9e2b9e07941p-53 },
|
||||
{ 0x1.29e9df51fdee1p+0, 0x1.612e8afad1255p-55 },
|
||||
{ 0x1.2b87fd0dad98fp+0, 0x1.fbbd48ca71f95p-53 },
|
||||
{ 0x1.2d285a6e4030bp+0, 0x1.0024754db41d5p-54 },
|
||||
{ 0x1.2ecafa93e2f56p+0, 0x1.1ca0f45d52383p-56 },
|
||||
{ 0x1.306fe0a31b715p+0, 0x1.6f46ad23182e4p-55 },
|
||||
{ 0x1.32170fc4cd831p+0, 0x1.a9ce78e18047cp-55 },
|
||||
{ 0x1.33c08b26416ffp+0, 0x1.32721843659a6p-54 },
|
||||
{ 0x1.356c55f929ff0p+0, 0x1.928c468ec6e76p-53 },
|
||||
{ 0x1.371a7373aa9cap+0, 0x1.4e28aa05e8a8fp-53 },
|
||||
{ 0x1.38cae6d05d865p+0, 0x1.0b53961b37da2p-53 },
|
||||
{ 0x1.3a7db34e59ff6p+0, 0x1.d43792533c144p-53 },
|
||||
{ 0x1.3c32dc313a8e4p+0, 0x1.08003e4516b1ep-53 },
|
||||
{ 0x1.3dea64c123422p+0, 0x1.ada0911f09ebcp-55 },
|
||||
{ 0x1.3fa4504ac801bp+0, 0x1.417ee03548306p-53 },
|
||||
{ 0x1.4160a21f72e29p+0, 0x1.f0864b71e7b6cp-53 },
|
||||
{ 0x1.431f5d950a896p+0, 0x1.b8e088728219ap-53 },
|
||||
{ 0x1.44e086061892dp+0, 0x1.89b7a04ef80d0p-59 },
|
||||
{ 0x1.46a41ed1d0057p+0, 0x1.c944bd1648a76p-54 },
|
||||
{ 0x1.486a2b5c13cd0p+0, 0x1.3c1a3b69062f0p-56 },
|
||||
{ 0x1.4a32af0d7d3dep+0, 0x1.9cb62f3d1be56p-54 },
|
||||
{ 0x1.4bfdad5362a27p+0, 0x1.d4397afec42e2p-56 },
|
||||
{ 0x1.4dcb299fddd0dp+0, 0x1.8ecdbbc6a7833p-54 },
|
||||
{ 0x1.4f9b2769d2ca6p+0, 0x1.5a67b16d3540ep-53 },
|
||||
{ 0x1.516daa2cf6641p+0, 0x1.8225ea5909b04p-53 },
|
||||
{ 0x1.5342b569d4f81p+0, 0x1.be1507893b0d5p-53 },
|
||||
{ 0x1.551a4ca5d920ep+0, 0x1.8a5d8c4048699p-53 },
|
||||
{ 0x1.56f4736b527dap+0, 0x1.9bb2c011d93adp-54 },
|
||||
{ 0x1.58d12d497c7fdp+0, 0x1.295e15b9a1de8p-55 },
|
||||
{ 0x1.5ab07dd485429p+0, 0x1.6324c054647adp-54 },
|
||||
{ 0x1.5c9268a5946b7p+0, 0x1.c4b1b816986a2p-60 },
|
||||
{ 0x1.5e76f15ad2148p+0, 0x1.ba6f93080e65ep-54 },
|
||||
{ 0x1.605e1b976dc08p+0, 0x1.60edeb25490dcp-53 },
|
||||
{ 0x1.6247eb03a5584p+0, 0x1.63e1f40dfa5b5p-53 },
|
||||
{ 0x1.6434634ccc31fp+0, 0x1.8edf0e2989db3p-53 },
|
||||
{ 0x1.6623882552224p+0, 0x1.224fb3c5371e6p-53 },
|
||||
{ 0x1.68155d44ca973p+0, 0x1.038ae44f73e65p-57 },
|
||||
{ 0x1.6a09e667f3bccp+0, 0x1.21165f626cdd5p-53 },
|
||||
{ 0x1.6c012750bdabep+0, 0x1.daed533001e9ep-53 },
|
||||
{ 0x1.6dfb23c651a2ep+0, 0x1.e441c597c3775p-53 },
|
||||
{ 0x1.6ff7df9519483p+0, 0x1.9f0fc369e7c42p-53 },
|
||||
{ 0x1.71f75e8ec5f73p+0, 0x1.ba46e1e5de15ap-53 },
|
||||
{ 0x1.73f9a48a58173p+0, 0x1.7ab9349cd1562p-53 },
|
||||
{ 0x1.75feb564267c8p+0, 0x1.7edd354674916p-53 },
|
||||
{ 0x1.780694fde5d3fp+0, 0x1.866b80a02162dp-54 },
|
||||
{ 0x1.7a11473eb0186p+0, 0x1.afaa2047ed9b4p-53 },
|
||||
{ 0x1.7c1ed0130c132p+0, 0x1.f124cd1164dd6p-54 },
|
||||
{ 0x1.7e2f336cf4e62p+0, 0x1.05d02ba15797ep-56 },
|
||||
{ 0x1.80427543e1a11p+0, 0x1.6c1bccec9346bp-53 },
|
||||
{ 0x1.82589994cce12p+0, 0x1.159f115f56694p-53 },
|
||||
{ 0x1.8471a4623c7acp+0, 0x1.9ca5ed72f8c81p-53 },
|
||||
{ 0x1.868d99b4492ecp+0, 0x1.01c83b21584a3p-53 },
|
||||
{ 0x1.88ac7d98a6699p+0, 0x1.994c2f37cb53ap-54 },
|
||||
{ 0x1.8ace5422aa0dbp+0, 0x1.6e9f156864b27p-54 },
|
||||
{ 0x1.8cf3216b5448bp+0, 0x1.de55439a2c38bp-53 },
|
||||
{ 0x1.8f1ae99157736p+0, 0x1.5cc13a2e3976cp-55 },
|
||||
{ 0x1.9145b0b91ffc5p+0, 0x1.114c368d3ed6ep-53 },
|
||||
{ 0x1.93737b0cdc5e4p+0, 0x1.e8a0387e4a814p-53 },
|
||||
{ 0x1.95a44cbc8520ep+0, 0x1.d36906d2b41f9p-53 },
|
||||
{ 0x1.97d829fde4e4fp+0, 0x1.173d241f23d18p-53 },
|
||||
{ 0x1.9a0f170ca07b9p+0, 0x1.7462137188ce7p-53 },
|
||||
{ 0x1.9c49182a3f090p+0, 0x1.c7c46b071f2bep-56 },
|
||||
{ 0x1.9e86319e32323p+0, 0x1.824ca78e64c6ep-56 },
|
||||
{ 0x1.a0c667b5de564p+0, 0x1.6535b51719567p-53 },
|
||||
{ 0x1.a309bec4a2d33p+0, 0x1.6305c7ddc36abp-54 },
|
||||
{ 0x1.a5503b23e255cp+0, 0x1.1684892395f0fp-53 },
|
||||
{ 0x1.a799e1330b358p+0, 0x1.bcb7ecac563c7p-54 },
|
||||
{ 0x1.a9e6b5579fdbfp+0, 0x1.0fac90ef7fd31p-54 },
|
||||
{ 0x1.ac36bbfd3f379p+0, 0x1.81b72cd4624ccp-53 },
|
||||
{ 0x1.ae89f995ad3adp+0, 0x1.7a1cd345dcc81p-54 },
|
||||
{ 0x1.b0e07298db665p+0, 0x1.2108559bf8deep-53 },
|
||||
{ 0x1.b33a2b84f15fap+0, 0x1.ed7fa1cf7b290p-53 },
|
||||
{ 0x1.b59728de55939p+0, 0x1.1c7102222c90ep-53 },
|
||||
{ 0x1.b7f76f2fb5e46p+0, 0x1.d54f610356a79p-53 },
|
||||
{ 0x1.ba5b030a10649p+0, 0x1.0819678d5eb69p-53 },
|
||||
{ 0x1.bcc1e904bc1d2p+0, 0x1.23dd07a2d9e84p-55 },
|
||||
{ 0x1.bf2c25bd71e08p+0, 0x1.0811ae04a31c7p-53 },
|
||||
{ 0x1.c199bdd85529cp+0, 0x1.11065895048ddp-55 },
|
||||
{ 0x1.c40ab5fffd07ap+0, 0x1.b4537e083c60ap-54 },
|
||||
{ 0x1.c67f12e57d14bp+0, 0x1.2884dff483cadp-54 },
|
||||
{ 0x1.c8f6d9406e7b5p+0, 0x1.1acbc48805c44p-56 },
|
||||
{ 0x1.cb720dcef9069p+0, 0x1.503cbd1e949dbp-56 },
|
||||
{ 0x1.cdf0b555dc3f9p+0, 0x1.889f12b1f58a3p-53 },
|
||||
{ 0x1.d072d4a07897bp+0, 0x1.1a1e45e4342b2p-53 },
|
||||
{ 0x1.d2f87080d89f1p+0, 0x1.15bc247313d44p-53 },
|
||||
{ 0x1.d5818dcfba487p+0, 0x1.2ed02d75b3707p-55 },
|
||||
{ 0x1.d80e316c98397p+0, 0x1.7709f3a09100cp-53 },
|
||||
{ 0x1.da9e603db3285p+0, 0x1.c2300696db532p-54 },
|
||||
{ 0x1.dd321f301b460p+0, 0x1.2da5778f018c3p-54 },
|
||||
{ 0x1.dfc97337b9b5ep+0, 0x1.72d195873da52p-53 },
|
||||
{ 0x1.e264614f5a128p+0, 0x1.424ec3f42f5b5p-53 },
|
||||
{ 0x1.e502ee78b3ff6p+0, 0x1.39e8980a9cc8fp-55 },
|
||||
{ 0x1.e7a51fbc74c83p+0, 0x1.2d522ca0c8de2p-54 },
|
||||
{ 0x1.ea4afa2a490d9p+0, 0x1.0b1ee7431ebb6p-53 },
|
||||
{ 0x1.ecf482d8e67f0p+0, 0x1.1b60625f7293ap-53 },
|
||||
{ 0x1.efa1bee615a27p+0, 0x1.dc7f486a4b6b0p-54 },
|
||||
{ 0x1.f252b376bba97p+0, 0x1.3a1a5bf0d8e43p-54 },
|
||||
{ 0x1.f50765b6e4540p+0, 0x1.9d3e12dd8a18bp-54 },
|
||||
{ 0x1.f7bfdad9cbe13p+0, 0x1.1227697fce57bp-53 },
|
||||
{ 0x1.fa7c1819e90d8p+0, 0x1.74853f3a5931ep-55 },
|
||||
{ 0x1.fd3c22b8f71f1p+0, 0x1.2eb74966579e7p-57 }
|
||||
};
|
||||
|
||||
/*
|
||||
* Kernel for expl(x). x must be finite and not tiny or huge.
|
||||
* "tiny" is anything that would make us underflow (|A6*x^6| < ~LDBL_MIN).
|
||||
* "huge" is anything that would make fn*L1 inexact (|x| > ~2**17*ln2).
|
||||
*/
|
||||
static inline void
|
||||
__k_expl(long double x, long double *hip, long double *lop, int *kp)
|
||||
{
|
||||
long double fn, q, r, r1, r2, t, z;
|
||||
int n, n2;
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
fn = rnintl(x * INV_L);
|
||||
r = x - fn * L1 - fn * L2; /* r = r1 + r2 done independently. */
|
||||
n = irint(fn);
|
||||
n2 = (unsigned)n % INTERVALS;
|
||||
/* Depend on the sign bit being propagated: */
|
||||
*kp = n >> LOG2_INTERVALS;
|
||||
r1 = x - fn * L1;
|
||||
r2 = fn * -L2;
|
||||
|
||||
/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
|
||||
z = r * r;
|
||||
#if 0
|
||||
q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
|
||||
#else
|
||||
q = r2 + z * A2 + z * r * (A3 + r * A4 + z * (A5 + r * A6));
|
||||
#endif
|
||||
t = (long double)tbl[n2].lo + tbl[n2].hi;
|
||||
*hip = tbl[n2].hi;
|
||||
*lop = tbl[n2].lo + t * (q + r1);
|
||||
}
|
||||
|
||||
static inline void
|
||||
k_hexpl(long double x, long double *hip, long double *lop)
|
||||
{
|
||||
float twopkm1;
|
||||
int k;
|
||||
|
||||
__k_expl(x, hip, lop, &k);
|
||||
SET_FLOAT_WORD(twopkm1, 0x3f800000 + ((k - 1) << 23));
|
||||
*hip *= twopkm1;
|
||||
*lop *= twopkm1;
|
||||
}
|
||||
|
||||
static inline long double
|
||||
hexpl(long double x)
|
||||
{
|
||||
long double hi, lo, twopkm2;
|
||||
int k;
|
||||
|
||||
twopkm2 = 1;
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
SET_LDBL_EXPSIGN(twopkm2, BIAS + k - 2);
|
||||
return (lo + hi) * 2 * twopkm2;
|
||||
}
|
||||
|
||||
#ifdef _COMPLEX_H
|
||||
/*
|
||||
* See ../src/k_exp.c for details.
|
||||
*/
|
||||
static inline long double complex
|
||||
__ldexp_cexpl(long double complex z, int expt)
|
||||
{
|
||||
long double c, exp_x, hi, lo, s;
|
||||
long double x, y, scale1, scale2;
|
||||
int half_expt, k;
|
||||
|
||||
x = creall(z);
|
||||
y = cimagl(z);
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
|
||||
exp_x = (lo + hi) * 0x1p16382L;
|
||||
expt += k - 16382;
|
||||
|
||||
scale1 = 1;
|
||||
half_expt = expt / 2;
|
||||
SET_LDBL_EXPSIGN(scale1, BIAS + half_expt);
|
||||
scale2 = 1;
|
||||
SET_LDBL_EXPSIGN(scale2, BIAS + expt - half_expt);
|
||||
|
||||
sincosl(y, &s, &c);
|
||||
return (CMPLXL(c * exp_x * scale1 * scale2,
|
||||
s * exp_x * scale1 * scale2));
|
||||
}
|
||||
#endif /* _COMPLEX_H */
|
|
@ -0,0 +1,62 @@
|
|||
/* From: @(#)k_sin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
* Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* ld80 version of k_sin.c. See ../src/k_sin.c for most comments.
|
||||
*/
|
||||
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
half = 0.5;
|
||||
|
||||
/*
|
||||
* Domain [-0.7854, 0.7854], range ~[-1.89e-22, 1.915e-22]
|
||||
* |sin(x)/x - s(x)| < 2**-72.1
|
||||
*
|
||||
* See ../ld80/k_cosl.c for more details about the polynomial.
|
||||
*/
|
||||
#if defined(__amd64__) || defined(__i386__)
|
||||
/* Long double constants are slow on these arches, and broken on i386. */
|
||||
static const volatile double
|
||||
S1hi = -0.16666666666666666, /* -0x15555555555555.0p-55 */
|
||||
S1lo = -9.2563760475949941e-18; /* -0x15580000000000.0p-109 */
|
||||
#define S1 ((long double)S1hi + S1lo)
|
||||
#else
|
||||
static const long double
|
||||
S1 = -0.166666666666666666671L; /* -0xaaaaaaaaaaaaaaab.0p-66 */
|
||||
#endif
|
||||
|
||||
static const double
|
||||
S2 = 0.0083333333333333332, /* 0x11111111111111.0p-59 */
|
||||
S3 = -0.00019841269841269427, /* -0x1a01a01a019f81.0p-65 */
|
||||
S4 = 0.0000027557319223597490, /* 0x171de3a55560f7.0p-71 */
|
||||
S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */
|
||||
S6 = 1.6059006598854211e-10, /* 0x161242b90243b5.0p-85 */
|
||||
S7 = -7.6429779983024564e-13, /* -0x1ae42ebd1b2e00.0p-93 */
|
||||
S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */
|
||||
|
||||
long double
|
||||
__kernel_sinl(long double x, long double y, int iy)
|
||||
{
|
||||
long double z,r,v;
|
||||
|
||||
z = x*x;
|
||||
v = z*x;
|
||||
r = S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8)))));
|
||||
if(iy==0) return x+v*(S1+z*r);
|
||||
else return x-((z*(half*y-v*r)-y)-v*S1);
|
||||
}
|
|
@ -0,0 +1,42 @@
|
|||
/*-
|
||||
* Copyright (c) 2017 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See ../src/k_sinpi.c for implementation details.
|
||||
*/
|
||||
|
||||
static inline long double
|
||||
__kernel_sinpil(long double x)
|
||||
{
|
||||
long double hi, lo;
|
||||
|
||||
hi = (float)x;
|
||||
lo = x - hi;
|
||||
lo = lo * (pi_lo + pi_hi) + hi * pi_lo;
|
||||
hi *= pi_hi;
|
||||
_2sumF(hi, lo);
|
||||
return (__kernel_sinl(hi, lo, 1));
|
||||
}
|
|
@ -0,0 +1,129 @@
|
|||
/*-
|
||||
* Copyright (c) 2017 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See ../src/s_cospi.c for implementation details.
|
||||
*/
|
||||
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
#include <stdint.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const double
|
||||
pi_hi = 3.1415926814079285e+00, /* 0x400921fb 0x58000000 */
|
||||
pi_lo =-2.7818135228334233e-08; /* 0xbe5dde97 0x3dcb3b3a */
|
||||
|
||||
#include "k_cospil.h"
|
||||
#include "k_sinpil.h"
|
||||
|
||||
volatile static const double vzero = 0;
|
||||
|
||||
long double
|
||||
cospil(long double x)
|
||||
{
|
||||
long double ax, c;
|
||||
uint64_t lx, m;
|
||||
uint32_t j0;
|
||||
uint16_t hx, ix;
|
||||
|
||||
EXTRACT_LDBL80_WORDS(hx, lx, x);
|
||||
ix = hx & 0x7fff;
|
||||
INSERT_LDBL80_WORDS(ax, ix, lx);
|
||||
|
||||
ENTERI();
|
||||
|
||||
if (ix < 0x3fff) { /* |x| < 1 */
|
||||
if (ix < 0x3ffd) { /* |x| < 0.25 */
|
||||
if (ix < 0x3fdd) { /* |x| < 0x1p-34 */
|
||||
if ((int)x == 0)
|
||||
RETURNI(1);
|
||||
}
|
||||
RETURNI(__kernel_cospil(ax));
|
||||
}
|
||||
|
||||
if (ix < 0x3ffe) /* |x| < 0.5 */
|
||||
c = __kernel_sinpil(0.5 - ax);
|
||||
else if (lx < 0xc000000000000000ull) { /* |x| < 0.75 */
|
||||
if (ax == 0.5)
|
||||
RETURNI(0);
|
||||
c = -__kernel_sinpil(ax - 0.5);
|
||||
} else
|
||||
c = -__kernel_cospil(1 - ax);
|
||||
RETURNI(c);
|
||||
}
|
||||
|
||||
if (ix < 0x403e) { /* 1 <= |x| < 0x1p63 */
|
||||
/* Determine integer part of ax. */
|
||||
j0 = ix - 0x3fff + 1;
|
||||
if (j0 < 32) {
|
||||
lx = (lx >> 32) << 32;
|
||||
lx &= ~(((lx << 32)-1) >> j0);
|
||||
} else {
|
||||
m = (uint64_t)-1 >> (j0 + 1);
|
||||
if (lx & m) lx &= ~m;
|
||||
}
|
||||
INSERT_LDBL80_WORDS(x, ix, lx);
|
||||
|
||||
ax -= x;
|
||||
EXTRACT_LDBL80_WORDS(ix, lx, ax);
|
||||
|
||||
if (ix < 0x3ffe) { /* |x| < 0.5 */
|
||||
if (ix < 0x3ffd) /* |x| < 0.25 */
|
||||
c = ix == 0 ? 1 : __kernel_cospil(ax);
|
||||
else
|
||||
c = __kernel_sinpil(0.5 - ax);
|
||||
|
||||
} else {
|
||||
if (lx < 0xc000000000000000ull) { /* |x| < 0.75 */
|
||||
if (ax == 0.5)
|
||||
RETURNI(0);
|
||||
c = -__kernel_sinpil(ax - 0.5);
|
||||
} else
|
||||
c = -__kernel_cospil(1 - ax);
|
||||
}
|
||||
|
||||
if (j0 > 40)
|
||||
x -= 0x1p40;
|
||||
if (j0 > 30)
|
||||
x -= 0x1p30;
|
||||
j0 = (uint32_t)x;
|
||||
|
||||
RETURNI(j0 & 1 ? -c : c);
|
||||
}
|
||||
|
||||
if (ix >= 0x7fff)
|
||||
RETURNI(vzero / vzero);
|
||||
|
||||
/*
|
||||
* |x| >= 0x1p63 is always an even integer, so return 1.
|
||||
*/
|
||||
RETURNI(1);
|
||||
}
|
|
@ -0,0 +1,337 @@
|
|||
/* @(#)s_erf.c 5.1 93/09/24 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/*
|
||||
* See s_erf.c for complete comments.
|
||||
*
|
||||
* Converted to long double by Steven G. Kargl.
|
||||
*/
|
||||
#include <float.h>
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
/* XXX Prevent compilers from erroneously constant folding: */
|
||||
static const volatile long double tiny = 0x1p-10000L;
|
||||
|
||||
static const double
|
||||
half= 0.5,
|
||||
one = 1,
|
||||
two = 2;
|
||||
/*
|
||||
* In the domain [0, 2**-34], only the first term in the power series
|
||||
* expansion of erf(x) is used. The magnitude of the first neglected
|
||||
* terms is less than 2**-102.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
efxu = LD80C(0x8375d410a6db446c, -3, 1.28379167095512573902e-1L),
|
||||
efx8u = LD80C(0x8375d410a6db446c, 0, 1.02703333676410059122e+0L),
|
||||
/*
|
||||
* Domain [0, 0.84375], range ~[-1.423e-22, 1.423e-22]:
|
||||
* |(erf(x) - x)/x - pp(x)/qq(x)| < 2**-72.573
|
||||
*/
|
||||
pp0u = LD80C(0x8375d410a6db446c, -3, 1.28379167095512573902e-1L),
|
||||
pp1u = LD80C(0xa46c7d09ec3d0cec, -2, -3.21140201054840180596e-1L),
|
||||
pp2u = LD80C(0x9b31e66325576f86, -5, -3.78893851760347812082e-2L),
|
||||
pp3u = LD80C(0x804ac72c9a0b97dd, -7, -7.83032847030604679616e-3L),
|
||||
pp4u = LD80C(0x9f42bcbc3d5a601d, -12, -3.03765663857082048459e-4L),
|
||||
pp5u = LD80C(0x9ec4ad6193470693, -16, -1.89266527398167917502e-5L),
|
||||
qq1u = LD80C(0xdb4b8eb713188d6b, -2, 4.28310832832310510579e-1L),
|
||||
qq2u = LD80C(0xa5750835b2459bd1, -4, 8.07896272074540216658e-2L),
|
||||
qq3u = LD80C(0x8b85d6bd6a90b51c, -7, 8.51579638189385354266e-3L),
|
||||
qq4u = LD80C(0x87332f82cff4ff96, -11, 5.15746855583604912827e-4L),
|
||||
qq5u = LD80C(0x83466cb6bf9dca00, -16, 1.56492109706256700009e-5L),
|
||||
qq6u = LD80C(0xf5bf98c2f996bf63, -24, 1.14435527803073879724e-7L);
|
||||
#define efx (efxu.e)
|
||||
#define efx8 (efx8u.e)
|
||||
#define pp0 (pp0u.e)
|
||||
#define pp1 (pp1u.e)
|
||||
#define pp2 (pp2u.e)
|
||||
#define pp3 (pp3u.e)
|
||||
#define pp4 (pp4u.e)
|
||||
#define pp5 (pp5u.e)
|
||||
#define qq1 (qq1u.e)
|
||||
#define qq2 (qq2u.e)
|
||||
#define qq3 (qq3u.e)
|
||||
#define qq4 (qq4u.e)
|
||||
#define qq5 (qq5u.e)
|
||||
#define qq6 (qq6u.e)
|
||||
static const union IEEEl2bits
|
||||
erxu = LD80C(0xd7bb3d0000000000, -1, 8.42700779438018798828e-1L),
|
||||
/*
|
||||
* Domain [0.84375, 1.25], range ~[-8.132e-22, 8.113e-22]:
|
||||
* |(erf(x) - erx) - pa(x)/qa(x)| < 2**-71.762
|
||||
*/
|
||||
pa0u = LD80C(0xe8211158da02c692, -27, 1.35116960705131296711e-8L),
|
||||
pa1u = LD80C(0xd488f89f36988618, -2, 4.15107507167065612570e-1L),
|
||||
pa2u = LD80C(0xece74f8c63fa3942, -4, -1.15675565215949226989e-1L),
|
||||
pa3u = LD80C(0xc8d31e020727c006, -4, 9.80589241379624665791e-2L),
|
||||
pa4u = LD80C(0x985d5d5fafb0551f, -5, 3.71984145558422368847e-2L),
|
||||
pa5u = LD80C(0xa5b6c4854d2f5452, -8, -5.05718799340957673661e-3L),
|
||||
pa6u = LD80C(0x85c8d58fe3993a47, -8, 4.08277919612202243721e-3L),
|
||||
pa7u = LD80C(0xddbfbc23677b35cf, -13, 2.11476292145347530794e-4L),
|
||||
qa1u = LD80C(0xb8a977896f5eff3f, -1, 7.21335860303380361298e-1L),
|
||||
qa2u = LD80C(0x9fcd662c3d4eac86, -1, 6.24227891731886593333e-1L),
|
||||
qa3u = LD80C(0x9d0b618eac67ba07, -2, 3.06727455774491855801e-1L),
|
||||
qa4u = LD80C(0x881a4293f6d6c92d, -3, 1.32912674218195890535e-1L),
|
||||
qa5u = LD80C(0xbab144f07dea45bf, -5, 4.55792134233613027584e-2L),
|
||||
qa6u = LD80C(0xa6c34ba438bdc900, -7, 1.01783980070527682680e-2L),
|
||||
qa7u = LD80C(0x8fa866dc20717a91, -9, 2.19204436518951438183e-3L);
|
||||
#define erx (erxu.e)
|
||||
#define pa0 (pa0u.e)
|
||||
#define pa1 (pa1u.e)
|
||||
#define pa2 (pa2u.e)
|
||||
#define pa3 (pa3u.e)
|
||||
#define pa4 (pa4u.e)
|
||||
#define pa5 (pa5u.e)
|
||||
#define pa6 (pa6u.e)
|
||||
#define pa7 (pa7u.e)
|
||||
#define qa1 (qa1u.e)
|
||||
#define qa2 (qa2u.e)
|
||||
#define qa3 (qa3u.e)
|
||||
#define qa4 (qa4u.e)
|
||||
#define qa5 (qa5u.e)
|
||||
#define qa6 (qa6u.e)
|
||||
#define qa7 (qa7u.e)
|
||||
static const union IEEEl2bits
|
||||
/*
|
||||
* Domain [1.25,2.85715], range ~[-2.334e-22,2.334e-22]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - ra(x)/sa(x)| < 2**-71.860
|
||||
*/
|
||||
ra0u = LD80C(0xa1a091e0fb4f335a, -7, -9.86494298915814308249e-3L),
|
||||
ra1u = LD80C(0xc2b0d045ae37df6b, -1, -7.60510460864878271275e-1L),
|
||||
ra2u = LD80C(0xf2cec3ee7da636c5, 3, -1.51754798236892278250e+1L),
|
||||
ra3u = LD80C(0x813cc205395adc7d, 7, -1.29237335516455333420e+2L),
|
||||
ra4u = LD80C(0x8737c8b7b4062c2f, 9, -5.40871625829510494776e+2L),
|
||||
ra5u = LD80C(0x8ffe5383c08d4943, 10, -1.15194769466026108551e+3L),
|
||||
ra6u = LD80C(0x983573e64d5015a9, 10, -1.21767039790249025544e+3L),
|
||||
ra7u = LD80C(0x92a794e763a6d4db, 9, -5.86618463370624636688e+2L),
|
||||
ra8u = LD80C(0xd5ad1fae77c3d9a3, 6, -1.06838132335777049840e+2L),
|
||||
ra9u = LD80C(0x934c1a247807bb9c, 2, -4.60303980944467334806e+0L),
|
||||
sa1u = LD80C(0xd342f90012bb1189, 4, 2.64077014928547064865e+1L),
|
||||
sa2u = LD80C(0x839be13d9d5da883, 8, 2.63217811300123973067e+2L),
|
||||
sa3u = LD80C(0x9f8cba6d1ae1b24b, 10, 1.27639775710344617587e+3L),
|
||||
sa4u = LD80C(0xcaa83f403713e33e, 11, 3.24251544209971162003e+3L),
|
||||
sa5u = LD80C(0x8796aff2f3c47968, 12, 4.33883591261332837874e+3L),
|
||||
sa6u = LD80C(0xb6ef97f9c753157b, 11, 2.92697460344182158454e+3L),
|
||||
sa7u = LD80C(0xe02aee5f83773d1c, 9, 8.96670799139389559818e+2L),
|
||||
sa8u = LD80C(0xc82b83855b88e07e, 6, 1.00084987800048510018e+2L),
|
||||
sa9u = LD80C(0x92f030aefadf28ad, 1, 2.29591004455459083843e+0L);
|
||||
#define ra0 (ra0u.e)
|
||||
#define ra1 (ra1u.e)
|
||||
#define ra2 (ra2u.e)
|
||||
#define ra3 (ra3u.e)
|
||||
#define ra4 (ra4u.e)
|
||||
#define ra5 (ra5u.e)
|
||||
#define ra6 (ra6u.e)
|
||||
#define ra7 (ra7u.e)
|
||||
#define ra8 (ra8u.e)
|
||||
#define ra9 (ra9u.e)
|
||||
#define sa1 (sa1u.e)
|
||||
#define sa2 (sa2u.e)
|
||||
#define sa3 (sa3u.e)
|
||||
#define sa4 (sa4u.e)
|
||||
#define sa5 (sa5u.e)
|
||||
#define sa6 (sa6u.e)
|
||||
#define sa7 (sa7u.e)
|
||||
#define sa8 (sa8u.e)
|
||||
#define sa9 (sa9u.e)
|
||||
/*
|
||||
* Domain [2.85715,7], range ~[-8.323e-22,8.390e-22]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - rb(x)/sb(x)| < 2**-70.326
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
rb0u = LD80C(0xa1a091cf43abcd26, -7, -9.86494292470284646962e-3L),
|
||||
rb1u = LD80C(0xd19d2df1cbb8da0a, -1, -8.18804618389296662837e-1L),
|
||||
rb2u = LD80C(0x9a4dd1383e5daf5b, 4, -1.92879967111618594779e+1L),
|
||||
rb3u = LD80C(0xbff0ae9fc0751de6, 7, -1.91940164551245394969e+2L),
|
||||
rb4u = LD80C(0xdde08465310b472b, 9, -8.87508080766577324539e+2L),
|
||||
rb5u = LD80C(0xe796e1d38c8c70a9, 10, -1.85271506669474503781e+3L),
|
||||
rb6u = LD80C(0xbaf655a76e0ab3b5, 10, -1.49569795581333675349e+3L),
|
||||
rb7u = LD80C(0x95d21e3e75503c21, 8, -2.99641547972948019157e+2L),
|
||||
sb1u = LD80C(0x814487ed823c8cbd, 5, 3.23169247732868256569e+1L),
|
||||
sb2u = LD80C(0xbe4bfbb1301304be, 8, 3.80593618534539961773e+2L),
|
||||
sb3u = LD80C(0x809c4ade46b927c7, 11, 2.05776827838541292848e+3L),
|
||||
sb4u = LD80C(0xa55284359f3395a8, 12, 5.29031455540062116327e+3L),
|
||||
sb5u = LD80C(0xbcfa72da9b820874, 12, 6.04730608102312640462e+3L),
|
||||
sb6u = LD80C(0x9d09a35988934631, 11, 2.51260238030767176221e+3L),
|
||||
sb7u = LD80C(0xd675bbe542c159fa, 7, 2.14459898308561015684e+2L);
|
||||
#define rb0 (rb0u.e)
|
||||
#define rb1 (rb1u.e)
|
||||
#define rb2 (rb2u.e)
|
||||
#define rb3 (rb3u.e)
|
||||
#define rb4 (rb4u.e)
|
||||
#define rb5 (rb5u.e)
|
||||
#define rb6 (rb6u.e)
|
||||
#define rb7 (rb7u.e)
|
||||
#define sb1 (sb1u.e)
|
||||
#define sb2 (sb2u.e)
|
||||
#define sb3 (sb3u.e)
|
||||
#define sb4 (sb4u.e)
|
||||
#define sb5 (sb5u.e)
|
||||
#define sb6 (sb6u.e)
|
||||
#define sb7 (sb7u.e)
|
||||
/*
|
||||
* Domain [7,108], range ~[-4.422e-22,4.422e-22]:
|
||||
* |log(x*erfc(x)) + x**2 + 0.5625 - rc(x)/sc(x)| < 2**-70.938
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
/* err = -4.422092275318925082e-22 -70.937689 */
|
||||
rc0u = LD80C(0xa1a091cf437a17ad, -7, -9.86494292470008707260e-3L),
|
||||
rc1u = LD80C(0xbe79c5a978122b00, -1, -7.44045595049165939261e-1L),
|
||||
rc2u = LD80C(0xdb26f9bbe31a2794, 3, -1.36970155085888424425e+1L),
|
||||
rc3u = LD80C(0xb5f69a38f5747ac8, 6, -9.09816453742625888546e+1L),
|
||||
rc4u = LD80C(0xd79676d970d0a21a, 7, -2.15587750997584074147e+2L),
|
||||
rc5u = LD80C(0xfe528153c45ec97c, 6, -1.27161142938347796666e+2L),
|
||||
sc1u = LD80C(0xc5e8cd46d5604a96, 4, 2.47386727842204312937e+1L),
|
||||
sc2u = LD80C(0xc5f0f5a5484520eb, 7, 1.97941248254913378865e+2L),
|
||||
sc3u = LD80C(0x964e3c7b34db9170, 9, 6.01222441484087787522e+2L),
|
||||
sc4u = LD80C(0x99be1b89faa0596a, 9, 6.14970430845978077827e+2L),
|
||||
sc5u = LD80C(0xf80dfcbf37ffc5ea, 6, 1.24027318931184605891e+2L);
|
||||
#define rc0 (rc0u.e)
|
||||
#define rc1 (rc1u.e)
|
||||
#define rc2 (rc2u.e)
|
||||
#define rc3 (rc3u.e)
|
||||
#define rc4 (rc4u.e)
|
||||
#define rc5 (rc5u.e)
|
||||
#define sc1 (sc1u.e)
|
||||
#define sc2 (sc2u.e)
|
||||
#define sc3 (sc3u.e)
|
||||
#define sc4 (sc4u.e)
|
||||
#define sc5 (sc5u.e)
|
||||
|
||||
long double
|
||||
erfl(long double x)
|
||||
{
|
||||
long double ax,R,S,P,Q,s,y,z,r;
|
||||
uint64_t lx;
|
||||
int32_t i;
|
||||
uint16_t hx;
|
||||
|
||||
EXTRACT_LDBL80_WORDS(hx, lx, x);
|
||||
|
||||
if((hx & 0x7fff) == 0x7fff) { /* erfl(nan)=nan */
|
||||
i = (hx>>15)<<1;
|
||||
return (1-i)+one/x; /* erfl(+-inf)=+-1 */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
ax = fabsl(x);
|
||||
if(ax < 0.84375) {
|
||||
if(ax < 0x1p-34L) {
|
||||
if(ax < 0x1p-16373L)
|
||||
RETURNI((8*x+efx8*x)/8); /* avoid spurious underflow */
|
||||
RETURNI(x + efx*x);
|
||||
}
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*(pp4+z*pp5))));
|
||||
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*(qq5+z*qq6)))));
|
||||
y = r/s;
|
||||
RETURNI(x + x*y);
|
||||
}
|
||||
if(ax < 1.25) {
|
||||
s = ax-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*(pa6+s*pa7))))));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*(qa6+s*qa7))))));
|
||||
if(x>=0) RETURNI(erx + P/Q); else RETURNI(-erx - P/Q);
|
||||
}
|
||||
if(ax >= 7) { /* inf>|x|>= 7 */
|
||||
if(x>=0) RETURNI(one-tiny); else RETURNI(tiny-one);
|
||||
}
|
||||
s = one/(ax*ax);
|
||||
if(ax < 2.85715) { /* |x| < 2.85715 */
|
||||
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*(ra7+
|
||||
s*(ra8+s*ra9))))))));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+
|
||||
s*(sa8+s*sa9))))))));
|
||||
} else { /* |x| >= 2.85715 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*(rb6+s*rb7))))));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
|
||||
}
|
||||
z=(float)ax;
|
||||
r=expl(-z*z-0.5625)*expl((z-ax)*(z+ax)+R/S);
|
||||
if(x>=0) RETURNI(one-r/ax); else RETURNI(r/ax-one);
|
||||
}
|
||||
|
||||
long double
|
||||
erfcl(long double x)
|
||||
{
|
||||
long double ax,R,S,P,Q,s,y,z,r;
|
||||
uint64_t lx;
|
||||
uint16_t hx;
|
||||
|
||||
EXTRACT_LDBL80_WORDS(hx, lx, x);
|
||||
|
||||
if((hx & 0x7fff) == 0x7fff) { /* erfcl(nan)=nan */
|
||||
/* erfcl(+-inf)=0,2 */
|
||||
return ((hx>>15)<<1)+one/x;
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
ax = fabsl(x);
|
||||
if(ax < 0.84375L) {
|
||||
if(ax < 0x1p-34L)
|
||||
RETURNI(one-x);
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*(pp4+z*pp5))));
|
||||
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*(qq5+z*qq6)))));
|
||||
y = r/s;
|
||||
if(ax < 0.25L) { /* x<1/4 */
|
||||
RETURNI(one-(x+x*y));
|
||||
} else {
|
||||
r = x*y;
|
||||
r += (x-half);
|
||||
RETURNI(half - r);
|
||||
}
|
||||
}
|
||||
if(ax < 1.25L) {
|
||||
s = ax-one;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*(pa6+s*pa7))))));
|
||||
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*(qa6+s*qa7))))));
|
||||
if(x>=0) {
|
||||
z = one-erx; RETURNI(z - P/Q);
|
||||
} else {
|
||||
z = (erx+P/Q); RETURNI(one+z);
|
||||
}
|
||||
}
|
||||
|
||||
if(ax < 108) { /* |x| < 108 */
|
||||
s = one/(ax*ax);
|
||||
if(ax < 2.85715) { /* |x| < 2.85715 */
|
||||
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*(ra7+
|
||||
s*(ra8+s*ra9))))))));
|
||||
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+
|
||||
s*(sa8+s*sa9))))))));
|
||||
} else if(ax < 7) { /* | |x| < 7 */
|
||||
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*(rb6+s*rb7))))));
|
||||
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))));
|
||||
} else {
|
||||
if(x < -7) RETURNI(two-tiny);/* x < -7 */
|
||||
R=rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*rc5))));
|
||||
S=one+s*(sc1+s*(sc2+s*(sc3+s*(sc4+s*sc5))));
|
||||
}
|
||||
z = (float)ax;
|
||||
r = expl(-z*z-0.5625)*expl((z-ax)*(z+ax)+R/S);
|
||||
if(x>0) RETURNI(r/ax); else RETURNI(two-r/ax);
|
||||
} else {
|
||||
if(x>0) RETURNI(tiny*tiny); else RETURNI(two-tiny);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,290 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2005-2008 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <float.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
#define TBLBITS 7
|
||||
#define TBLSIZE (1 << TBLBITS)
|
||||
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
|
||||
static volatile long double
|
||||
huge = 0x1p10000L,
|
||||
twom10000 = 0x1p-10000L;
|
||||
|
||||
static const union IEEEl2bits
|
||||
P1 = LD80C(0xb17217f7d1cf79ac, -1, 6.93147180559945309429e-1L);
|
||||
|
||||
static const double
|
||||
redux = 0x1.8p63 / TBLSIZE,
|
||||
/*
|
||||
* Domain [-0.00390625, 0.00390625], range ~[-1.7079e-23, 1.7079e-23]
|
||||
* |exp(x) - p(x)| < 2**-75.6
|
||||
*/
|
||||
P2 = 2.4022650695910072e-1, /* 0x1ebfbdff82c58f.0p-55 */
|
||||
P3 = 5.5504108664816879e-2, /* 0x1c6b08d7049e1a.0p-57 */
|
||||
P4 = 9.6181291055695180e-3, /* 0x13b2ab6fa8321a.0p-59 */
|
||||
P5 = 1.3333563089183052e-3, /* 0x15d8806f67f251.0p-62 */
|
||||
P6 = 1.5413361552277414e-4; /* 0x1433ddacff3441.0p-65 */
|
||||
|
||||
static const double tbl[TBLSIZE * 2] = {
|
||||
0x1.6a09e667f3bcdp-1, -0x1.bdd3413b2648p-55,
|
||||
0x1.6c012750bdabfp-1, -0x1.2895667ff0cp-57,
|
||||
0x1.6dfb23c651a2fp-1, -0x1.bbe3a683c88p-58,
|
||||
0x1.6ff7df9519484p-1, -0x1.83c0f25860fp-56,
|
||||
0x1.71f75e8ec5f74p-1, -0x1.16e4786887bp-56,
|
||||
0x1.73f9a48a58174p-1, -0x1.0a8d96c65d5p-55,
|
||||
0x1.75feb564267c9p-1, -0x1.0245957316ep-55,
|
||||
0x1.780694fde5d3fp-1, 0x1.866b80a0216p-55,
|
||||
0x1.7a11473eb0187p-1, -0x1.41577ee0499p-56,
|
||||
0x1.7c1ed0130c132p-1, 0x1.f124cd1164ep-55,
|
||||
0x1.7e2f336cf4e62p-1, 0x1.05d02ba157ap-57,
|
||||
0x1.80427543e1a12p-1, -0x1.27c86626d97p-55,
|
||||
0x1.82589994cce13p-1, -0x1.d4c1dd41533p-55,
|
||||
0x1.8471a4623c7adp-1, -0x1.8d684a341cep-56,
|
||||
0x1.868d99b4492edp-1, -0x1.fc6f89bd4f68p-55,
|
||||
0x1.88ac7d98a6699p-1, 0x1.994c2f37cb5p-55,
|
||||
0x1.8ace5422aa0dbp-1, 0x1.6e9f156864bp-55,
|
||||
0x1.8cf3216b5448cp-1, -0x1.0d55e32e9e4p-57,
|
||||
0x1.8f1ae99157736p-1, 0x1.5cc13a2e397p-56,
|
||||
0x1.9145b0b91ffc6p-1, -0x1.dd6792e5825p-55,
|
||||
0x1.93737b0cdc5e5p-1, -0x1.75fc781b58p-58,
|
||||
0x1.95a44cbc8520fp-1, -0x1.64b7c96a5fp-57,
|
||||
0x1.97d829fde4e5p-1, -0x1.d185b7c1b86p-55,
|
||||
0x1.9a0f170ca07bap-1, -0x1.173bd91cee6p-55,
|
||||
0x1.9c49182a3f09p-1, 0x1.c7c46b071f2p-57,
|
||||
0x1.9e86319e32323p-1, 0x1.824ca78e64cp-57,
|
||||
0x1.a0c667b5de565p-1, -0x1.359495d1cd5p-55,
|
||||
0x1.a309bec4a2d33p-1, 0x1.6305c7ddc368p-55,
|
||||
0x1.a5503b23e255dp-1, -0x1.d2f6edb8d42p-55,
|
||||
0x1.a799e1330b358p-1, 0x1.bcb7ecac564p-55,
|
||||
0x1.a9e6b5579fdbfp-1, 0x1.0fac90ef7fdp-55,
|
||||
0x1.ac36bbfd3f37ap-1, -0x1.f9234cae76dp-56,
|
||||
0x1.ae89f995ad3adp-1, 0x1.7a1cd345dcc8p-55,
|
||||
0x1.b0e07298db666p-1, -0x1.bdef54c80e4p-55,
|
||||
0x1.b33a2b84f15fbp-1, -0x1.2805e3084d8p-58,
|
||||
0x1.b59728de5593ap-1, -0x1.c71dfbbba6ep-55,
|
||||
0x1.b7f76f2fb5e47p-1, -0x1.5584f7e54acp-57,
|
||||
0x1.ba5b030a1064ap-1, -0x1.efcd30e5429p-55,
|
||||
0x1.bcc1e904bc1d2p-1, 0x1.23dd07a2d9fp-56,
|
||||
0x1.bf2c25bd71e09p-1, -0x1.efdca3f6b9c8p-55,
|
||||
0x1.c199bdd85529cp-1, 0x1.11065895049p-56,
|
||||
0x1.c40ab5fffd07ap-1, 0x1.b4537e083c6p-55,
|
||||
0x1.c67f12e57d14bp-1, 0x1.2884dff483c8p-55,
|
||||
0x1.c8f6d9406e7b5p-1, 0x1.1acbc48805cp-57,
|
||||
0x1.cb720dcef9069p-1, 0x1.503cbd1e94ap-57,
|
||||
0x1.cdf0b555dc3fap-1, -0x1.dd83b53829dp-56,
|
||||
0x1.d072d4a07897cp-1, -0x1.cbc3743797a8p-55,
|
||||
0x1.d2f87080d89f2p-1, -0x1.d487b719d858p-55,
|
||||
0x1.d5818dcfba487p-1, 0x1.2ed02d75b37p-56,
|
||||
0x1.d80e316c98398p-1, -0x1.11ec18bedep-55,
|
||||
0x1.da9e603db3285p-1, 0x1.c2300696db5p-55,
|
||||
0x1.dd321f301b46p-1, 0x1.2da5778f019p-55,
|
||||
0x1.dfc97337b9b5fp-1, -0x1.1a5cd4f184b8p-55,
|
||||
0x1.e264614f5a129p-1, -0x1.7b627817a148p-55,
|
||||
0x1.e502ee78b3ff6p-1, 0x1.39e8980a9cdp-56,
|
||||
0x1.e7a51fbc74c83p-1, 0x1.2d522ca0c8ep-55,
|
||||
0x1.ea4afa2a490dap-1, -0x1.e9c23179c288p-55,
|
||||
0x1.ecf482d8e67f1p-1, -0x1.c93f3b411ad8p-55,
|
||||
0x1.efa1bee615a27p-1, 0x1.dc7f486a4b68p-55,
|
||||
0x1.f252b376bba97p-1, 0x1.3a1a5bf0d8e8p-55,
|
||||
0x1.f50765b6e454p-1, 0x1.9d3e12dd8a18p-55,
|
||||
0x1.f7bfdad9cbe14p-1, -0x1.dbb12d00635p-55,
|
||||
0x1.fa7c1819e90d8p-1, 0x1.74853f3a593p-56,
|
||||
0x1.fd3c22b8f71f1p-1, 0x1.2eb74966578p-58,
|
||||
0x1p+0, 0x0p+0,
|
||||
0x1.0163da9fb3335p+0, 0x1.b61299ab8cd8p-54,
|
||||
0x1.02c9a3e778061p+0, -0x1.19083535b08p-56,
|
||||
0x1.04315e86e7f85p+0, -0x1.0a31c1977c98p-54,
|
||||
0x1.059b0d3158574p+0, 0x1.d73e2a475b4p-55,
|
||||
0x1.0706b29ddf6dep+0, -0x1.c91dfe2b13cp-55,
|
||||
0x1.0874518759bc8p+0, 0x1.186be4bb284p-57,
|
||||
0x1.09e3ecac6f383p+0, 0x1.14878183161p-54,
|
||||
0x1.0b5586cf9890fp+0, 0x1.8a62e4adc61p-54,
|
||||
0x1.0cc922b7247f7p+0, 0x1.01edc16e24f8p-54,
|
||||
0x1.0e3ec32d3d1a2p+0, 0x1.03a1727c58p-59,
|
||||
0x1.0fb66affed31bp+0, -0x1.b9bedc44ebcp-57,
|
||||
0x1.11301d0125b51p+0, -0x1.6c51039449bp-54,
|
||||
0x1.12abdc06c31ccp+0, -0x1.1b514b36ca8p-58,
|
||||
0x1.1429aaea92dep+0, -0x1.32fbf9af1368p-54,
|
||||
0x1.15a98c8a58e51p+0, 0x1.2406ab9eeabp-55,
|
||||
0x1.172b83c7d517bp+0, -0x1.19041b9d78ap-55,
|
||||
0x1.18af9388c8deap+0, -0x1.11023d1970f8p-54,
|
||||
0x1.1a35beb6fcb75p+0, 0x1.e5b4c7b4969p-55,
|
||||
0x1.1bbe084045cd4p+0, -0x1.95386352ef6p-54,
|
||||
0x1.1d4873168b9aap+0, 0x1.e016e00a264p-54,
|
||||
0x1.1ed5022fcd91dp+0, -0x1.1df98027bb78p-54,
|
||||
0x1.2063b88628cd6p+0, 0x1.dc775814a85p-55,
|
||||
0x1.21f49917ddc96p+0, 0x1.2a97e9494a6p-55,
|
||||
0x1.2387a6e756238p+0, 0x1.9b07eb6c7058p-54,
|
||||
0x1.251ce4fb2a63fp+0, 0x1.ac155bef4f5p-55,
|
||||
0x1.26b4565e27cddp+0, 0x1.2bd339940eap-55,
|
||||
0x1.284dfe1f56381p+0, -0x1.a4c3a8c3f0d8p-54,
|
||||
0x1.29e9df51fdee1p+0, 0x1.612e8afad12p-55,
|
||||
0x1.2b87fd0dad99p+0, -0x1.10adcd6382p-59,
|
||||
0x1.2d285a6e4030bp+0, 0x1.0024754db42p-54,
|
||||
0x1.2ecafa93e2f56p+0, 0x1.1ca0f45d524p-56,
|
||||
0x1.306fe0a31b715p+0, 0x1.6f46ad23183p-55,
|
||||
0x1.32170fc4cd831p+0, 0x1.a9ce78e1804p-55,
|
||||
0x1.33c08b26416ffp+0, 0x1.327218436598p-54,
|
||||
0x1.356c55f929ff1p+0, -0x1.b5cee5c4e46p-55,
|
||||
0x1.371a7373aa9cbp+0, -0x1.63aeabf42ebp-54,
|
||||
0x1.38cae6d05d866p+0, -0x1.e958d3c99048p-54,
|
||||
0x1.3a7db34e59ff7p+0, -0x1.5e436d661f6p-56,
|
||||
0x1.3c32dc313a8e5p+0, -0x1.efff8375d2ap-54,
|
||||
0x1.3dea64c123422p+0, 0x1.ada0911f09fp-55,
|
||||
0x1.3fa4504ac801cp+0, -0x1.7d023f956fap-54,
|
||||
0x1.4160a21f72e2ap+0, -0x1.ef3691c309p-58,
|
||||
0x1.431f5d950a897p+0, -0x1.1c7dde35f7ap-55,
|
||||
0x1.44e086061892dp+0, 0x1.89b7a04ef8p-59,
|
||||
0x1.46a41ed1d0057p+0, 0x1.c944bd1648a8p-54,
|
||||
0x1.486a2b5c13cdp+0, 0x1.3c1a3b69062p-56,
|
||||
0x1.4a32af0d7d3dep+0, 0x1.9cb62f3d1be8p-54,
|
||||
0x1.4bfdad5362a27p+0, 0x1.d4397afec42p-56,
|
||||
0x1.4dcb299fddd0dp+0, 0x1.8ecdbbc6a78p-54,
|
||||
0x1.4f9b2769d2ca7p+0, -0x1.4b309d25958p-54,
|
||||
0x1.516daa2cf6642p+0, -0x1.f768569bd94p-55,
|
||||
0x1.5342b569d4f82p+0, -0x1.07abe1db13dp-55,
|
||||
0x1.551a4ca5d920fp+0, -0x1.d689cefede6p-55,
|
||||
0x1.56f4736b527dap+0, 0x1.9bb2c011d938p-54,
|
||||
0x1.58d12d497c7fdp+0, 0x1.295e15b9a1ep-55,
|
||||
0x1.5ab07dd485429p+0, 0x1.6324c0546478p-54,
|
||||
0x1.5c9268a5946b7p+0, 0x1.c4b1b81698p-60,
|
||||
0x1.5e76f15ad2148p+0, 0x1.ba6f93080e68p-54,
|
||||
0x1.605e1b976dc09p+0, -0x1.3e2429b56de8p-54,
|
||||
0x1.6247eb03a5585p+0, -0x1.383c17e40b48p-54,
|
||||
0x1.6434634ccc32p+0, -0x1.c483c759d89p-55,
|
||||
0x1.6623882552225p+0, -0x1.bb60987591cp-54,
|
||||
0x1.68155d44ca973p+0, 0x1.038ae44f74p-57,
|
||||
};
|
||||
|
||||
/**
|
||||
* Compute the base 2 exponential of x for Intel 80-bit format.
|
||||
*
|
||||
* Accuracy: Peak error < 0.511 ulp.
|
||||
*
|
||||
* Method: (equally-spaced tables)
|
||||
*
|
||||
* Reduce x:
|
||||
* x = 2**k + y, for integer k and |y| <= 1/2.
|
||||
* Thus we have exp2l(x) = 2**k * exp2(y).
|
||||
*
|
||||
* Reduce y:
|
||||
* y = i/TBLSIZE + z for integer i near y * TBLSIZE.
|
||||
* Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
|
||||
* with |z| <= 2**-(TBLBITS+1).
|
||||
*
|
||||
* We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
|
||||
* degree-6 minimax polynomial with maximum error under 2**-75.6.
|
||||
* The table entries each have 104 bits of accuracy, encoded as
|
||||
* a pair of double precision values.
|
||||
*/
|
||||
long double
|
||||
exp2l(long double x)
|
||||
{
|
||||
union IEEEl2bits u, v;
|
||||
long double r, twopk, twopkp10000, z;
|
||||
uint32_t hx, ix, i0;
|
||||
int k;
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
ix = hx & 0x7fff;
|
||||
if (ix >= BIAS + 14) { /* |x| >= 16384 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000 && u.xbits.man == 1ULL << 63)
|
||||
return (0.0L); /* x is -Inf */
|
||||
return (x + x); /* x is +Inf, NaN or unsupported */
|
||||
}
|
||||
if (x >= 16384)
|
||||
return (huge * huge); /* overflow */
|
||||
if (x <= -16446)
|
||||
return (twom10000 * twom10000); /* underflow */
|
||||
} else if (ix <= BIAS - 66) { /* |x| < 0x1p-65 (includes pseudos) */
|
||||
return (1.0L + x); /* 1 with inexact */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
/*
|
||||
* Reduce x, computing z, i0, and k. The low bits of x + redux
|
||||
* contain the 16-bit integer part of the exponent (k) followed by
|
||||
* TBLBITS fractional bits (i0). We use bit tricks to extract these
|
||||
* as integers, then set z to the remainder.
|
||||
*
|
||||
* Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
|
||||
* Then the low-order word of x + redux is 0x000abc12,
|
||||
* We split this into k = 0xabc and i0 = 0x12 (adjusted to
|
||||
* index into the table), then we compute z = 0x0.003456p0.
|
||||
*
|
||||
* XXX If the exponent is negative, the computation of k depends on
|
||||
* '>>' doing sign extension.
|
||||
*/
|
||||
u.e = x + redux;
|
||||
i0 = u.bits.manl + TBLSIZE / 2;
|
||||
k = (int)i0 >> TBLBITS;
|
||||
i0 = (i0 & (TBLSIZE - 1)) << 1;
|
||||
u.e -= redux;
|
||||
z = x - u.e;
|
||||
v.xbits.man = 1ULL << 63;
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
v.xbits.expsign = BIAS + k;
|
||||
twopk = v.e;
|
||||
} else {
|
||||
v.xbits.expsign = BIAS + k + 10000;
|
||||
twopkp10000 = v.e;
|
||||
}
|
||||
|
||||
/* Compute r = exp2l(y) = exp2lt[i0] * p(z). */
|
||||
long double t_hi = tbl[i0];
|
||||
long double t_lo = tbl[i0 + 1];
|
||||
r = t_lo + (t_hi + t_lo) * z * (P1.e + z * (P2 + z * (P3 + z * (P4
|
||||
+ z * (P5 + z * P6))))) + t_hi;
|
||||
|
||||
/* Scale by 2**k. */
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(r * 2.0 * 0x1p16383L);
|
||||
RETURNI(r * twopk);
|
||||
} else {
|
||||
RETURNI(r * twopkp10000 * twom10000);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,279 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2009-2013 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/**
|
||||
* Compute the exponential of x for Intel 80-bit format. This is based on:
|
||||
*
|
||||
* PTP Tang, "Table-driven implementation of the exponential function
|
||||
* in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
|
||||
* 144-157 (1989).
|
||||
*
|
||||
* where the 32 table entries have been expanded to INTERVALS (see below).
|
||||
*/
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
#include "k_expl.h"
|
||||
|
||||
/* XXX Prevent compilers from erroneously constant folding these: */
|
||||
static const volatile long double
|
||||
huge = 0x1p10000L,
|
||||
tiny = 0x1p-10000L;
|
||||
|
||||
static const long double
|
||||
twom10000 = 0x1p-10000L;
|
||||
|
||||
static const union IEEEl2bits
|
||||
/* log(2**16384 - 0.5) rounded towards zero: */
|
||||
/* log(2**16384 - 0.5 + 1) rounded towards zero for expm1l() is the same: */
|
||||
o_thresholdu = LD80C(0xb17217f7d1cf79ab, 13, 11356.5234062941439488L),
|
||||
#define o_threshold (o_thresholdu.e)
|
||||
/* log(2**(-16381-64-1)) rounded towards zero: */
|
||||
u_thresholdu = LD80C(0xb21dfe7f09e2baa9, 13, -11399.4985314888605581L);
|
||||
#define u_threshold (u_thresholdu.e)
|
||||
|
||||
long double
|
||||
expl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
long double hi, lo, t, twopk;
|
||||
int k;
|
||||
uint16_t hx, ix;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
ix = hx & 0x7fff;
|
||||
if (ix >= BIAS + 13) { /* |x| >= 8192 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
|
||||
RETURNP(-1 / x);
|
||||
RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
|
||||
}
|
||||
if (x > o_threshold)
|
||||
RETURNP(huge * huge);
|
||||
if (x < u_threshold)
|
||||
RETURNP(tiny * tiny);
|
||||
} else if (ix < BIAS - 75) { /* |x| < 0x1p-75 (includes pseudos) */
|
||||
RETURN2P(1, x); /* 1 with inexact iff x != 0 */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
twopk = 1;
|
||||
__k_expl(x, &hi, &lo, &k);
|
||||
t = SUM2P(hi, lo);
|
||||
|
||||
/* Scale by 2**k. */
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(t * 2 * 0x1p16383L);
|
||||
SET_LDBL_EXPSIGN(twopk, BIAS + k);
|
||||
RETURNI(t * twopk);
|
||||
} else {
|
||||
SET_LDBL_EXPSIGN(twopk, BIAS + k + 10000);
|
||||
RETURNI(t * twopk * twom10000);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute expm1l(x) for Intel 80-bit format. This is based on:
|
||||
*
|
||||
* PTP Tang, "Table-driven implementation of the Expm1 function
|
||||
* in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 18,
|
||||
* 211-222 (1992).
|
||||
*/
|
||||
|
||||
/*
|
||||
* Our T1 and T2 are chosen to be approximately the points where method
|
||||
* A and method B have the same accuracy. Tang's T1 and T2 are the
|
||||
* points where method A's accuracy changes by a full bit. For Tang,
|
||||
* this drop in accuracy makes method A immediately less accurate than
|
||||
* method B, but our larger INTERVALS makes method A 2 bits more
|
||||
* accurate so it remains the most accurate method significantly
|
||||
* closer to the origin despite losing the full bit in our extended
|
||||
* range for it.
|
||||
*/
|
||||
static const double
|
||||
T1 = -0.1659, /* ~-30.625/128 * log(2) */
|
||||
T2 = 0.1659; /* ~30.625/128 * log(2) */
|
||||
|
||||
/*
|
||||
* Domain [-0.1659, 0.1659], range ~[-2.6155e-22, 2.5507e-23]:
|
||||
* |(exp(x)-1-x-x**2/2)/x - p(x)| < 2**-71.6
|
||||
*
|
||||
* XXX the coeffs aren't very carefully rounded, and I get 2.8 more bits,
|
||||
* but unlike for ld128 we can't drop any terms.
|
||||
*/
|
||||
static const union IEEEl2bits
|
||||
B3 = LD80C(0xaaaaaaaaaaaaaaab, -3, 1.66666666666666666671e-1L),
|
||||
B4 = LD80C(0xaaaaaaaaaaaaaaac, -5, 4.16666666666666666712e-2L);
|
||||
|
||||
static const double
|
||||
B5 = 8.3333333333333245e-3, /* 0x1.111111111110cp-7 */
|
||||
B6 = 1.3888888888888861e-3, /* 0x1.6c16c16c16c0ap-10 */
|
||||
B7 = 1.9841269841532042e-4, /* 0x1.a01a01a0319f9p-13 */
|
||||
B8 = 2.4801587302069236e-5, /* 0x1.a01a01a03cbbcp-16 */
|
||||
B9 = 2.7557316558468562e-6, /* 0x1.71de37fd33d67p-19 */
|
||||
B10 = 2.7557315829785151e-7, /* 0x1.27e4f91418144p-22 */
|
||||
B11 = 2.5063168199779829e-8, /* 0x1.ae94fabdc6b27p-26 */
|
||||
B12 = 2.0887164654459567e-9; /* 0x1.1f122d6413fe1p-29 */
|
||||
|
||||
long double
|
||||
expm1l(long double x)
|
||||
{
|
||||
union IEEEl2bits u, v;
|
||||
long double fn, hx2_hi, hx2_lo, q, r, r1, r2, t, twomk, twopk, x_hi;
|
||||
long double x_lo, x2, z;
|
||||
long double x4;
|
||||
int k, n, n2;
|
||||
uint16_t hx, ix;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
ix = hx & 0x7fff;
|
||||
if (ix >= BIAS + 6) { /* |x| >= 64 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (hx & 0x8000) /* x is -Inf, -NaN or unsupported */
|
||||
RETURNP(-1 / x - 1);
|
||||
RETURNP(x + x); /* x is +Inf, +NaN or unsupported */
|
||||
}
|
||||
if (x > o_threshold)
|
||||
RETURNP(huge * huge);
|
||||
/*
|
||||
* expm1l() never underflows, but it must avoid
|
||||
* unrepresentable large negative exponents. We used a
|
||||
* much smaller threshold for large |x| above than in
|
||||
* expl() so as to handle not so large negative exponents
|
||||
* in the same way as large ones here.
|
||||
*/
|
||||
if (hx & 0x8000) /* x <= -64 */
|
||||
RETURN2P(tiny, -1); /* good for x < -65ln2 - eps */
|
||||
}
|
||||
|
||||
ENTERI();
|
||||
|
||||
if (T1 < x && x < T2) {
|
||||
if (ix < BIAS - 74) { /* |x| < 0x1p-74 (includes pseudos) */
|
||||
/* x (rounded) with inexact if x != 0: */
|
||||
RETURNPI(x == 0 ? x :
|
||||
(0x1p100 * x + fabsl(x)) * 0x1p-100);
|
||||
}
|
||||
|
||||
x2 = x * x;
|
||||
x4 = x2 * x2;
|
||||
q = x4 * (x2 * (x4 *
|
||||
/*
|
||||
* XXX the number of terms is no longer good for
|
||||
* pairwise grouping of all except B3, and the
|
||||
* grouping is no longer from highest down.
|
||||
*/
|
||||
(x2 * B12 + (x * B11 + B10)) +
|
||||
(x2 * (x * B9 + B8) + (x * B7 + B6))) +
|
||||
(x * B5 + B4.e)) + x2 * x * B3.e;
|
||||
|
||||
x_hi = (float)x;
|
||||
x_lo = x - x_hi;
|
||||
hx2_hi = x_hi * x_hi / 2;
|
||||
hx2_lo = x_lo * (x + x_hi) / 2;
|
||||
if (ix >= BIAS - 7)
|
||||
RETURN2PI(hx2_hi + x_hi, hx2_lo + x_lo + q);
|
||||
else
|
||||
RETURN2PI(x, hx2_lo + q + hx2_hi);
|
||||
}
|
||||
|
||||
/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
|
||||
fn = rnintl(x * INV_L);
|
||||
n = irint(fn);
|
||||
n2 = (unsigned)n % INTERVALS;
|
||||
k = n >> LOG2_INTERVALS;
|
||||
r1 = x - fn * L1;
|
||||
r2 = fn * -L2;
|
||||
r = r1 + r2;
|
||||
|
||||
/* Prepare scale factor. */
|
||||
v.e = 1;
|
||||
v.xbits.expsign = BIAS + k;
|
||||
twopk = v.e;
|
||||
|
||||
/*
|
||||
* Evaluate lower terms of
|
||||
* expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2).
|
||||
*/
|
||||
z = r * r;
|
||||
q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
|
||||
|
||||
t = (long double)tbl[n2].lo + tbl[n2].hi;
|
||||
|
||||
if (k == 0) {
|
||||
t = SUM2P(tbl[n2].hi - 1, tbl[n2].lo * (r1 + 1) + t * q +
|
||||
tbl[n2].hi * r1);
|
||||
RETURNI(t);
|
||||
}
|
||||
if (k == -1) {
|
||||
t = SUM2P(tbl[n2].hi - 2, tbl[n2].lo * (r1 + 1) + t * q +
|
||||
tbl[n2].hi * r1);
|
||||
RETURNI(t / 2);
|
||||
}
|
||||
if (k < -7) {
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
||||
RETURNI(t * twopk - 1);
|
||||
}
|
||||
if (k > 2 * LDBL_MANT_DIG - 1) {
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo + t * (q + r1));
|
||||
if (k == LDBL_MAX_EXP)
|
||||
RETURNI(t * 2 * 0x1p16383L - 1);
|
||||
RETURNI(t * twopk - 1);
|
||||
}
|
||||
|
||||
v.xbits.expsign = BIAS - k;
|
||||
twomk = v.e;
|
||||
|
||||
if (k > LDBL_MANT_DIG - 1)
|
||||
t = SUM2P(tbl[n2].hi, tbl[n2].lo - twomk + t * (q + r1));
|
||||
else
|
||||
t = SUM2P(tbl[n2].hi - twomk, tbl[n2].lo + t * (q + r1));
|
||||
RETURNI(t * twopk);
|
||||
}
|
|
@ -0,0 +1,722 @@
|
|||
/*-
|
||||
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
||||
*
|
||||
* Copyright (c) 2007-2013 Bruce D. Evans
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
/**
|
||||
* Implementation of the natural logarithm of x for Intel 80-bit format.
|
||||
*
|
||||
* First decompose x into its base 2 representation:
|
||||
*
|
||||
* log(x) = log(X * 2**k), where X is in [1, 2)
|
||||
* = log(X) + k * log(2).
|
||||
*
|
||||
* Let X = X_i + e, where X_i is the center of one of the intervals
|
||||
* [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
|
||||
* and X is in this interval. Then
|
||||
*
|
||||
* log(X) = log(X_i + e)
|
||||
* = log(X_i * (1 + e / X_i))
|
||||
* = log(X_i) + log(1 + e / X_i).
|
||||
*
|
||||
* The values log(X_i) are tabulated below. Let d = e / X_i and use
|
||||
*
|
||||
* log(1 + d) = p(d)
|
||||
*
|
||||
* where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
|
||||
* suitably high degree.
|
||||
*
|
||||
* To get sufficiently small roundoff errors, k * log(2), log(X_i), and
|
||||
* sometimes (if |k| is not large) the first term in p(d) must be evaluated
|
||||
* and added up in extra precision. Extra precision is not needed for the
|
||||
* rest of p(d). In the worst case when k = 0 and log(X_i) is 0, the final
|
||||
* error is controlled mainly by the error in the second term in p(d). The
|
||||
* error in this term itself is at most 0.5 ulps from the d*d operation in
|
||||
* it. The error in this term relative to the first term is thus at most
|
||||
* 0.5 * |-0.5| * |d| < 1.0/1024 ulps. We aim for an accumulated error of
|
||||
* at most twice this at the point of the final rounding step. Thus the
|
||||
* final error should be at most 0.5 + 1.0/512 = 0.5020 ulps. Exhaustive
|
||||
* testing of a float variant of this function showed a maximum final error
|
||||
* of 0.5008 ulps. Non-exhaustive testing of a double variant of this
|
||||
* function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
|
||||
*
|
||||
* We made the maximum of |d| (and thus the total relative error and the
|
||||
* degree of p(d)) small by using a large number of intervals. Using
|
||||
* centers of intervals instead of endpoints reduces this maximum by a
|
||||
* factor of 2 for a given number of intervals. p(d) is special only
|
||||
* in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
|
||||
* naturally. The most accurate minimax polynomial of a given degree might
|
||||
* be different, but then we wouldn't want it since we would have to do
|
||||
* extra work to avoid roundoff error (especially for P0*d instead of d).
|
||||
*/
|
||||
|
||||
#ifdef DEBUG
|
||||
#include <assert.h>
|
||||
#include <fenv.h>
|
||||
#endif
|
||||
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#define i386_SSE_GOOD
|
||||
#ifndef NO_STRUCT_RETURN
|
||||
#define STRUCT_RETURN
|
||||
#endif
|
||||
#include "math_private.h"
|
||||
|
||||
#if !defined(NO_UTAB) && !defined(NO_UTABL)
|
||||
#define USE_UTAB
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Domain [-0.005280, 0.004838], range ~[-5.1736e-22, 5.1738e-22]:
|
||||
* |log(1 + d)/d - p(d)| < 2**-70.7
|
||||
*/
|
||||
static const double
|
||||
P2 = -0.5,
|
||||
P3 = 3.3333333333333359e-1, /* 0x1555555555555a.0p-54 */
|
||||
P4 = -2.5000000000004424e-1, /* -0x1000000000031d.0p-54 */
|
||||
P5 = 1.9999999992970016e-1, /* 0x1999999972f3c7.0p-55 */
|
||||
P6 = -1.6666666072191585e-1, /* -0x15555548912c09.0p-55 */
|
||||
P7 = 1.4286227413310518e-1, /* 0x12494f9d9def91.0p-55 */
|
||||
P8 = -1.2518388626763144e-1; /* -0x1006068cc0b97c.0p-55 */
|
||||
|
||||
static volatile const double zero = 0;
|
||||
|
||||
#define INTERVALS 128
|
||||
#define LOG2_INTERVALS 7
|
||||
#define TSIZE (INTERVALS + 1)
|
||||
#define G(i) (T[(i)].G)
|
||||
#define F_hi(i) (T[(i)].F_hi)
|
||||
#define F_lo(i) (T[(i)].F_lo)
|
||||
#define ln2_hi F_hi(TSIZE - 1)
|
||||
#define ln2_lo F_lo(TSIZE - 1)
|
||||
#define E(i) (U[(i)].E)
|
||||
#define H(i) (U[(i)].H)
|
||||
|
||||
static const struct {
|
||||
float G; /* 1/(1 + i/128) rounded to 8/9 bits */
|
||||
float F_hi; /* log(1 / G_i) rounded (see below) */
|
||||
double F_lo; /* next 53 bits for log(1 / G_i) */
|
||||
} T[TSIZE] = {
|
||||
/*
|
||||
* ln2_hi and each F_hi(i) are rounded to a number of bits that
|
||||
* makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
|
||||
*
|
||||
* The last entry (for X just below 2) is used to define ln2_hi
|
||||
* and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
|
||||
* with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
|
||||
* This is needed for accuracy when x is just below 1. (To avoid
|
||||
* special cases, such x are "reduced" strangely to X just below
|
||||
* 2 and dk = -1, and then the exact cancellation is needed
|
||||
* because any the error from any non-exactness would be too
|
||||
* large).
|
||||
*
|
||||
* We want to share this table between double precision and ld80,
|
||||
* so the relevant range of dk is the larger one of ld80
|
||||
* ([-16445, 16383]) and the relevant exactness requirement is
|
||||
* the stricter one of double precision. The maximum number of
|
||||
* bits in F_hi(i) that works is very dependent on i but has
|
||||
* a minimum of 33. We only need about 12 bits in F_hi(i) for
|
||||
* it to provide enough extra precision in double precision (11
|
||||
* more than that are required for ld80).
|
||||
*
|
||||
* We round F_hi(i) to 24 bits so that it can have type float,
|
||||
* mainly to minimize the size of the table. Using all 24 bits
|
||||
* in a float for it automatically satisfies the above constraints.
|
||||
*/
|
||||
{ 0x800000.0p-23, 0, 0 },
|
||||
{ 0xfe0000.0p-24, 0x8080ac.0p-30, -0x14ee431dae6675.0p-84 },
|
||||
{ 0xfc0000.0p-24, 0x8102b3.0p-29, -0x1db29ee2d83718.0p-84 },
|
||||
{ 0xfa0000.0p-24, 0xc24929.0p-29, 0x1191957d173698.0p-83 },
|
||||
{ 0xf80000.0p-24, 0x820aec.0p-28, 0x13ce8888e02e79.0p-82 },
|
||||
{ 0xf60000.0p-24, 0xa33577.0p-28, -0x17a4382ce6eb7c.0p-82 },
|
||||
{ 0xf48000.0p-24, 0xbc42cb.0p-28, -0x172a21161a1076.0p-83 },
|
||||
{ 0xf30000.0p-24, 0xd57797.0p-28, -0x1e09de07cb9589.0p-82 },
|
||||
{ 0xf10000.0p-24, 0xf7518e.0p-28, 0x1ae1eec1b036c5.0p-91 },
|
||||
{ 0xef0000.0p-24, 0x8cb9df.0p-27, -0x1d7355325d560e.0p-81 },
|
||||
{ 0xed8000.0p-24, 0x999ec0.0p-27, -0x1f9f02d256d503.0p-82 },
|
||||
{ 0xec0000.0p-24, 0xa6988b.0p-27, -0x16fc0a9d12c17a.0p-83 },
|
||||
{ 0xea0000.0p-24, 0xb80698.0p-27, 0x15d581c1e8da9a.0p-81 },
|
||||
{ 0xe80000.0p-24, 0xc99af3.0p-27, -0x1535b3ba8f150b.0p-83 },
|
||||
{ 0xe70000.0p-24, 0xd273b2.0p-27, 0x163786f5251af0.0p-85 },
|
||||
{ 0xe50000.0p-24, 0xe442c0.0p-27, 0x1bc4b2368e32d5.0p-84 },
|
||||
{ 0xe38000.0p-24, 0xf1b83f.0p-27, 0x1c6090f684e676.0p-81 },
|
||||
{ 0xe20000.0p-24, 0xff448a.0p-27, -0x1890aa69ac9f42.0p-82 },
|
||||
{ 0xe08000.0p-24, 0x8673f6.0p-26, 0x1b9985194b6b00.0p-80 },
|
||||
{ 0xdf0000.0p-24, 0x8d515c.0p-26, -0x1dc08d61c6ef1e.0p-83 },
|
||||
{ 0xdd8000.0p-24, 0x943a9e.0p-26, -0x1f72a2dac729b4.0p-82 },
|
||||
{ 0xdc0000.0p-24, 0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9.0p-80 },
|
||||
{ 0xda8000.0p-24, 0xa2315d.0p-26, -0x11b26121629c47.0p-82 },
|
||||
{ 0xd90000.0p-24, 0xa93f2f.0p-26, 0x1286d633e8e569.0p-81 },
|
||||
{ 0xd78000.0p-24, 0xb05988.0p-26, 0x16128eba936770.0p-84 },
|
||||
{ 0xd60000.0p-24, 0xb78094.0p-26, 0x16ead577390d32.0p-80 },
|
||||
{ 0xd50000.0p-24, 0xbc4c6c.0p-26, 0x151131ccf7c7b7.0p-81 },
|
||||
{ 0xd38000.0p-24, 0xc3890a.0p-26, -0x115e2cd714bd06.0p-80 },
|
||||
{ 0xd20000.0p-24, 0xcad2d7.0p-26, -0x1847f406ebd3b0.0p-82 },
|
||||
{ 0xd10000.0p-24, 0xcfb620.0p-26, 0x1c2259904d6866.0p-81 },
|
||||
{ 0xcf8000.0p-24, 0xd71653.0p-26, 0x1ece57a8d5ae55.0p-80 },
|
||||
{ 0xce0000.0p-24, 0xde843a.0p-26, -0x1f109d4bc45954.0p-81 },
|
||||
{ 0xcd0000.0p-24, 0xe37fde.0p-26, 0x1bc03dc271a74d.0p-81 },
|
||||
{ 0xcb8000.0p-24, 0xeb050c.0p-26, -0x1bf2badc0df842.0p-85 },
|
||||
{ 0xca0000.0p-24, 0xf29878.0p-26, -0x18efededd89fbe.0p-87 },
|
||||
{ 0xc90000.0p-24, 0xf7ad6f.0p-26, 0x1373ff977baa69.0p-81 },
|
||||
{ 0xc80000.0p-24, 0xfcc8e3.0p-26, 0x196766f2fb3283.0p-80 },
|
||||
{ 0xc68000.0p-24, 0x823f30.0p-25, 0x19bd076f7c434e.0p-79 },
|
||||
{ 0xc58000.0p-24, 0x84d52c.0p-25, -0x1a327257af0f46.0p-79 },
|
||||
{ 0xc40000.0p-24, 0x88bc74.0p-25, 0x113f23def19c5a.0p-81 },
|
||||
{ 0xc30000.0p-24, 0x8b5ae6.0p-25, 0x1759f6e6b37de9.0p-79 },
|
||||
{ 0xc20000.0p-24, 0x8dfccb.0p-25, 0x1ad35ca6ed5148.0p-81 },
|
||||
{ 0xc10000.0p-24, 0x90a22b.0p-25, 0x1a1d71a87deba4.0p-79 },
|
||||
{ 0xbf8000.0p-24, 0x94a0d8.0p-25, -0x139e5210c2b731.0p-80 },
|
||||
{ 0xbe8000.0p-24, 0x974f16.0p-25, -0x18f6ebcff3ed73.0p-81 },
|
||||
{ 0xbd8000.0p-24, 0x9a00f1.0p-25, -0x1aa268be39aab7.0p-79 },
|
||||
{ 0xbc8000.0p-24, 0x9cb672.0p-25, -0x14c8815839c566.0p-79 },
|
||||
{ 0xbb0000.0p-24, 0xa0cda1.0p-25, 0x1eaf46390dbb24.0p-81 },
|
||||
{ 0xba0000.0p-24, 0xa38c6e.0p-25, 0x138e20d831f698.0p-81 },
|
||||
{ 0xb90000.0p-24, 0xa64f05.0p-25, -0x1e8d3c41123616.0p-82 },
|
||||
{ 0xb80000.0p-24, 0xa91570.0p-25, 0x1ce28f5f3840b2.0p-80 },
|
||||
{ 0xb70000.0p-24, 0xabdfbb.0p-25, -0x186e5c0a424234.0p-79 },
|
||||
{ 0xb60000.0p-24, 0xaeadef.0p-25, -0x14d41a0b2a08a4.0p-83 },
|
||||
{ 0xb50000.0p-24, 0xb18018.0p-25, 0x16755892770634.0p-79 },
|
||||
{ 0xb40000.0p-24, 0xb45642.0p-25, -0x16395ebe59b152.0p-82 },
|
||||
{ 0xb30000.0p-24, 0xb73077.0p-25, 0x1abc65c8595f09.0p-80 },
|
||||
{ 0xb20000.0p-24, 0xba0ec4.0p-25, -0x1273089d3dad89.0p-79 },
|
||||
{ 0xb10000.0p-24, 0xbcf133.0p-25, 0x10f9f67b1f4bbf.0p-79 },
|
||||
{ 0xb00000.0p-24, 0xbfd7d2.0p-25, -0x109fab90486409.0p-80 },
|
||||
{ 0xaf0000.0p-24, 0xc2c2ac.0p-25, -0x1124680aa43333.0p-79 },
|
||||
{ 0xae8000.0p-24, 0xc439b3.0p-25, -0x1f360cc4710fc0.0p-80 },
|
||||
{ 0xad8000.0p-24, 0xc72afd.0p-25, -0x132d91f21d89c9.0p-80 },
|
||||
{ 0xac8000.0p-24, 0xca20a2.0p-25, -0x16bf9b4d1f8da8.0p-79 },
|
||||
{ 0xab8000.0p-24, 0xcd1aae.0p-25, 0x19deb5ce6a6a87.0p-81 },
|
||||
{ 0xaa8000.0p-24, 0xd0192f.0p-25, 0x1a29fb48f7d3cb.0p-79 },
|
||||
{ 0xaa0000.0p-24, 0xd19a20.0p-25, 0x1127d3c6457f9d.0p-81 },
|
||||
{ 0xa90000.0p-24, 0xd49f6a.0p-25, -0x1ba930e486a0ac.0p-81 },
|
||||
{ 0xa80000.0p-24, 0xd7a94b.0p-25, -0x1b6e645f31549e.0p-79 },
|
||||
{ 0xa70000.0p-24, 0xdab7d0.0p-25, 0x1118a425494b61.0p-80 },
|
||||
{ 0xa68000.0p-24, 0xdc40d5.0p-25, 0x1966f24d29d3a3.0p-80 },
|
||||
{ 0xa58000.0p-24, 0xdf566d.0p-25, -0x1d8e52eb2248f1.0p-82 },
|
||||
{ 0xa48000.0p-24, 0xe270ce.0p-25, -0x1ee370f96e6b68.0p-80 },
|
||||
{ 0xa40000.0p-24, 0xe3ffce.0p-25, 0x1d155324911f57.0p-80 },
|
||||
{ 0xa30000.0p-24, 0xe72179.0p-25, -0x1fe6e2f2f867d9.0p-80 },
|
||||
{ 0xa20000.0p-24, 0xea4812.0p-25, 0x1b7be9add7f4d4.0p-80 },
|
||||
{ 0xa18000.0p-24, 0xebdd3d.0p-25, 0x1b3cfb3f7511dd.0p-79 },
|
||||
{ 0xa08000.0p-24, 0xef0b5b.0p-25, -0x1220de1f730190.0p-79 },
|
||||
{ 0xa00000.0p-24, 0xf0a451.0p-25, -0x176364c9ac81cd.0p-80 },
|
||||
{ 0x9f0000.0p-24, 0xf3da16.0p-25, 0x1eed6b9aafac8d.0p-81 },
|
||||
{ 0x9e8000.0p-24, 0xf576e9.0p-25, 0x1d593218675af2.0p-79 },
|
||||
{ 0x9d8000.0p-24, 0xf8b47c.0p-25, -0x13e8eb7da053e0.0p-84 },
|
||||
{ 0x9d0000.0p-24, 0xfa553f.0p-25, 0x1c063259bcade0.0p-79 },
|
||||
{ 0x9c0000.0p-24, 0xfd9ac5.0p-25, 0x1ef491085fa3c1.0p-79 },
|
||||
{ 0x9b8000.0p-24, 0xff3f8c.0p-25, 0x1d607a7c2b8c53.0p-79 },
|
||||
{ 0x9a8000.0p-24, 0x814697.0p-24, -0x12ad3817004f3f.0p-78 },
|
||||
{ 0x9a0000.0p-24, 0x821b06.0p-24, -0x189fc53117f9e5.0p-81 },
|
||||
{ 0x990000.0p-24, 0x83c5f8.0p-24, 0x14cf15a048907b.0p-79 },
|
||||
{ 0x988000.0p-24, 0x849c7d.0p-24, 0x1cbb1d35fb8287.0p-78 },
|
||||
{ 0x978000.0p-24, 0x864ba6.0p-24, 0x1128639b814f9c.0p-78 },
|
||||
{ 0x970000.0p-24, 0x87244c.0p-24, 0x184733853300f0.0p-79 },
|
||||
{ 0x968000.0p-24, 0x87fdaa.0p-24, 0x109d23aef77dd6.0p-80 },
|
||||
{ 0x958000.0p-24, 0x89b293.0p-24, -0x1a81ef367a59de.0p-78 },
|
||||
{ 0x950000.0p-24, 0x8a8e20.0p-24, -0x121ad3dbb2f452.0p-78 },
|
||||
{ 0x948000.0p-24, 0x8b6a6a.0p-24, -0x1cfb981628af72.0p-79 },
|
||||
{ 0x938000.0p-24, 0x8d253a.0p-24, -0x1d21730ea76cfe.0p-79 },
|
||||
{ 0x930000.0p-24, 0x8e03c2.0p-24, 0x135cc00e566f77.0p-78 },
|
||||
{ 0x928000.0p-24, 0x8ee30d.0p-24, -0x10fcb5df257a26.0p-80 },
|
||||
{ 0x918000.0p-24, 0x90a3ee.0p-24, -0x16e171b15433d7.0p-79 },
|
||||
{ 0x910000.0p-24, 0x918587.0p-24, -0x1d050da07f3237.0p-79 },
|
||||
{ 0x908000.0p-24, 0x9267e7.0p-24, 0x1be03669a5268d.0p-79 },
|
||||
{ 0x8f8000.0p-24, 0x942f04.0p-24, 0x10b28e0e26c337.0p-79 },
|
||||
{ 0x8f0000.0p-24, 0x9513c3.0p-24, 0x1a1d820da57cf3.0p-78 },
|
||||
{ 0x8e8000.0p-24, 0x95f950.0p-24, -0x19ef8f13ae3cf1.0p-79 },
|
||||
{ 0x8e0000.0p-24, 0x96dfab.0p-24, -0x109e417a6e507c.0p-78 },
|
||||
{ 0x8d0000.0p-24, 0x98aed2.0p-24, 0x10d01a2c5b0e98.0p-79 },
|
||||
{ 0x8c8000.0p-24, 0x9997a2.0p-24, -0x1d6a50d4b61ea7.0p-78 },
|
||||
{ 0x8c0000.0p-24, 0x9a8145.0p-24, 0x1b3b190b83f952.0p-78 },
|
||||
{ 0x8b8000.0p-24, 0x9b6bbf.0p-24, 0x13a69fad7e7abe.0p-78 },
|
||||
{ 0x8b0000.0p-24, 0x9c5711.0p-24, -0x11cd12316f576b.0p-78 },
|
||||
{ 0x8a8000.0p-24, 0x9d433b.0p-24, 0x1c95c444b807a2.0p-79 },
|
||||
{ 0x898000.0p-24, 0x9f1e22.0p-24, -0x1b9c224ea698c3.0p-79 },
|
||||
{ 0x890000.0p-24, 0xa00ce1.0p-24, 0x125ca93186cf0f.0p-81 },
|
||||
{ 0x888000.0p-24, 0xa0fc80.0p-24, -0x1ee38a7bc228b3.0p-79 },
|
||||
{ 0x880000.0p-24, 0xa1ed00.0p-24, -0x1a0db876613d20.0p-78 },
|
||||
{ 0x878000.0p-24, 0xa2de62.0p-24, 0x193224e8516c01.0p-79 },
|
||||
{ 0x870000.0p-24, 0xa3d0a9.0p-24, 0x1fa28b4d2541ad.0p-79 },
|
||||
{ 0x868000.0p-24, 0xa4c3d6.0p-24, 0x1c1b5760fb4572.0p-78 },
|
||||
{ 0x858000.0p-24, 0xa6acea.0p-24, 0x1fed5d0f65949c.0p-80 },
|
||||
{ 0x850000.0p-24, 0xa7a2d4.0p-24, 0x1ad270c9d74936.0p-80 },
|
||||
{ 0x848000.0p-24, 0xa899ab.0p-24, 0x199ff15ce53266.0p-79 },
|
||||
{ 0x840000.0p-24, 0xa99171.0p-24, 0x1a19e15ccc45d2.0p-79 },
|
||||
{ 0x838000.0p-24, 0xaa8a28.0p-24, -0x121a14ec532b36.0p-80 },
|
||||
{ 0x830000.0p-24, 0xab83d1.0p-24, 0x1aee319980bff3.0p-79 },
|
||||
{ 0x828000.0p-24, 0xac7e6f.0p-24, -0x18ffd9e3900346.0p-80 },
|
||||
{ 0x820000.0p-24, 0xad7a03.0p-24, -0x1e4db102ce29f8.0p-80 },
|
||||
{ 0x818000.0p-24, 0xae768f.0p-24, 0x17c35c55a04a83.0p-81 },
|
||||
{ 0x810000.0p-24, 0xaf7415.0p-24, 0x1448324047019b.0p-78 },
|
||||
{ 0x808000.0p-24, 0xb07298.0p-24, -0x1750ee3915a198.0p-78 },
|
||||
{ 0x800000.0p-24, 0xb17218.0p-24, -0x105c610ca86c39.0p-81 },
|
||||
};
|
||||
|
||||
#ifdef USE_UTAB
|
||||
static const struct {
|
||||
float H; /* 1 + i/INTERVALS (exact) */
|
||||
float E; /* H(i) * G(i) - 1 (exact) */
|
||||
} U[TSIZE] = {
|
||||
{ 0x800000.0p-23, 0 },
|
||||
{ 0x810000.0p-23, -0x800000.0p-37 },
|
||||
{ 0x820000.0p-23, -0x800000.0p-35 },
|
||||
{ 0x830000.0p-23, -0x900000.0p-34 },
|
||||
{ 0x840000.0p-23, -0x800000.0p-33 },
|
||||
{ 0x850000.0p-23, -0xc80000.0p-33 },
|
||||
{ 0x860000.0p-23, -0xa00000.0p-36 },
|
||||
{ 0x870000.0p-23, 0x940000.0p-33 },
|
||||
{ 0x880000.0p-23, 0x800000.0p-35 },
|
||||
{ 0x890000.0p-23, -0xc80000.0p-34 },
|
||||
{ 0x8a0000.0p-23, 0xe00000.0p-36 },
|
||||
{ 0x8b0000.0p-23, 0x900000.0p-33 },
|
||||
{ 0x8c0000.0p-23, -0x800000.0p-35 },
|
||||
{ 0x8d0000.0p-23, -0xe00000.0p-33 },
|
||||
{ 0x8e0000.0p-23, 0x880000.0p-33 },
|
||||
{ 0x8f0000.0p-23, -0xa80000.0p-34 },
|
||||
{ 0x900000.0p-23, -0x800000.0p-35 },
|
||||
{ 0x910000.0p-23, 0x800000.0p-37 },
|
||||
{ 0x920000.0p-23, 0x900000.0p-35 },
|
||||
{ 0x930000.0p-23, 0xd00000.0p-35 },
|
||||
{ 0x940000.0p-23, 0xe00000.0p-35 },
|
||||
{ 0x950000.0p-23, 0xc00000.0p-35 },
|
||||
{ 0x960000.0p-23, 0xe00000.0p-36 },
|
||||
{ 0x970000.0p-23, -0x800000.0p-38 },
|
||||
{ 0x980000.0p-23, -0xc00000.0p-35 },
|
||||
{ 0x990000.0p-23, -0xd00000.0p-34 },
|
||||
{ 0x9a0000.0p-23, 0x880000.0p-33 },
|
||||
{ 0x9b0000.0p-23, 0xe80000.0p-35 },
|
||||
{ 0x9c0000.0p-23, -0x800000.0p-35 },
|
||||
{ 0x9d0000.0p-23, 0xb40000.0p-33 },
|
||||
{ 0x9e0000.0p-23, 0x880000.0p-34 },
|
||||
{ 0x9f0000.0p-23, -0xe00000.0p-35 },
|
||||
{ 0xa00000.0p-23, 0x800000.0p-33 },
|
||||
{ 0xa10000.0p-23, -0x900000.0p-36 },
|
||||
{ 0xa20000.0p-23, -0xb00000.0p-33 },
|
||||
{ 0xa30000.0p-23, -0xa00000.0p-36 },
|
||||
{ 0xa40000.0p-23, 0x800000.0p-33 },
|
||||
{ 0xa50000.0p-23, -0xf80000.0p-35 },
|
||||
{ 0xa60000.0p-23, 0x880000.0p-34 },
|
||||
{ 0xa70000.0p-23, -0x900000.0p-33 },
|
||||
{ 0xa80000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xa90000.0p-23, 0x900000.0p-34 },
|
||||
{ 0xaa0000.0p-23, 0xa80000.0p-33 },
|
||||
{ 0xab0000.0p-23, -0xac0000.0p-34 },
|
||||
{ 0xac0000.0p-23, -0x800000.0p-37 },
|
||||
{ 0xad0000.0p-23, 0xf80000.0p-35 },
|
||||
{ 0xae0000.0p-23, 0xf80000.0p-34 },
|
||||
{ 0xaf0000.0p-23, -0xac0000.0p-33 },
|
||||
{ 0xb00000.0p-23, -0x800000.0p-33 },
|
||||
{ 0xb10000.0p-23, -0xb80000.0p-34 },
|
||||
{ 0xb20000.0p-23, -0x800000.0p-34 },
|
||||
{ 0xb30000.0p-23, -0xb00000.0p-35 },
|
||||
{ 0xb40000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xb50000.0p-23, -0xe00000.0p-36 },
|
||||
{ 0xb60000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xb70000.0p-23, -0xb00000.0p-35 },
|
||||
{ 0xb80000.0p-23, -0x800000.0p-34 },
|
||||
{ 0xb90000.0p-23, -0xb80000.0p-34 },
|
||||
{ 0xba0000.0p-23, -0x800000.0p-33 },
|
||||
{ 0xbb0000.0p-23, -0xac0000.0p-33 },
|
||||
{ 0xbc0000.0p-23, 0x980000.0p-33 },
|
||||
{ 0xbd0000.0p-23, 0xbc0000.0p-34 },
|
||||
{ 0xbe0000.0p-23, 0xe00000.0p-36 },
|
||||
{ 0xbf0000.0p-23, -0xb80000.0p-35 },
|
||||
{ 0xc00000.0p-23, -0x800000.0p-33 },
|
||||
{ 0xc10000.0p-23, 0xa80000.0p-33 },
|
||||
{ 0xc20000.0p-23, 0x900000.0p-34 },
|
||||
{ 0xc30000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xc40000.0p-23, -0x900000.0p-33 },
|
||||
{ 0xc50000.0p-23, 0x820000.0p-33 },
|
||||
{ 0xc60000.0p-23, 0x800000.0p-38 },
|
||||
{ 0xc70000.0p-23, -0x820000.0p-33 },
|
||||
{ 0xc80000.0p-23, 0x800000.0p-33 },
|
||||
{ 0xc90000.0p-23, -0xa00000.0p-36 },
|
||||
{ 0xca0000.0p-23, -0xb00000.0p-33 },
|
||||
{ 0xcb0000.0p-23, 0x840000.0p-34 },
|
||||
{ 0xcc0000.0p-23, -0xd00000.0p-34 },
|
||||
{ 0xcd0000.0p-23, 0x800000.0p-33 },
|
||||
{ 0xce0000.0p-23, -0xe00000.0p-35 },
|
||||
{ 0xcf0000.0p-23, 0xa60000.0p-33 },
|
||||
{ 0xd00000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xd10000.0p-23, 0xb40000.0p-33 },
|
||||
{ 0xd20000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xd30000.0p-23, 0xaa0000.0p-33 },
|
||||
{ 0xd40000.0p-23, -0xe00000.0p-35 },
|
||||
{ 0xd50000.0p-23, 0x880000.0p-33 },
|
||||
{ 0xd60000.0p-23, -0xd00000.0p-34 },
|
||||
{ 0xd70000.0p-23, 0x9c0000.0p-34 },
|
||||
{ 0xd80000.0p-23, -0xb00000.0p-33 },
|
||||
{ 0xd90000.0p-23, -0x800000.0p-38 },
|
||||
{ 0xda0000.0p-23, 0xa40000.0p-33 },
|
||||
{ 0xdb0000.0p-23, -0xdc0000.0p-34 },
|
||||
{ 0xdc0000.0p-23, 0xc00000.0p-35 },
|
||||
{ 0xdd0000.0p-23, 0xca0000.0p-33 },
|
||||
{ 0xde0000.0p-23, -0xb80000.0p-34 },
|
||||
{ 0xdf0000.0p-23, 0xd00000.0p-35 },
|
||||
{ 0xe00000.0p-23, 0xc00000.0p-33 },
|
||||
{ 0xe10000.0p-23, -0xf40000.0p-34 },
|
||||
{ 0xe20000.0p-23, 0x800000.0p-37 },
|
||||
{ 0xe30000.0p-23, 0x860000.0p-33 },
|
||||
{ 0xe40000.0p-23, -0xc80000.0p-33 },
|
||||
{ 0xe50000.0p-23, -0xa80000.0p-34 },
|
||||
{ 0xe60000.0p-23, 0xe00000.0p-36 },
|
||||
{ 0xe70000.0p-23, 0x880000.0p-33 },
|
||||
{ 0xe80000.0p-23, -0xe00000.0p-33 },
|
||||
{ 0xe90000.0p-23, -0xfc0000.0p-34 },
|
||||
{ 0xea0000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xeb0000.0p-23, 0xe80000.0p-35 },
|
||||
{ 0xec0000.0p-23, 0x900000.0p-33 },
|
||||
{ 0xed0000.0p-23, 0xe20000.0p-33 },
|
||||
{ 0xee0000.0p-23, -0xac0000.0p-33 },
|
||||
{ 0xef0000.0p-23, -0xc80000.0p-34 },
|
||||
{ 0xf00000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xf10000.0p-23, 0x800000.0p-35 },
|
||||
{ 0xf20000.0p-23, 0xb80000.0p-34 },
|
||||
{ 0xf30000.0p-23, 0x940000.0p-33 },
|
||||
{ 0xf40000.0p-23, 0xc80000.0p-33 },
|
||||
{ 0xf50000.0p-23, -0xf20000.0p-33 },
|
||||
{ 0xf60000.0p-23, -0xc80000.0p-33 },
|
||||
{ 0xf70000.0p-23, -0xa20000.0p-33 },
|
||||
{ 0xf80000.0p-23, -0x800000.0p-33 },
|
||||
{ 0xf90000.0p-23, -0xc40000.0p-34 },
|
||||
{ 0xfa0000.0p-23, -0x900000.0p-34 },
|
||||
{ 0xfb0000.0p-23, -0xc80000.0p-35 },
|
||||
{ 0xfc0000.0p-23, -0x800000.0p-35 },
|
||||
{ 0xfd0000.0p-23, -0x900000.0p-36 },
|
||||
{ 0xfe0000.0p-23, -0x800000.0p-37 },
|
||||
{ 0xff0000.0p-23, -0x800000.0p-39 },
|
||||
{ 0x800000.0p-22, 0 },
|
||||
};
|
||||
#endif /* USE_UTAB */
|
||||
|
||||
#ifdef STRUCT_RETURN
|
||||
#define RETURN1(rp, v) do { \
|
||||
(rp)->hi = (v); \
|
||||
(rp)->lo_set = 0; \
|
||||
return; \
|
||||
} while (0)
|
||||
|
||||
#define RETURN2(rp, h, l) do { \
|
||||
(rp)->hi = (h); \
|
||||
(rp)->lo = (l); \
|
||||
(rp)->lo_set = 1; \
|
||||
return; \
|
||||
} while (0)
|
||||
|
||||
struct ld {
|
||||
long double hi;
|
||||
long double lo;
|
||||
int lo_set;
|
||||
};
|
||||
#else
|
||||
#define RETURN1(rp, v) RETURNF(v)
|
||||
#define RETURN2(rp, h, l) RETURNI((h) + (l))
|
||||
#endif
|
||||
|
||||
#ifdef STRUCT_RETURN
|
||||
static inline __always_inline void
|
||||
k_logl(long double x, struct ld *rp)
|
||||
#else
|
||||
long double
|
||||
logl(long double x)
|
||||
#endif
|
||||
{
|
||||
long double d, dk, val_hi, val_lo, z;
|
||||
uint64_t ix, lx;
|
||||
int i, k;
|
||||
uint16_t hx;
|
||||
|
||||
EXTRACT_LDBL80_WORDS(hx, lx, x);
|
||||
k = -16383;
|
||||
#if 0 /* Hard to do efficiently. Don't do it until we support all modes. */
|
||||
if (x == 1)
|
||||
RETURN1(rp, 0); /* log(1) = +0 in all rounding modes */
|
||||
#endif
|
||||
if (hx == 0 || hx >= 0x8000) { /* zero, negative or subnormal? */
|
||||
if (((hx & 0x7fff) | lx) == 0)
|
||||
RETURN1(rp, -1 / zero); /* log(+-0) = -Inf */
|
||||
if (hx != 0)
|
||||
/* log(neg or [pseudo-]NaN) = qNaN: */
|
||||
RETURN1(rp, (x - x) / zero);
|
||||
x *= 0x1.0p65; /* subnormal; scale up x */
|
||||
/* including pseudo-subnormals */
|
||||
EXTRACT_LDBL80_WORDS(hx, lx, x);
|
||||
k = -16383 - 65;
|
||||
} else if (hx >= 0x7fff || (lx & 0x8000000000000000ULL) == 0)
|
||||
RETURN1(rp, x + x); /* log(Inf or NaN) = Inf or qNaN */
|
||||
/* log(pseudo-Inf) = qNaN */
|
||||
/* log(pseudo-NaN) = qNaN */
|
||||
/* log(unnormal) = qNaN */
|
||||
#ifndef STRUCT_RETURN
|
||||
ENTERI();
|
||||
#endif
|
||||
k += hx;
|
||||
ix = lx & 0x7fffffffffffffffULL;
|
||||
dk = k;
|
||||
|
||||
/* Scale x to be in [1, 2). */
|
||||
SET_LDBL_EXPSIGN(x, 0x3fff);
|
||||
|
||||
/* 0 <= i <= INTERVALS: */
|
||||
#define L2I (64 - LOG2_INTERVALS)
|
||||
i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
|
||||
|
||||
/*
|
||||
* -0.005280 < d < 0.004838. In particular, the infinite-
|
||||
* precision |d| is <= 2**-7. Rounding of G(i) to 8 bits
|
||||
* ensures that d is representable without extra precision for
|
||||
* this bound on |d| (since when this calculation is expressed
|
||||
* as x*G(i)-1, the multiplication needs as many extra bits as
|
||||
* G(i) has and the subtraction cancels 8 bits). But for
|
||||
* most i (107 cases out of 129), the infinite-precision |d|
|
||||
* is <= 2**-8. G(i) is rounded to 9 bits for such i to give
|
||||
* better accuracy (this works by improving the bound on |d|,
|
||||
* which in turn allows rounding to 9 bits in more cases).
|
||||
* This is only important when the original x is near 1 -- it
|
||||
* lets us avoid using a special method to give the desired
|
||||
* accuracy for such x.
|
||||
*/
|
||||
if (0)
|
||||
d = x * G(i) - 1;
|
||||
else {
|
||||
#ifdef USE_UTAB
|
||||
d = (x - H(i)) * G(i) + E(i);
|
||||
#else
|
||||
long double x_hi, x_lo;
|
||||
float fx_hi;
|
||||
|
||||
/*
|
||||
* Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
|
||||
* G(i) has at most 9 bits, so the splitting point is not
|
||||
* critical.
|
||||
*/
|
||||
SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
|
||||
x_hi = fx_hi;
|
||||
x_lo = x - x_hi;
|
||||
d = x_hi * G(i) - 1 + x_lo * G(i);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Our algorithm depends on exact cancellation of F_lo(i) and
|
||||
* F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
|
||||
* at the end of the table. This and other technical complications
|
||||
* make it difficult to avoid the double scaling in (dk*ln2) *
|
||||
* log(base) for base != e without losing more accuracy and/or
|
||||
* efficiency than is gained.
|
||||
*/
|
||||
z = d * d;
|
||||
val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
|
||||
(F_lo(i) + dk * ln2_lo + z * d * (d * P4 + P3)) + z * P2;
|
||||
val_hi = d;
|
||||
#ifdef DEBUG
|
||||
if (fetestexcept(FE_UNDERFLOW))
|
||||
breakpoint();
|
||||
#endif
|
||||
|
||||
_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
|
||||
RETURN2(rp, val_hi, val_lo);
|
||||
}
|
||||
|
||||
long double
|
||||
log1pl(long double x)
|
||||
{
|
||||
long double d, d_hi, d_lo, dk, f_lo, val_hi, val_lo, z;
|
||||
long double f_hi, twopminusk;
|
||||
uint64_t ix, lx;
|
||||
int i, k;
|
||||
int16_t ax, hx;
|
||||
|
||||
DOPRINT_START(&x);
|
||||
EXTRACT_LDBL80_WORDS(hx, lx, x);
|
||||
if (hx < 0x3fff) { /* x < 1, or x neg NaN */
|
||||
ax = hx & 0x7fff;
|
||||
if (ax >= 0x3fff) { /* x <= -1, or x neg NaN */
|
||||
if (ax == 0x3fff && lx == 0x8000000000000000ULL)
|
||||
RETURNP(-1 / zero); /* log1p(-1) = -Inf */
|
||||
/* log1p(x < 1, or x [pseudo-]NaN) = qNaN: */
|
||||
RETURNP((x - x) / (x - x));
|
||||
}
|
||||
if (ax <= 0x3fbe) { /* |x| < 2**-64 */
|
||||
if ((int)x == 0)
|
||||
RETURNP(x); /* x with inexact if x != 0 */
|
||||
}
|
||||
f_hi = 1;
|
||||
f_lo = x;
|
||||
} else if (hx >= 0x7fff) { /* x +Inf or non-neg NaN */
|
||||
RETURNP(x + x); /* log1p(Inf or NaN) = Inf or qNaN */
|
||||
/* log1p(pseudo-Inf) = qNaN */
|
||||
/* log1p(pseudo-NaN) = qNaN */
|
||||
/* log1p(unnormal) = qNaN */
|
||||
} else if (hx < 0x407f) { /* 1 <= x < 2**128 */
|
||||
f_hi = x;
|
||||
f_lo = 1;
|
||||
} else { /* 2**128 <= x < +Inf */
|
||||
f_hi = x;
|
||||
f_lo = 0; /* avoid underflow of the P5 term */
|
||||
}
|
||||
ENTERI();
|
||||
x = f_hi + f_lo;
|
||||
f_lo = (f_hi - x) + f_lo;
|
||||
|
||||
EXTRACT_LDBL80_WORDS(hx, lx, x);
|
||||
k = -16383;
|
||||
|
||||
k += hx;
|
||||
ix = lx & 0x7fffffffffffffffULL;
|
||||
dk = k;
|
||||
|
||||
SET_LDBL_EXPSIGN(x, 0x3fff);
|
||||
twopminusk = 1;
|
||||
SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
|
||||
f_lo *= twopminusk;
|
||||
|
||||
i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
|
||||
|
||||
/*
|
||||
* x*G(i)-1 (with a reduced x) can be represented exactly, as
|
||||
* above, but now we need to evaluate the polynomial on d =
|
||||
* (x+f_lo)*G(i)-1 and extra precision is needed for that.
|
||||
* Since x+x_lo is a hi+lo decomposition and subtracting 1
|
||||
* doesn't lose too many bits, an inexact calculation for
|
||||
* f_lo*G(i) is good enough.
|
||||
*/
|
||||
if (0)
|
||||
d_hi = x * G(i) - 1;
|
||||
else {
|
||||
#ifdef USE_UTAB
|
||||
d_hi = (x - H(i)) * G(i) + E(i);
|
||||
#else
|
||||
long double x_hi, x_lo;
|
||||
float fx_hi;
|
||||
|
||||
SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
|
||||
x_hi = fx_hi;
|
||||
x_lo = x - x_hi;
|
||||
d_hi = x_hi * G(i) - 1 + x_lo * G(i);
|
||||
#endif
|
||||
}
|
||||
d_lo = f_lo * G(i);
|
||||
|
||||
/*
|
||||
* This is _2sumF(d_hi, d_lo) inlined. The condition
|
||||
* (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
|
||||
* always satisifed, so it is not clear that this works, but
|
||||
* it works in practice. It works even if it gives a wrong
|
||||
* normalized d_lo, since |d_lo| > |d_hi| implies that i is
|
||||
* nonzero and d is tiny, so the F(i) term dominates d_lo.
|
||||
* In float precision:
|
||||
* (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
|
||||
* And if d is only a little tinier than that, we would have
|
||||
* another underflow problem for the P3 term; this is also ruled
|
||||
* out by exhaustive testing.)
|
||||
*/
|
||||
d = d_hi + d_lo;
|
||||
d_lo = d_hi - d + d_lo;
|
||||
d_hi = d;
|
||||
|
||||
z = d * d;
|
||||
val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
|
||||
(F_lo(i) + dk * ln2_lo + d_lo + z * d * (d * P4 + P3)) + z * P2;
|
||||
val_hi = d_hi;
|
||||
#ifdef DEBUG
|
||||
if (fetestexcept(FE_UNDERFLOW))
|
||||
breakpoint();
|
||||
#endif
|
||||
|
||||
_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
|
||||
RETURN2PI(val_hi, val_lo);
|
||||
}
|
||||
|
||||
#ifdef STRUCT_RETURN
|
||||
|
||||
long double
|
||||
logl(long double x)
|
||||
{
|
||||
struct ld r;
|
||||
|
||||
ENTERI();
|
||||
DOPRINT_START(&x);
|
||||
k_logl(x, &r);
|
||||
RETURNSPI(&r);
|
||||
}
|
||||
|
||||
/* Use macros since GCC < 8 rejects static const expressions in initializers. */
|
||||
#define invln10_hi 4.3429448190317999e-1 /* 0x1bcb7b1526e000.0p-54 */
|
||||
#define invln10_lo 7.1842412889749798e-14 /* 0x1438ca9aadd558.0p-96 */
|
||||
#define invln2_hi 1.4426950408887933e0 /* 0x171547652b8000.0p-52 */
|
||||
#define invln2_lo 1.7010652264631490e-13 /* 0x17f0bbbe87fed0.0p-95 */
|
||||
/* Let the compiler pre-calculate this sum to avoid FE_INEXACT at run time. */
|
||||
static const double invln10_lo_plus_hi = invln10_lo + invln10_hi;
|
||||
static const double invln2_lo_plus_hi = invln2_lo + invln2_hi;
|
||||
|
||||
long double
|
||||
log10l(long double x)
|
||||
{
|
||||
struct ld r;
|
||||
long double hi, lo;
|
||||
|
||||
ENTERI();
|
||||
DOPRINT_START(&x);
|
||||
k_logl(x, &r);
|
||||
if (!r.lo_set)
|
||||
RETURNPI(r.hi);
|
||||
_2sumF(r.hi, r.lo);
|
||||
hi = (float)r.hi;
|
||||
lo = r.lo + (r.hi - hi);
|
||||
RETURN2PI(invln10_hi * hi,
|
||||
invln10_lo_plus_hi * lo + invln10_lo * hi);
|
||||
}
|
||||
|
||||
long double
|
||||
log2l(long double x)
|
||||
{
|
||||
struct ld r;
|
||||
long double hi, lo;
|
||||
|
||||
ENTERI();
|
||||
DOPRINT_START(&x);
|
||||
k_logl(x, &r);
|
||||
if (!r.lo_set)
|
||||
RETURNPI(r.hi);
|
||||
_2sumF(r.hi, r.lo);
|
||||
hi = (float)r.hi;
|
||||
lo = r.lo + (r.hi - hi);
|
||||
RETURN2PI(invln2_hi * hi,
|
||||
invln2_lo_plus_hi * lo + invln2_lo * hi);
|
||||
}
|
||||
|
||||
#endif /* STRUCT_RETURN */
|
|
@ -0,0 +1,140 @@
|
|||
/*-
|
||||
* Copyright (c) 2017 Steven G. Kargl
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice unmodified, this list of conditions, and the following
|
||||
* disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* See ../src/s_sinpi.c for implementation details.
|
||||
*/
|
||||
|
||||
#ifdef __i386__
|
||||
#include <ieeefp.h>
|
||||
#endif
|
||||
#include <stdint.h>
|
||||
|
||||
#include "fpmath.h"
|
||||
#include "math.h"
|
||||
#include "math_private.h"
|
||||
|
||||
static const union IEEEl2bits
|
||||
pi_hi_u = LD80C(0xc90fdaa200000000, 1, 3.14159265346825122833e+00L),
|
||||
pi_lo_u = LD80C(0x85a308d313198a2e, -33, 1.21542010130123852029e-10L);
|
||||
#define pi_hi (pi_hi_u.e)
|
||||
#define pi_lo (pi_lo_u.e)
|
||||
|
||||
#include "k_cospil.h"
|
||||
#include "k_sinpil.h"
|
||||
|
||||
volatile static const double vzero = 0;
|
||||
|
||||
long double
|
||||
sinpil(long double x)
|
||||
{
|
||||
long double ax, hi, lo, s;
|
||||
uint64_t lx, m;
|
||||
uint32_t j0;
|
||||
uint16_t hx, ix;
|
||||
|
||||
EXTRACT_LDBL80_WORDS(hx, lx, x);
|
||||
ix = hx & 0x7fff;
|
||||
INSERT_LDBL80_WORDS(ax, ix, lx);
|
||||
|
||||
ENTERI();
|
||||
|
||||
if (ix < 0x3fff) { /* |x| < 1 */
|
||||
if (ix < 0x3ffd) { /* |x| < 0.25 */
|
||||
if (ix < 0x3fdd) { /* |x| < 0x1p-34 */
|
||||
if (x == 0)
|
||||
RETURNI(x);
|
||||
INSERT_LDBL80_WORDS(hi, hx,
|
||||
lx & 0xffffffff00000000ull);
|
||||
hi *= 0x1p63L;
|
||||
lo = x * 0x1p63L - hi;
|
||||
s = (pi_lo + pi_hi) * lo + pi_lo * hi +
|
||||
pi_hi * hi;
|
||||
RETURNI(s * 0x1p-63L);
|
||||
}
|
||||
s = __kernel_sinpil(ax);
|
||||
RETURNI((hx & 0x8000) ? -s : s);
|
||||
}
|
||||
|
||||
if (ix < 0x3ffe) /* |x| < 0.5 */
|
||||
s = __kernel_cospil(0.5 - ax);
|
||||
else if (lx < 0xc000000000000000ull) /* |x| < 0.75 */
|
||||
s = __kernel_cospil(ax - 0.5);
|
||||
else
|
||||
s = __kernel_sinpil(1 - ax);
|
||||
RETURNI((hx & 0x8000) ? -s : s);
|
||||
}
|
||||
|
||||
if (ix < 0x403e) { /* 1 <= |x| < 0x1p63 */
|
||||
/* Determine integer part of ax. */
|
||||
j0 = ix - 0x3fff + 1;
|
||||
if (j0 < 32) {
|
||||
lx = (lx >> 32) << 32;
|
||||
lx &= ~(((lx << 32)-1) >> j0);
|
||||
} else {
|
||||
m = (uint64_t)-1 >> (j0 + 1);
|
||||
if (lx & m) lx &= ~m;
|
||||
}
|
||||
INSERT_LDBL80_WORDS(x, ix, lx);
|
||||
|
||||
ax -= x;
|
||||
EXTRACT_LDBL80_WORDS(ix, lx, ax);
|
||||
|
||||
if (ix == 0) {
|
||||
s = 0;
|
||||
} else {
|
||||
if (ix < 0x3ffe) { /* |x| < 0.5 */
|
||||
if (ix < 0x3ffd) /* |x| < 0.25 */
|
||||
s = __kernel_sinpil(ax);
|
||||
else
|
||||
s = __kernel_cospil(0.5 - ax);
|
||||
} else {
|
||||
/* |x| < 0.75 */
|
||||
if (lx < 0xc000000000000000ull)
|
||||
s = __kernel_cospil(ax - 0.5);
|
||||
else
|
||||
s = __kernel_sinpil(1 - ax);
|
||||
}
|
||||
|
||||
if (j0 > 40)
|
||||
x -= 0x1p40;
|
||||
if (j0 > 30)
|
||||
x -= 0x1p30;
|
||||
j0 = (uint32_t)x;
|
||||
if (j0 & 1) s = -s;
|
||||
}
|
||||
RETURNI((hx & 0x8000) ? -s : s);
|
||||
}
|
||||
|
||||
/* x = +-inf or nan. */
|
||||
if (ix >= 0x7fff)
|
||||
RETURNI(vzero / vzero);
|
||||
|
||||
/*
|
||||
* |x| >= 0x1p63 is always an integer, so return +-0.
|
||||
*/
|
||||
RETURNI(copysignl(0, x));
|
||||
}
|
Loading…
Reference in New Issue