282 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
| 
 | |
| /* @(#)e_jn.c 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * __ieee754_jn(n, x), __ieee754_yn(n, x)
 | |
|  * floating point Bessel's function of the 1st and 2nd kind
 | |
|  * of order n
 | |
|  *          
 | |
|  * Special cases:
 | |
|  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
 | |
|  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
 | |
|  * Note 2. About jn(n,x), yn(n,x)
 | |
|  *	For n=0, j0(x) is called,
 | |
|  *	for n=1, j1(x) is called,
 | |
|  *	for n<x, forward recursion us used starting
 | |
|  *	from values of j0(x) and j1(x).
 | |
|  *	for n>x, a continued fraction approximation to
 | |
|  *	j(n,x)/j(n-1,x) is evaluated and then backward
 | |
|  *	recursion is used starting from a supposed value
 | |
|  *	for j(n,x). The resulting value of j(0,x) is
 | |
|  *	compared with the actual value to correct the
 | |
|  *	supposed value of j(n,x).
 | |
|  *
 | |
|  *	yn(n,x) is similar in all respects, except
 | |
|  *	that forward recursion is used for all
 | |
|  *	values of n>1.
 | |
|  *	
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| #ifndef _DOUBLE_IS_32BITS
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double
 | |
| #else
 | |
| static double
 | |
| #endif
 | |
| invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
 | |
| two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
 | |
| one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double zero  =  0.00000000000000000000e+00;
 | |
| #else
 | |
| static double zero  =  0.00000000000000000000e+00;
 | |
| #endif
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double __ieee754_jn(int n, double x)
 | |
| #else
 | |
| 	double __ieee754_jn(n,x)
 | |
| 	int n; double x;
 | |
| #endif
 | |
| {
 | |
| 	__int32_t i,hx,ix,lx, sgn;
 | |
| 	double a, b, temp, di;
 | |
| 	double z, w;
 | |
| 
 | |
|     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
 | |
|      * Thus, J(-n,x) = J(n,-x)
 | |
|      */
 | |
| 	EXTRACT_WORDS(hx,lx,x);
 | |
| 	ix = 0x7fffffff&hx;
 | |
|     /* if J(n,NaN) is NaN */
 | |
| 	if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
 | |
| 	if(n<0){		
 | |
| 		n = -n;
 | |
| 		x = -x;
 | |
| 		hx ^= 0x80000000;
 | |
| 	}
 | |
| 	if(n==0) return(__ieee754_j0(x));
 | |
| 	if(n==1) return(__ieee754_j1(x));
 | |
| 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
 | |
| 	x = fabs(x);
 | |
| 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
 | |
| 	    b = zero;
 | |
| 	else if((double)n<=x) {   
 | |
| 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
 | |
| 	    if(ix>=0x52D00000) { /* x > 2**302 */
 | |
|     /* (x >> n**2) 
 | |
|      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|      *	    Let s=sin(x), c=cos(x), 
 | |
|      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 | |
|      *
 | |
|      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
 | |
|      *		----------------------------------
 | |
|      *		   0	 s-c		 c+s
 | |
|      *		   1	-s-c 		-c+s
 | |
|      *		   2	-s+c		-c-s
 | |
|      *		   3	 s+c		 c-s
 | |
|      */
 | |
| 		switch(n&3) {
 | |
| 		    case 0: temp =  cos(x)+sin(x); break;
 | |
| 		    case 1: temp = -cos(x)+sin(x); break;
 | |
| 		    case 2: temp = -cos(x)-sin(x); break;
 | |
| 		    case 3: temp =  cos(x)-sin(x); break;
 | |
| 		}
 | |
| 		b = invsqrtpi*temp/__ieee754_sqrt(x);
 | |
| 	    } else {	
 | |
| 	        a = __ieee754_j0(x);
 | |
| 	        b = __ieee754_j1(x);
 | |
| 	        for(i=1;i<n;i++){
 | |
| 		    temp = b;
 | |
| 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
 | |
| 		    a = temp;
 | |
| 	        }
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    if(ix<0x3e100000) {	/* x < 2**-29 */
 | |
|     /* x is tiny, return the first Taylor expansion of J(n,x) 
 | |
|      * J(n,x) = 1/n!*(x/2)^n  - ...
 | |
|      */
 | |
| 		if(n>33)	/* underflow */
 | |
| 		    b = zero;
 | |
| 		else {
 | |
| 		    temp = x*0.5; b = temp;
 | |
| 		    for (a=one,i=2;i<=n;i++) {
 | |
| 			a *= (double)i;		/* a = n! */
 | |
| 			b *= temp;		/* b = (x/2)^n */
 | |
| 		    }
 | |
| 		    b = b/a;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		/* use backward recurrence */
 | |
| 		/* 			x      x^2      x^2       
 | |
| 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
 | |
| 		 *			2n  - 2(n+1) - 2(n+2)
 | |
| 		 *
 | |
| 		 * 			1      1        1       
 | |
| 		 *  (for large x)   =  ----  ------   ------   .....
 | |
| 		 *			2n   2(n+1)   2(n+2)
 | |
| 		 *			-- - ------ - ------ - 
 | |
| 		 *			 x     x         x
 | |
| 		 *
 | |
| 		 * Let w = 2n/x and h=2/x, then the above quotient
 | |
| 		 * is equal to the continued fraction:
 | |
| 		 *		    1
 | |
| 		 *	= -----------------------
 | |
| 		 *		       1
 | |
| 		 *	   w - -----------------
 | |
| 		 *			  1
 | |
| 		 * 	        w+h - ---------
 | |
| 		 *		       w+2h - ...
 | |
| 		 *
 | |
| 		 * To determine how many terms needed, let
 | |
| 		 * Q(0) = w, Q(1) = w(w+h) - 1,
 | |
| 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
 | |
| 		 * When Q(k) > 1e4	good for single 
 | |
| 		 * When Q(k) > 1e9	good for double 
 | |
| 		 * When Q(k) > 1e17	good for quadruple 
 | |
| 		 */
 | |
| 	    /* determine k */
 | |
| 		double t,v;
 | |
| 		double q0,q1,h,tmp; __int32_t k,m;
 | |
| 		w  = (n+n)/(double)x; h = 2.0/(double)x;
 | |
| 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
 | |
| 		while(q1<1.0e9) {
 | |
| 			k += 1; z += h;
 | |
| 			tmp = z*q1 - q0;
 | |
| 			q0 = q1;
 | |
| 			q1 = tmp;
 | |
| 		}
 | |
| 		m = n+n;
 | |
| 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
 | |
| 		a = t;
 | |
| 		b = one;
 | |
| 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
 | |
| 		 *  Hence, if n*(log(2n/x)) > ...
 | |
| 		 *  single 8.8722839355e+01
 | |
| 		 *  double 7.09782712893383973096e+02
 | |
| 		 *  long double 1.1356523406294143949491931077970765006170e+04
 | |
| 		 *  then recurrent value may overflow and the result is 
 | |
| 		 *  likely underflow to zero
 | |
| 		 */
 | |
| 		tmp = n;
 | |
| 		v = two/x;
 | |
| 		tmp = tmp*__ieee754_log(fabs(v*tmp));
 | |
| 		if(tmp<7.09782712893383973096e+02) {
 | |
| 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
 | |
| 		        temp = b;
 | |
| 			b *= di;
 | |
| 			b  = b/x - a;
 | |
| 		        a = temp;
 | |
| 			di -= two;
 | |
| 	     	    }
 | |
| 		} else {
 | |
| 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
 | |
| 		        temp = b;
 | |
| 			b *= di;
 | |
| 			b  = b/x - a;
 | |
| 		        a = temp;
 | |
| 			di -= two;
 | |
| 		    /* scale b to avoid spurious overflow */
 | |
| 			if(b>1e100) {
 | |
| 			    a /= b;
 | |
| 			    t /= b;
 | |
| 			    b  = one;
 | |
| 			}
 | |
| 	     	    }
 | |
| 		}
 | |
| 	    	b = (t*__ieee754_j0(x)/b);
 | |
| 	    }
 | |
| 	}
 | |
| 	if(sgn==1) return -b; else return b;
 | |
| }
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double __ieee754_yn(int n, double x) 
 | |
| #else
 | |
| 	double __ieee754_yn(n,x) 
 | |
| 	int n; double x;
 | |
| #endif
 | |
| {
 | |
| 	__int32_t i,hx,ix,lx;
 | |
| 	__int32_t sign;
 | |
| 	double a, b, temp;
 | |
| 
 | |
| 	EXTRACT_WORDS(hx,lx,x);
 | |
| 	ix = 0x7fffffff&hx;
 | |
|     /* if Y(n,NaN) is NaN */
 | |
| 	if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
 | |
| 	if((ix|lx)==0) return -one/zero;
 | |
| 	if(hx<0) return zero/zero;
 | |
| 	sign = 1;
 | |
| 	if(n<0){
 | |
| 		n = -n;
 | |
| 		sign = 1 - ((n&1)<<1);
 | |
| 	}
 | |
| 	if(n==0) return(__ieee754_y0(x));
 | |
| 	if(n==1) return(sign*__ieee754_y1(x));
 | |
| 	if(ix==0x7ff00000) return zero;
 | |
| 	if(ix>=0x52D00000) { /* x > 2**302 */
 | |
|     /* (x >> n**2) 
 | |
|      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 | |
|      *	    Let s=sin(x), c=cos(x), 
 | |
|      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 | |
|      *
 | |
|      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
 | |
|      *		----------------------------------
 | |
|      *		   0	 s-c		 c+s
 | |
|      *		   1	-s-c 		-c+s
 | |
|      *		   2	-s+c		-c-s
 | |
|      *		   3	 s+c		 c-s
 | |
|      */
 | |
| 		switch(n&3) {
 | |
| 		    case 0: temp =  sin(x)-cos(x); break;
 | |
| 		    case 1: temp = -sin(x)-cos(x); break;
 | |
| 		    case 2: temp = -sin(x)+cos(x); break;
 | |
| 		    case 3: temp =  sin(x)+cos(x); break;
 | |
| 		}
 | |
| 		b = invsqrtpi*temp/__ieee754_sqrt(x);
 | |
| 	} else {
 | |
| 	    __uint32_t high;
 | |
| 	    a = __ieee754_y0(x);
 | |
| 	    b = __ieee754_y1(x);
 | |
| 	/* quit if b is -inf */
 | |
| 	    GET_HIGH_WORD(high,b);
 | |
| 	    for(i=1;i<n&&high!=0xfff00000;i++){ 
 | |
| 		temp = b;
 | |
| 		b = ((double)(i+i)/x)*b - a;
 | |
| 		GET_HIGH_WORD(high,b);
 | |
| 		a = temp;
 | |
| 	    }
 | |
| 	}
 | |
| 	if(sign>0) return b; else return -b;
 | |
| }
 | |
| 
 | |
| #endif /* defined(_DOUBLE_IS_32BITS) */
 |