171 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C
		
	
	
	
 | 
						|
/* @(#)e_hypot.c 5.1 93/09/24 */
 | 
						|
/*
 | 
						|
 * ====================================================
 | 
						|
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
						|
 *
 | 
						|
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 | 
						|
 * Permission to use, copy, modify, and distribute this
 | 
						|
 * software is freely granted, provided that this notice 
 | 
						|
 * is preserved.
 | 
						|
 * ====================================================
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
FUNCTION
 | 
						|
        <<hypot>>, <<hypotf>>---distance from origin
 | 
						|
INDEX
 | 
						|
        hypot
 | 
						|
INDEX
 | 
						|
        hypotf
 | 
						|
 | 
						|
ANSI_SYNOPSIS
 | 
						|
        #include <math.h>
 | 
						|
        double hypot(double <[x]>, double <[y]>);
 | 
						|
        float hypotf(float <[x]>, float <[y]>);
 | 
						|
 | 
						|
TRAD_SYNOPSIS
 | 
						|
        double hypot(<[x]>, <[y]>)
 | 
						|
        double <[x]>, <[y]>;
 | 
						|
 | 
						|
        float hypotf(<[x]>, <[y]>)
 | 
						|
        float <[x]>, <[y]>;
 | 
						|
 | 
						|
DESCRIPTION
 | 
						|
        <<hypot>> calculates the Euclidean distance
 | 
						|
        @tex
 | 
						|
        $\sqrt{x^2+y^2}$
 | 
						|
        @end tex
 | 
						|
        @ifinfo
 | 
						|
        <<sqrt(<[x]>*<[x]> + <[y]>*<[y]>)>>
 | 
						|
        @end ifinfo
 | 
						|
        between the origin (0,0) and a point represented by the
 | 
						|
        Cartesian coordinates (<[x]>,<[y]>).  <<hypotf>> differs only
 | 
						|
        in the type of its arguments and result.
 | 
						|
 | 
						|
RETURNS
 | 
						|
        Normally, the distance value is returned.  On overflow,
 | 
						|
        <<hypot>> returns <<HUGE_VAL>> and sets <<errno>> to
 | 
						|
        <<ERANGE>>.
 | 
						|
 | 
						|
        You can change the error treatment with <<matherr>>.
 | 
						|
 | 
						|
PORTABILITY
 | 
						|
        <<hypot>> and <<hypotf>> are not ANSI C.  */
 | 
						|
 | 
						|
/* hypot(x,y)
 | 
						|
 *
 | 
						|
 * Method :                  
 | 
						|
 *	If (assume round-to-nearest) z=x*x+y*y 
 | 
						|
 *	has error less than sqrt(2)/2 ulp, than 
 | 
						|
 *	sqrt(z) has error less than 1 ulp (exercise).
 | 
						|
 *
 | 
						|
 *	So, compute sqrt(x*x+y*y) with some care as 
 | 
						|
 *	follows to get the error below 1 ulp:
 | 
						|
 *
 | 
						|
 *	Assume x>y>0;
 | 
						|
 *	(if possible, set rounding to round-to-nearest)
 | 
						|
 *	1. if x > 2y  use
 | 
						|
 *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
 | 
						|
 *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
 | 
						|
 *	2. if x <= 2y use
 | 
						|
 *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
 | 
						|
 *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, 
 | 
						|
 *	y1= y with lower 32 bits chopped, y2 = y-y1.
 | 
						|
 *		
 | 
						|
 *	NOTE: scaling may be necessary if some argument is too 
 | 
						|
 *	      large or too tiny
 | 
						|
 *
 | 
						|
 * Special cases:
 | 
						|
 *	hypot(x,y) is INF if x or y is +INF or -INF; else
 | 
						|
 *	hypot(x,y) is NAN if x or y is NAN.
 | 
						|
 *
 | 
						|
 * Accuracy:
 | 
						|
 * 	hypot(x,y) returns sqrt(x^2+y^2) with error less 
 | 
						|
 * 	than 1 ulps (units in the last place) 
 | 
						|
 */
 | 
						|
 | 
						|
#include "fdlibm.h"
 | 
						|
 | 
						|
#ifndef _DOUBLE_IS_32BITS
 | 
						|
 | 
						|
#ifdef __STDC__
 | 
						|
	double hypot(double x, double y)
 | 
						|
#else
 | 
						|
	double hypot(x,y)
 | 
						|
	double x, y;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	double a=x,b=y,t1,t2,y1,y2,w;
 | 
						|
	__int32_t j,k,ha,hb;
 | 
						|
 | 
						|
	GET_HIGH_WORD(ha,x);
 | 
						|
	ha &= 0x7fffffff;
 | 
						|
	GET_HIGH_WORD(hb,y);
 | 
						|
	hb &= 0x7fffffff;
 | 
						|
	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
 | 
						|
	SET_HIGH_WORD(a,ha);	/* a <- |a| */
 | 
						|
	SET_HIGH_WORD(b,hb);	/* b <- |b| */
 | 
						|
	if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
 | 
						|
	k=0;
 | 
						|
	if(ha > 0x5f300000) {	/* a>2**500 */
 | 
						|
	   if(ha >= 0x7ff00000) {	/* Inf or NaN */
 | 
						|
	       __uint32_t low;
 | 
						|
	       w = a+b;			/* for sNaN */
 | 
						|
	       GET_LOW_WORD(low,a);
 | 
						|
	       if(((ha&0xfffff)|low)==0) w = a;
 | 
						|
	       GET_LOW_WORD(low,b);
 | 
						|
	       if(((hb^0x7ff00000)|low)==0) w = b;
 | 
						|
	       return w;
 | 
						|
	   }
 | 
						|
	   /* scale a and b by 2**-600 */
 | 
						|
	   ha -= 0x25800000; hb -= 0x25800000;	k += 600;
 | 
						|
	   SET_HIGH_WORD(a,ha);
 | 
						|
	   SET_HIGH_WORD(b,hb);
 | 
						|
	}
 | 
						|
	if(hb < 0x20b00000) {	/* b < 2**-500 */
 | 
						|
	    if(hb <= 0x000fffff) {	/* subnormal b or 0 */	
 | 
						|
	        __uint32_t low;
 | 
						|
		GET_LOW_WORD(low,b);
 | 
						|
		if((hb|low)==0) return a;
 | 
						|
		t1=0;
 | 
						|
		SET_HIGH_WORD(t1,0x7fd00000);	/* t1=2^1022 */
 | 
						|
		b *= t1;
 | 
						|
		a *= t1;
 | 
						|
		k -= 1022;
 | 
						|
	    } else {		/* scale a and b by 2^600 */
 | 
						|
	        ha += 0x25800000; 	/* a *= 2^600 */
 | 
						|
		hb += 0x25800000;	/* b *= 2^600 */
 | 
						|
		k -= 600;
 | 
						|
		SET_HIGH_WORD(a,ha);
 | 
						|
		SET_HIGH_WORD(b,hb);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    /* medium size a and b */
 | 
						|
	w = a-b;
 | 
						|
	if (w>b) {
 | 
						|
	    t1 = 0;
 | 
						|
	    SET_HIGH_WORD(t1,ha);
 | 
						|
	    t2 = a-t1;
 | 
						|
	    w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
 | 
						|
	} else {
 | 
						|
	    a  = a+a;
 | 
						|
	    y1 = 0;
 | 
						|
	    SET_HIGH_WORD(y1,hb);
 | 
						|
	    y2 = b - y1;
 | 
						|
	    t1 = 0;
 | 
						|
	    SET_HIGH_WORD(t1,ha+0x00100000);
 | 
						|
	    t2 = a - t1;
 | 
						|
	    w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
 | 
						|
	}
 | 
						|
	if(k!=0) {
 | 
						|
	    __uint32_t high;
 | 
						|
	    t1 = 1.0;
 | 
						|
	    GET_HIGH_WORD(high,t1);
 | 
						|
	    SET_HIGH_WORD(t1,high+(k<<20));
 | 
						|
	    return t1*w;
 | 
						|
	} else return w;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* defined(_DOUBLE_IS_32BITS) */
 |