838 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			838 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
| /****************************************************************
 | |
| 
 | |
| The author of this software is David M. Gay.
 | |
| 
 | |
| Copyright (C) 1998, 1999 by Lucent Technologies
 | |
| All Rights Reserved
 | |
| 
 | |
| Permission to use, copy, modify, and distribute this software and
 | |
| its documentation for any purpose and without fee is hereby
 | |
| granted, provided that the above copyright notice appear in all
 | |
| copies and that both that the copyright notice and this
 | |
| permission notice and warranty disclaimer appear in supporting
 | |
| documentation, and that the name of Lucent or any of its entities
 | |
| not be used in advertising or publicity pertaining to
 | |
| distribution of the software without specific, written prior
 | |
| permission.
 | |
| 
 | |
| LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 | |
| INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
 | |
| IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
 | |
| SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
 | |
| IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | |
| ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 | |
| THIS SOFTWARE.
 | |
| 
 | |
| ****************************************************************/
 | |
| 
 | |
| /* Please send bug reports to David M. Gay (dmg at acm dot org,
 | |
|  * with " at " changed at "@" and " dot " changed to ".").	*/
 | |
| 
 | |
| #include <newlib.h>
 | |
| #include <sys/config.h>
 | |
| 
 | |
| #ifdef _USE_GDTOA
 | |
| #include "gdtoaimp.h"
 | |
| 
 | |
|  static Bigint *
 | |
| #ifdef KR_headers
 | |
| bitstob(ptr, bits, nbits, bbits) ULong *bits;
 | |
| struct _reent ptr, int nbits; int *bbits;
 | |
| #else
 | |
| bitstob(struct _reent *ptr, ULong *bits, int nbits, int *bbits)
 | |
| #endif
 | |
| {
 | |
| 	int i, k;
 | |
| 	Bigint *b;
 | |
| 	ULong *be, *x, *x0;
 | |
| 
 | |
| 	i = ULbits;
 | |
| 	k = 0;
 | |
| 	while(i < nbits) {
 | |
| 		i <<= 1;
 | |
| 		k++;
 | |
| 		}
 | |
| #ifndef Pack_32
 | |
| 	if (!k)
 | |
| 		k = 1;
 | |
| #endif
 | |
| 	b = Balloc(ptr, k);
 | |
| 	if (b == NULL)
 | |
| 		return (NULL);
 | |
| 	be = bits + ((nbits - 1) >> kshift);
 | |
| 	x = x0 = b->_x;
 | |
| 	do {
 | |
| 		*x++ = *bits & ALL_ON;
 | |
| #ifdef Pack_16
 | |
| 		*x++ = (*bits >> 16) & ALL_ON;
 | |
| #endif
 | |
| 		} while(++bits <= be);
 | |
| 	i = x - x0;
 | |
| 	while(!x0[--i])
 | |
| 		if (!i) {
 | |
| 			b->_wds = 0;
 | |
| 			*bbits = 0;
 | |
| 			goto ret;
 | |
| 			}
 | |
| 	b->_wds = i + 1;
 | |
| 	*bbits = i*ULbits + 32 - hi0bits(b->_x[i]);
 | |
|  ret:
 | |
| 	return b;
 | |
| 	}
 | |
| 
 | |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | |
|  *
 | |
|  * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | |
|  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *	1. Rather than iterating, we use a simple numeric overestimate
 | |
|  *	   to determine k = floor(log10(d)).  We scale relevant
 | |
|  *	   quantities using O(log2(k)) rather than O(k) multiplications.
 | |
|  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | |
|  *	   try to generate digits strictly left to right.  Instead, we
 | |
|  *	   compute with fewer bits and propagate the carry if necessary
 | |
|  *	   when rounding the final digit up.  This is often faster.
 | |
|  *	3. Under the assumption that input will be rounded nearest,
 | |
|  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | |
|  *	   That is, we allow equality in stopping tests when the
 | |
|  *	   round-nearest rule will give the same floating-point value
 | |
|  *	   as would satisfaction of the stopping test with strict
 | |
|  *	   inequality.
 | |
|  *	4. We remove common factors of powers of 2 from relevant
 | |
|  *	   quantities.
 | |
|  *	5. When converting floating-point integers less than 1e16,
 | |
|  *	   we use floating-point arithmetic rather than resorting
 | |
|  *	   to multiple-precision integers.
 | |
|  *	6. When asked to produce fewer than 15 digits, we first try
 | |
|  *	   to get by with floating-point arithmetic; we resort to
 | |
|  *	   multiple-precision integer arithmetic only if we cannot
 | |
|  *	   guarantee that the floating-point calculation has given
 | |
|  *	   the correctly rounded result.  For k requested digits and
 | |
|  *	   "uniformly" distributed input, the probability is
 | |
|  *	   something like 10^(k-15) that we must resort to the Long
 | |
|  *	   calculation.
 | |
|  */
 | |
| 
 | |
|  char *
 | |
| gdtoa
 | |
| #ifdef KR_headers
 | |
| 	(ptr, fpi, be, bits, kindp, mode, ndigits, decpt, rve)
 | |
| 	struct _reent *ptr, FPI *fpi; int be; ULong *bits;
 | |
| 	int *kindp, mode, ndigits, *decpt; char **rve;
 | |
| #else
 | |
| 	(struct _reent *ptr, FPI *fpi, int be, ULong *bits, int *kindp,
 | |
| 	 int mode, int ndigits, int *decpt, char **rve)
 | |
| #endif
 | |
| {
 | |
|  /*	Arguments ndigits and decpt are similar to the second and third
 | |
| 	arguments of ecvt and fcvt; trailing zeros are suppressed from
 | |
| 	the returned string.  If not null, *rve is set to point
 | |
| 	to the end of the return value.  If d is +-Infinity or NaN,
 | |
| 	then *decpt is set to 9999.
 | |
| 	be = exponent: value = (integer represented by bits) * (2 to the power of be).
 | |
| 
 | |
| 	mode:
 | |
| 		0 ==> shortest string that yields d when read in
 | |
| 			and rounded to nearest.
 | |
| 		1 ==> like 0, but with Steele & White stopping rule;
 | |
| 			e.g. with IEEE P754 arithmetic , mode 0 gives
 | |
| 			1e23 whereas mode 1 gives 9.999999999999999e22.
 | |
| 		2 ==> max(1,ndigits) significant digits.  This gives a
 | |
| 			return value similar to that of ecvt, except
 | |
| 			that trailing zeros are suppressed.
 | |
| 		3 ==> through ndigits past the decimal point.  This
 | |
| 			gives a return value similar to that from fcvt,
 | |
| 			except that trailing zeros are suppressed, and
 | |
| 			ndigits can be negative.
 | |
| 		4-9 should give the same return values as 2-3, i.e.,
 | |
| 			4 <= mode <= 9 ==> same return as mode
 | |
| 			2 + (mode & 1).  These modes are mainly for
 | |
| 			debugging; often they run slower but sometimes
 | |
| 			faster than modes 2-3.
 | |
| 		4,5,8,9 ==> left-to-right digit generation.
 | |
| 		6-9 ==> don't try fast floating-point estimate
 | |
| 			(if applicable).
 | |
| 
 | |
| 		Values of mode other than 0-9 are treated as mode 0.
 | |
| 
 | |
| 		Sufficient space is allocated to the return value
 | |
| 		to hold the suppressed trailing zeros.
 | |
| 	*/
 | |
| 
 | |
| 	int bbits, b2, b5, be0, dig, i, ieps, ilim, ilim0, ilim1, inex;
 | |
| 	int j, j1, k, k0, k_check, kind, leftright, m2, m5, nbits;
 | |
| 	int rdir, s2, s5, spec_case, try_quick;
 | |
| 	Long L;
 | |
| 	Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S;
 | |
| 	double d2, ds;
 | |
| 	char *s, *s0;
 | |
| 	U d, eps;
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
| 	if (dtoa_result) {
 | |
| 		freedtoa(ptr, dtoa_result);
 | |
| 		dtoa_result = 0;
 | |
| 		}
 | |
| #endif
 | |
| 	inex = 0;
 | |
| 	kind = *kindp &= ~STRTOG_Inexact;
 | |
| 	switch(kind & STRTOG_Retmask) {
 | |
| 	  case STRTOG_Zero:
 | |
| 		goto ret_zero;
 | |
| 	  case STRTOG_Normal:
 | |
| 	  case STRTOG_Denormal:
 | |
| 		break;
 | |
| 	  case STRTOG_Infinite:
 | |
| 		*decpt = -32768;
 | |
| 		return nrv_alloc(ptr, "Infinity", rve, 8);
 | |
| 	  case STRTOG_NaN:
 | |
| 		*decpt = -32768;
 | |
| 		return nrv_alloc(ptr, "NaN", rve, 3);
 | |
| 	  default:
 | |
| 		return 0;
 | |
| 	  }
 | |
| 	b = bitstob(ptr, bits, nbits = fpi->nbits, &bbits);
 | |
| 	if (b == NULL)
 | |
| 		return (NULL);
 | |
| 	be0 = be;
 | |
| 	if ( (i = trailz(b)) !=0) {
 | |
| 		rshift(b, i);
 | |
| 		be += i;
 | |
| 		bbits -= i;
 | |
| 		}
 | |
| 	if (!b->_wds) {
 | |
| 		Bfree(ptr, b);
 | |
|  ret_zero:
 | |
| 		*decpt = 1;
 | |
| 		return nrv_alloc(ptr, "0", rve, 1);
 | |
| 		}
 | |
| 
 | |
| 	dval(d) = b2d(b, &i);
 | |
| 	i = be + bbits - 1;
 | |
| 	word0(d) &= Frac_mask1;
 | |
| 	word0(d) |= Exp_11;
 | |
| #ifdef IBM
 | |
| 	if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
 | |
| 		dval(d) /= 1 << j;
 | |
| #endif
 | |
| 
 | |
| 	/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
 | |
| 	 * log10(x)	 =  log(x) / log(10)
 | |
| 	 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | |
| 	 * log10(&d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | |
| 	 *
 | |
| 	 * This suggests computing an approximation k to log10(&d) by
 | |
| 	 *
 | |
| 	 * k = (i - Bias)*0.301029995663981
 | |
| 	 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | |
| 	 *
 | |
| 	 * We want k to be too large rather than too small.
 | |
| 	 * The error in the first-order Taylor series approximation
 | |
| 	 * is in our favor, so we just round up the constant enough
 | |
| 	 * to compensate for any error in the multiplication of
 | |
| 	 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | |
| 	 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | |
| 	 * adding 1e-13 to the constant term more than suffices.
 | |
| 	 * Hence we adjust the constant term to 0.1760912590558.
 | |
| 	 * (We could get a more accurate k by invoking log10,
 | |
| 	 *  but this is probably not worthwhile.)
 | |
| 	 */
 | |
| #ifdef IBM
 | |
| 	i <<= 2;
 | |
| 	i += j;
 | |
| #endif
 | |
| 	ds = (dval(d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | |
| 
 | |
| 	/* correct assumption about exponent range */
 | |
| 	if ((j = i) < 0)
 | |
| 		j = -j;
 | |
| 	if ((j -= 1077) > 0)
 | |
| 		ds += j * 7e-17;
 | |
| 
 | |
| 	k = (int)ds;
 | |
| 	if (ds < 0. && ds != k)
 | |
| 		k--;	/* want k = floor(ds) */
 | |
| 	k_check = 1;
 | |
| #ifdef IBM
 | |
| 	j = be + bbits - 1;
 | |
| 	if ( (j1 = j & 3) !=0)
 | |
| 		dval(d) *= 1 << j1;
 | |
| 	word0(d) += j << Exp_shift - 2 & Exp_mask;
 | |
| #else
 | |
| 	word0(d) += (be + bbits - 1) << Exp_shift;
 | |
| #endif
 | |
| 	if (k >= 0 && k <= Ten_pmax) {
 | |
| 		if (dval(d) < tens[k])
 | |
| 			k--;
 | |
| 		k_check = 0;
 | |
| 		}
 | |
| 	j = bbits - i - 1;
 | |
| 	if (j >= 0) {
 | |
| 		b2 = 0;
 | |
| 		s2 = j;
 | |
| 		}
 | |
| 	else {
 | |
| 		b2 = -j;
 | |
| 		s2 = 0;
 | |
| 		}
 | |
| 	if (k >= 0) {
 | |
| 		b5 = 0;
 | |
| 		s5 = k;
 | |
| 		s2 += k;
 | |
| 		}
 | |
| 	else {
 | |
| 		b2 -= k;
 | |
| 		b5 = -k;
 | |
| 		s5 = 0;
 | |
| 		}
 | |
| 	if (mode < 0 || mode > 9)
 | |
| 		mode = 0;
 | |
| 	try_quick = 1;
 | |
| 	if (mode > 5) {
 | |
| 		mode -= 4;
 | |
| 		try_quick = 0;
 | |
| 		}
 | |
| 	else if (i >= -4 - Emin || i < Emin)
 | |
| 		try_quick = 0;
 | |
| 	leftright = 1;
 | |
| 	ilim = ilim1 = -1;	/* Values for cases 0 and 1; done here to */
 | |
| 				/* silence erroneous "gcc -Wall" warning. */
 | |
| 	switch(mode) {
 | |
| 		case 0:
 | |
| 		case 1:
 | |
| 			i = (int)(nbits * .30103) + 3;
 | |
| 			ndigits = 0;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			leftright = 0;
 | |
| 			/* no break */
 | |
| 		case 4:
 | |
| 			if (ndigits <= 0)
 | |
| 				ndigits = 1;
 | |
| 			ilim = ilim1 = i = ndigits;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			leftright = 0;
 | |
| 			/* no break */
 | |
| 		case 5:
 | |
| 			i = ndigits + k + 1;
 | |
| 			ilim = i;
 | |
| 			ilim1 = i - 1;
 | |
| 			if (i <= 0)
 | |
| 				i = 1;
 | |
| 		}
 | |
| 	s = s0 = rv_alloc(ptr, i);
 | |
| 	if (s == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	if ( (rdir = fpi->rounding - 1) !=0) {
 | |
| 		if (rdir < 0)
 | |
| 			rdir = 2;
 | |
| 		if (kind & STRTOG_Neg)
 | |
| 			rdir = 3 - rdir;
 | |
| 		}
 | |
| 
 | |
| 	/* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */
 | |
| 
 | |
| 	if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir
 | |
| #ifndef IMPRECISE_INEXACT
 | |
| 		&& k == 0
 | |
| #endif
 | |
| 								) {
 | |
| 
 | |
| 		/* Try to get by with floating-point arithmetic. */
 | |
| 
 | |
| 		i = 0;
 | |
| 		d2 = dval(d);
 | |
| #ifdef IBM
 | |
| 		if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
 | |
| 			dval(d) /= 1 << j;
 | |
| #endif
 | |
| 		k0 = k;
 | |
| 		ilim0 = ilim;
 | |
| 		ieps = 2; /* conservative */
 | |
| 		if (k > 0) {
 | |
| 			ds = tens[k&0xf];
 | |
| 			j = k >> 4;
 | |
| 			if (j & Bletch) {
 | |
| 				/* prevent overflows */
 | |
| 				j &= Bletch - 1;
 | |
| 				dval(d) /= bigtens[n_bigtens-1];
 | |
| 				ieps++;
 | |
| 				}
 | |
| 			for(; j; j >>= 1, i++)
 | |
| 				if (j & 1) {
 | |
| 					ieps++;
 | |
| 					ds *= bigtens[i];
 | |
| 					}
 | |
| 			}
 | |
| 		else  {
 | |
| 			ds = 1.;
 | |
| 			if ( (j1 = -k) !=0) {
 | |
| 				dval(d) *= tens[j1 & 0xf];
 | |
| 				for(j = j1 >> 4; j; j >>= 1, i++)
 | |
| 					if (j & 1) {
 | |
| 						ieps++;
 | |
| 						dval(d) *= bigtens[i];
 | |
| 						}
 | |
| 				}
 | |
| 			}
 | |
| 		if (k_check && dval(d) < 1. && ilim > 0) {
 | |
| 			if (ilim1 <= 0)
 | |
| 				goto fast_failed;
 | |
| 			ilim = ilim1;
 | |
| 			k--;
 | |
| 			dval(d) *= 10.;
 | |
| 			ieps++;
 | |
| 			}
 | |
| 		dval(eps) = ieps*dval(d) + 7.;
 | |
| 		word0(eps) -= (P-1)*Exp_msk1;
 | |
| 		if (ilim == 0) {
 | |
| 			S = mhi = 0;
 | |
| 			dval(d) -= 5.;
 | |
| 			if (dval(d) > dval(eps))
 | |
| 				goto one_digit;
 | |
| 			if (dval(d) < -dval(eps))
 | |
| 				goto no_digits;
 | |
| 			goto fast_failed;
 | |
| 			}
 | |
| #ifndef No_leftright
 | |
| 		if (leftright) {
 | |
| 			/* Use Steele & White method of only
 | |
| 			 * generating digits needed.
 | |
| 			 */
 | |
| 			dval(eps) = ds*0.5/tens[ilim-1] - dval(eps);
 | |
| 			for(i = 0;;) {
 | |
| 				L = (Long)(dval(d)/ds);
 | |
| 				dval(d) -= L*ds;
 | |
| 				*s++ = '0' + (int)L;
 | |
| 				if (dval(d) < dval(eps)) {
 | |
| 					if (dval(d))
 | |
| 						inex = STRTOG_Inexlo;
 | |
| 					goto ret1;
 | |
| 					}
 | |
| 				if (ds - dval(d) < dval(eps))
 | |
| 					goto bump_up;
 | |
| 				if (++i >= ilim)
 | |
| 					break;
 | |
| 				dval(eps) *= 10.;
 | |
| 				dval(d) *= 10.;
 | |
| 				}
 | |
| 			}
 | |
| 		else {
 | |
| #endif
 | |
| 			/* Generate ilim digits, then fix them up. */
 | |
| 			dval(eps) *= tens[ilim-1];
 | |
| 			for(i = 1;; i++, dval(d) *= 10.) {
 | |
| 				if ( (L = (Long)(dval(d)/ds)) !=0)
 | |
| 					dval(d) -= L*ds;
 | |
| 				*s++ = '0' + (int)L;
 | |
| 				if (i == ilim) {
 | |
| 					ds *= 0.5;
 | |
| 					if (dval(d) > ds + dval(eps))
 | |
| 						goto bump_up;
 | |
| 					else if (dval(d) < ds - dval(eps)) {
 | |
| 						if (dval(d))
 | |
| 							inex = STRTOG_Inexlo;
 | |
| 						goto clear_trailing0;
 | |
| 						}
 | |
| 					break;
 | |
| 					}
 | |
| 				}
 | |
| #ifndef No_leftright
 | |
| 			}
 | |
| #endif
 | |
|  fast_failed:
 | |
| 		s = s0;
 | |
| 		dval(d) = d2;
 | |
| 		k = k0;
 | |
| 		ilim = ilim0;
 | |
| 		}
 | |
| 
 | |
| 	/* Do we have a "small" integer? */
 | |
| 
 | |
| 	if (be >= 0 && k <= Int_max) {
 | |
| 		/* Yes. */
 | |
| 		ds = tens[k];
 | |
| 		if (ndigits < 0 && ilim <= 0) {
 | |
| 			S = mhi = 0;
 | |
| 			if (ilim < 0 || dval(d) <= 5*ds)
 | |
| 				goto no_digits;
 | |
| 			goto one_digit;
 | |
| 			}
 | |
| 		for(i = 1;; i++, dval(d) *= 10.) {
 | |
| 			L = dval(d) / ds;
 | |
| 			dval(d) -= L*ds;
 | |
| #ifdef Check_FLT_ROUNDS
 | |
| 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | |
| 			if (dval(d) < 0) {
 | |
| 				L--;
 | |
| 				dval(d) += ds;
 | |
| 				}
 | |
| #endif
 | |
| 			*s++ = '0' + (int)L;
 | |
| 			if (dval(d) == 0.)
 | |
| 				break;
 | |
| 			if (i == ilim) {
 | |
| 				if (rdir) {
 | |
| 					if (rdir == 1)
 | |
| 						goto bump_up;
 | |
| 					inex = STRTOG_Inexlo;
 | |
| 					goto ret1;
 | |
| 					}
 | |
| 				dval(d) += dval(d);
 | |
| #ifdef ROUND_BIASED
 | |
| 				if (dval(d) >= ds)
 | |
| #else
 | |
| 				if (dval(d) > ds || (dval(d) == ds && L & 1))
 | |
| #endif
 | |
| 					{
 | |
|  bump_up:
 | |
| 					inex = STRTOG_Inexhi;
 | |
| 					while(*--s == '9')
 | |
| 						if (s == s0) {
 | |
| 							k++;
 | |
| 							*s = '0';
 | |
| 							break;
 | |
| 							}
 | |
| 					++*s++;
 | |
| 					}
 | |
| 				else {
 | |
| 					inex = STRTOG_Inexlo;
 | |
|  clear_trailing0:
 | |
| 					while(*--s == '0'){}
 | |
| 					++s;
 | |
| 					}
 | |
| 				break;
 | |
| 				}
 | |
| 			}
 | |
| 		goto ret1;
 | |
| 		}
 | |
| 
 | |
| 	m2 = b2;
 | |
| 	m5 = b5;
 | |
| 	mhi = mlo = 0;
 | |
| 	if (leftright) {
 | |
| 		i = nbits - bbits;
 | |
| 		if (be - i++ < fpi->emin && mode != 3 && mode != 5) {
 | |
| 			/* denormal */
 | |
| 			i = be - fpi->emin + 1;
 | |
| 			if (mode >= 2 && ilim > 0 && ilim < i)
 | |
| 				goto small_ilim;
 | |
| 			}
 | |
| 		else if (mode >= 2) {
 | |
|  small_ilim:
 | |
| 			j = ilim - 1;
 | |
| 			if (m5 >= j)
 | |
| 				m5 -= j;
 | |
| 			else {
 | |
| 				s5 += j -= m5;
 | |
| 				b5 += j;
 | |
| 				m5 = 0;
 | |
| 				}
 | |
| 			if ((i = ilim) < 0) {
 | |
| 				m2 -= i;
 | |
| 				i = 0;
 | |
| 				}
 | |
| 			}
 | |
| 		b2 += i;
 | |
| 		s2 += i;
 | |
| 		mhi = i2b(ptr, 1);
 | |
| 		if (mhi == NULL)
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 	if (m2 > 0 && s2 > 0) {
 | |
| 		i = m2 < s2 ? m2 : s2;
 | |
| 		b2 -= i;
 | |
| 		m2 -= i;
 | |
| 		s2 -= i;
 | |
| 		}
 | |
| 	if (b5 > 0) {
 | |
| 		if (leftright) {
 | |
| 			if (m5 > 0) {
 | |
| 				mhi = pow5mult(ptr, mhi, m5);
 | |
| 				if (mhi == NULL)
 | |
| 					return (NULL);
 | |
| 				b1 = mult(ptr, mhi, b);
 | |
| 				if (b1 == NULL)
 | |
| 					return (NULL);
 | |
| 				Bfree(ptr, b);
 | |
| 				b = b1;
 | |
| 				}
 | |
| 			if ( (j = b5 - m5) !=0) {
 | |
| 				b = pow5mult(ptr, b, j);
 | |
| 				if (b == NULL)
 | |
| 					return (NULL);
 | |
| 				}
 | |
| 			}
 | |
| 		else {
 | |
| 			b = pow5mult(ptr, b, b5);
 | |
| 			if (b == NULL)
 | |
| 				return (NULL);
 | |
| 			}
 | |
| 		}
 | |
| 	S = i2b(ptr, 1);
 | |
| 	if (S == NULL)
 | |
| 		return (NULL);
 | |
| 	if (s5 > 0) {
 | |
| 		S = pow5mult(ptr, S, s5);
 | |
| 		if (S == NULL)
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 
 | |
| 	/* Check for special case that d is a normalized power of 2. */
 | |
| 
 | |
| 	spec_case = 0;
 | |
| 	if (mode < 2) {
 | |
| 		if (bbits == 1 && be0 > fpi->emin + 1) {
 | |
| 			/* The special case */
 | |
| 			b2++;
 | |
| 			s2++;
 | |
| 			spec_case = 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	/* Arrange for convenient computation of quotients:
 | |
| 	 * shift left if necessary so divisor has 4 leading 0 bits.
 | |
| 	 *
 | |
| 	 * Perhaps we should just compute leading 28 bits of S once
 | |
| 	 * and for all and pass them and a shift to quorem, so it
 | |
| 	 * can do shifts and ors to compute the numerator for q.
 | |
| 	 */
 | |
| 	i = ((s5 ? hi0bits(S->_x[S->_wds-1]) : ULbits - 1) - s2 - 4) & kmask;
 | |
| 	m2 += i;
 | |
| 	if ((b2 += i) > 0) {
 | |
| 		b = lshift(ptr, b, b2);
 | |
| 		if (b == NULL)
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 	if ((s2 += i) > 0) {
 | |
| 		S = lshift(ptr, S, s2);
 | |
| 		if (S == NULL)
 | |
| 			return (NULL);
 | |
| 		}
 | |
| 	if (k_check) {
 | |
| 		if (cmp(b,S) < 0) {
 | |
| 			k--;
 | |
| 			b = multadd(ptr, b, 10, 0); /* we botched the k estimate */
 | |
| 			if (b == NULL)
 | |
| 				return (NULL);
 | |
| 			if (leftright) {
 | |
| 				mhi = multadd(ptr, mhi, 10, 0);
 | |
| 				if (mhi == NULL)
 | |
| 					return (NULL);
 | |
| 				}
 | |
| 			ilim = ilim1;
 | |
| 			}
 | |
| 		}
 | |
| 	if (ilim <= 0 && mode > 2) {
 | |
| 		S = multadd(ptr, S,5,0);
 | |
| 		if (S == NULL)
 | |
| 			return (NULL);
 | |
| 		if (ilim < 0 || cmp(b,S) <= 0) {
 | |
| 			/* no digits, fcvt style */
 | |
|  no_digits:
 | |
| 			k = -1 - ndigits;
 | |
| 			inex = STRTOG_Inexlo;
 | |
| 			goto ret;
 | |
| 			}
 | |
|  one_digit:
 | |
| 		inex = STRTOG_Inexhi;
 | |
| 		*s++ = '1';
 | |
| 		k++;
 | |
| 		goto ret;
 | |
| 		}
 | |
| 	if (leftright) {
 | |
| 		if (m2 > 0) {
 | |
| 			mhi = lshift(ptr, mhi, m2);
 | |
| 			if (mhi == NULL)
 | |
| 				return (NULL);
 | |
| 			}
 | |
| 
 | |
| 		/* Compute mlo -- check for special case
 | |
| 		 * that d is a normalized power of 2.
 | |
| 		 */
 | |
| 
 | |
| 		mlo = mhi;
 | |
| 		if (spec_case) {
 | |
| 			mhi = Balloc(ptr, mhi->_k);
 | |
| 			if (mhi == NULL)
 | |
| 				return (NULL);
 | |
| 			Bcopy(mhi, mlo);
 | |
| 			mhi = lshift(ptr, mhi, 1);
 | |
| 			if (mhi == NULL)
 | |
| 				return (NULL);
 | |
| 			}
 | |
| 
 | |
| 		for(i = 1;;i++) {
 | |
| 			dig = quorem(b,S) + '0';
 | |
| 			/* Do we yet have the shortest decimal string
 | |
| 			 * that will round to d?
 | |
| 			 */
 | |
| 			j = cmp(b, mlo);
 | |
| 			delta = diff(ptr, S, mhi);
 | |
| 			if (delta == NULL)
 | |
| 				return (NULL);
 | |
| 			j1 = delta->_sign ? 1 : cmp(b, delta);
 | |
| 			Bfree(ptr, delta);
 | |
| #ifndef ROUND_BIASED
 | |
| 			if (j1 == 0 && !mode && !(bits[0] & 1) && !rdir) {
 | |
| 				if (dig == '9')
 | |
| 					goto round_9_up;
 | |
| 				if (j <= 0) {
 | |
| 					if (b->_wds > 1 || b->_x[0])
 | |
| 						inex = STRTOG_Inexlo;
 | |
| 					}
 | |
| 				else {
 | |
| 					dig++;
 | |
| 					inex = STRTOG_Inexhi;
 | |
| 					}
 | |
| 				*s++ = dig;
 | |
| 				goto ret;
 | |
| 				}
 | |
| #endif
 | |
| 			if (j < 0 || (j == 0 && !mode
 | |
| #ifndef ROUND_BIASED
 | |
| 							&& !(bits[0] & 1)
 | |
| #endif
 | |
| 					)) {
 | |
| 				if (rdir && (b->_wds > 1 || b->_x[0])) {
 | |
| 					if (rdir == 2) {
 | |
| 						inex = STRTOG_Inexlo;
 | |
| 						goto accept;
 | |
| 						}
 | |
| 					while (cmp(S,mhi) > 0) {
 | |
| 						*s++ = dig;
 | |
| 						mhi1 = multadd(ptr, mhi, 10, 0);
 | |
| 						if (mhi1 == NULL)
 | |
| 							return (NULL);
 | |
| 						if (mlo == mhi)
 | |
| 							mlo = mhi1;
 | |
| 						mhi = mhi1;
 | |
| 						b = multadd(ptr, b, 10, 0);
 | |
| 						if (b == NULL)
 | |
| 							return (NULL);
 | |
| 						dig = quorem(b,S) + '0';
 | |
| 						}
 | |
| 					if (dig++ == '9')
 | |
| 						goto round_9_up;
 | |
| 					inex = STRTOG_Inexhi;
 | |
| 					goto accept;
 | |
| 					}
 | |
| 				if (j1 > 0) {
 | |
| 					b = lshift(ptr, b, 1);
 | |
| 					if (b == NULL)
 | |
| 						return (NULL);
 | |
| 					j1 = cmp(b, S);
 | |
| #ifdef ROUND_BIASED
 | |
| 					if (j1 >= 0 /*)*/
 | |
| #else
 | |
| 					if ((j1 > 0 || (j1 == 0 && dig & 1))
 | |
| #endif
 | |
| 					&& dig++ == '9')
 | |
| 						goto round_9_up;
 | |
| 					inex = STRTOG_Inexhi;
 | |
| 					}
 | |
| 				if (b->_wds > 1 || b->_x[0])
 | |
| 					inex = STRTOG_Inexlo;
 | |
|  accept:
 | |
| 				*s++ = dig;
 | |
| 				goto ret;
 | |
| 				}
 | |
| 			if (j1 > 0 && rdir != 2) {
 | |
| 				if (dig == '9') { /* possible if i == 1 */
 | |
|  round_9_up:
 | |
| 					*s++ = '9';
 | |
| 					inex = STRTOG_Inexhi;
 | |
| 					goto roundoff;
 | |
| 					}
 | |
| 				inex = STRTOG_Inexhi;
 | |
| 				*s++ = dig + 1;
 | |
| 				goto ret;
 | |
| 				}
 | |
| 			*s++ = dig;
 | |
| 			if (i == ilim)
 | |
| 				break;
 | |
| 			b = multadd(ptr, b, 10, 0);
 | |
| 			if (b == NULL)
 | |
| 				return (NULL);
 | |
| 			if (mlo == mhi) {
 | |
| 				mlo = mhi = multadd(ptr, mhi, 10, 0);
 | |
| 				if (mlo == NULL)
 | |
| 					return (NULL);
 | |
| 				}
 | |
| 			else {
 | |
| 				mlo = multadd(ptr, mlo, 10, 0);
 | |
| 				if (mlo == NULL)
 | |
| 					return (NULL);
 | |
| 				mhi = multadd(ptr, mhi, 10, 0);
 | |
| 				if (mhi == NULL)
 | |
| 					return (NULL);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	else
 | |
| 		for(i = 1;; i++) {
 | |
| 			*s++ = dig = quorem(b,S) + '0';
 | |
| 			if (i >= ilim)
 | |
| 				break;
 | |
| 			b = multadd(ptr, b, 10, 0);
 | |
| 			if (b == NULL)
 | |
| 				return (NULL);
 | |
| 			}
 | |
| 
 | |
| 	/* Round off last digit */
 | |
| 
 | |
| 	if (rdir) {
 | |
| 		if (rdir == 2 || (b->_wds <= 1 && !b->_x[0]))
 | |
| 			goto chopzeros;
 | |
| 		goto roundoff;
 | |
| 		}
 | |
| 	b = lshift(ptr, b, 1);
 | |
| 	if (b == NULL)
 | |
| 		return (NULL);
 | |
| 	j = cmp(b, S);
 | |
| #ifdef ROUND_BIASED
 | |
| 	if (j >= 0)
 | |
| #else
 | |
| 	if (j > 0 || (j == 0 && dig & 1))
 | |
| #endif
 | |
| 		{
 | |
|  roundoff:
 | |
| 		inex = STRTOG_Inexhi;
 | |
| 		while(*--s == '9')
 | |
| 			if (s == s0) {
 | |
| 				k++;
 | |
| 				*s++ = '1';
 | |
| 				goto ret;
 | |
| 				}
 | |
| 		++*s++;
 | |
| 		}
 | |
| 	else {
 | |
|  chopzeros:
 | |
| 		if (b->_wds > 1 || b->_x[0])
 | |
| 			inex = STRTOG_Inexlo;
 | |
| 		while(*--s == '0'){}
 | |
| 		++s;
 | |
| 		}
 | |
|  ret:
 | |
| 	Bfree(ptr, S);
 | |
| 	if (mhi) {
 | |
| 		if (mlo && mlo != mhi)
 | |
| 			Bfree(ptr, mlo);
 | |
| 		Bfree(ptr, mhi);
 | |
| 		}
 | |
|  ret1:
 | |
| 	Bfree(ptr, b);
 | |
| 	*s = 0;
 | |
| 	*decpt = k + 1;
 | |
| 	if (rve)
 | |
| 		*rve = s;
 | |
| 	*kindp |= inex;
 | |
| 	return s0;
 | |
| 	}
 | |
| DEF_STRONG(gdtoa);
 | |
| #endif /* _USE_GDTOA */
 |