440 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			440 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
| /* ef_j1.c -- float version of e_j1.c.
 | |
|  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static float ponef(float), qonef(float);
 | |
| #else
 | |
| static float ponef(), qonef();
 | |
| #endif
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float 
 | |
| #else
 | |
| static float 
 | |
| #endif
 | |
| huge    = 1e30,
 | |
| one	= 1.0,
 | |
| invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
 | |
| tpi      =  6.3661974669e-01, /* 0x3f22f983 */
 | |
| 	/* R0/S0 on [0,2] */
 | |
| r00  = -6.2500000000e-02, /* 0xbd800000 */
 | |
| r01  =  1.4070566976e-03, /* 0x3ab86cfd */
 | |
| r02  = -1.5995563444e-05, /* 0xb7862e36 */
 | |
| r03  =  4.9672799207e-08, /* 0x335557d2 */
 | |
| s01  =  1.9153760746e-02, /* 0x3c9ce859 */
 | |
| s02  =  1.8594678841e-04, /* 0x3942fab6 */
 | |
| s03  =  1.1771846857e-06, /* 0x359dffc2 */
 | |
| s04  =  5.0463624390e-09, /* 0x31ad6446 */
 | |
| s05  =  1.2354227016e-11; /* 0x2d59567e */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float zero    = 0.0;
 | |
| #else
 | |
| static float zero    = 0.0;
 | |
| #endif
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	float j1f(float x) 
 | |
| #else
 | |
| 	float j1f(x) 
 | |
| 	float x;
 | |
| #endif
 | |
| {
 | |
| 	float z, s,c,ss,cc,r,u,v,y;
 | |
| 	__int32_t hx,ix;
 | |
| 
 | |
| 	GET_FLOAT_WORD(hx,x);
 | |
| 	ix = hx&0x7fffffff;
 | |
| 	if(ix>=0x7f800000) return one/x;
 | |
| 	y = fabsf(x);
 | |
| 	if(ix >= 0x40000000) {	/* |x| >= 2.0 */
 | |
| 		s = sinf(y);
 | |
| 		c = cosf(y);
 | |
| 		ss = -s-c;
 | |
| 		cc = s-c;
 | |
| 		if(ix<0x7f000000) {  /* make sure y+y not overflow */
 | |
| 		    z = cosf(y+y);
 | |
| 		    if ((s*c)>zero) cc = z/ss;
 | |
| 		    else 	    ss = z/cc;
 | |
| 		}
 | |
| 	/*
 | |
| 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
 | |
| 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
 | |
| 	 */
 | |
| 		if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
 | |
| 		else {
 | |
| 		    u = ponef(y); v = qonef(y);
 | |
| 		    z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
 | |
| 		}
 | |
| 		if(hx<0) return -z;
 | |
| 		else  	 return  z;
 | |
| 	}
 | |
| 	if(ix<0x32000000) {	/* |x|<2**-27 */
 | |
| 	    if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
 | |
| 	}
 | |
| 	z = x*x;
 | |
| 	r =  z*(r00+z*(r01+z*(r02+z*r03)));
 | |
| 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
 | |
| 	r *= x;
 | |
| 	return(x*(float)0.5+r/s);
 | |
| }
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float U0[5] = {
 | |
| #else
 | |
| static float U0[5] = {
 | |
| #endif
 | |
|  -1.9605709612e-01, /* 0xbe48c331 */
 | |
|   5.0443872809e-02, /* 0x3d4e9e3c */
 | |
|  -1.9125689287e-03, /* 0xbafaaf2a */
 | |
|   2.3525259166e-05, /* 0x37c5581c */
 | |
|  -9.1909917899e-08, /* 0xb3c56003 */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float V0[5] = {
 | |
| #else
 | |
| static float V0[5] = {
 | |
| #endif
 | |
|   1.9916731864e-02, /* 0x3ca3286a */
 | |
|   2.0255257550e-04, /* 0x3954644b */
 | |
|   1.3560879779e-06, /* 0x35b602d4 */
 | |
|   6.2274145840e-09, /* 0x31d5f8eb */
 | |
|   1.6655924903e-11, /* 0x2d9281cf */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	float y1f(float x) 
 | |
| #else
 | |
| 	float y1f(x) 
 | |
| 	float x;
 | |
| #endif
 | |
| {
 | |
| 	float z, s,c,ss,cc,u,v;
 | |
| 	__int32_t hx,ix;
 | |
| 
 | |
| 	GET_FLOAT_WORD(hx,x);
 | |
|         ix = 0x7fffffff&hx;
 | |
|     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
 | |
| 	if(ix>=0x7f800000) return  one/(x+x*x); 
 | |
|         if(ix==0) return -one/zero;
 | |
|         if(hx<0) return zero/zero;
 | |
|         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
 | |
|                 s = sinf(x);
 | |
|                 c = cosf(x);
 | |
|                 ss = -s-c;
 | |
|                 cc = s-c;
 | |
|                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
 | |
|                     z = cosf(x+x);
 | |
|                     if ((s*c)>zero) cc = z/ss;
 | |
|                     else            ss = z/cc;
 | |
|                 }
 | |
|         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
 | |
|          * where x0 = x-3pi/4
 | |
|          *      Better formula:
 | |
|          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
 | |
|          *                      =  1/sqrt(2) * (sin(x) - cos(x))
 | |
|          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
 | |
|          *                      = -1/sqrt(2) * (cos(x) + sin(x))
 | |
|          * To avoid cancellation, use
 | |
|          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
 | |
|          * to compute the worse one.
 | |
|          */
 | |
|                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
 | |
|                 else {
 | |
|                     u = ponef(x); v = qonef(x);
 | |
|                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
 | |
|                 }
 | |
|                 return z;
 | |
|         } 
 | |
|         if(ix<=0x24800000) {    /* x < 2**-54 */
 | |
|             return(-tpi/x);
 | |
|         } 
 | |
|         z = x*x;
 | |
|         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
 | |
|         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
 | |
|         return(x*(u/v) + tpi*(j1f(x)*logf(x)-one/x));
 | |
| }
 | |
| 
 | |
| /* For x >= 8, the asymptotic expansions of pone is
 | |
|  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x.
 | |
|  * We approximate pone by
 | |
|  * 	pone(x) = 1 + (R/S)
 | |
|  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
 | |
|  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10
 | |
|  * and
 | |
|  *	| pone(x)-1-R/S | <= 2  ** ( -60.06)
 | |
|  */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
 | |
| #else
 | |
| static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
 | |
| #endif
 | |
|   0.0000000000e+00, /* 0x00000000 */
 | |
|   1.1718750000e-01, /* 0x3df00000 */
 | |
|   1.3239480972e+01, /* 0x4153d4ea */
 | |
|   4.1205184937e+02, /* 0x43ce06a3 */
 | |
|   3.8747453613e+03, /* 0x45722bed */
 | |
|   7.9144794922e+03, /* 0x45f753d6 */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float ps8[5] = {
 | |
| #else
 | |
| static float ps8[5] = {
 | |
| #endif
 | |
|   1.1420736694e+02, /* 0x42e46a2c */
 | |
|   3.6509309082e+03, /* 0x45642ee5 */
 | |
|   3.6956207031e+04, /* 0x47105c35 */
 | |
|   9.7602796875e+04, /* 0x47bea166 */
 | |
|   3.0804271484e+04, /* 0x46f0a88b */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
 | |
| #else
 | |
| static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
 | |
| #endif
 | |
|   1.3199052094e-11, /* 0x2d68333f */
 | |
|   1.1718749255e-01, /* 0x3defffff */
 | |
|   6.8027510643e+00, /* 0x40d9b023 */
 | |
|   1.0830818176e+02, /* 0x42d89dca */
 | |
|   5.1763616943e+02, /* 0x440168b7 */
 | |
|   5.2871520996e+02, /* 0x44042dc6 */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float ps5[5] = {
 | |
| #else
 | |
| static float ps5[5] = {
 | |
| #endif
 | |
|   5.9280597687e+01, /* 0x426d1f55 */
 | |
|   9.9140142822e+02, /* 0x4477d9b1 */
 | |
|   5.3532670898e+03, /* 0x45a74a23 */
 | |
|   7.8446904297e+03, /* 0x45f52586 */
 | |
|   1.5040468750e+03, /* 0x44bc0180 */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float pr3[6] = {
 | |
| #else
 | |
| static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
 | |
| #endif
 | |
|   3.0250391081e-09, /* 0x314fe10d */
 | |
|   1.1718686670e-01, /* 0x3defffab */
 | |
|   3.9329774380e+00, /* 0x407bb5e7 */
 | |
|   3.5119403839e+01, /* 0x420c7a45 */
 | |
|   9.1055007935e+01, /* 0x42b61c2a */
 | |
|   4.8559066772e+01, /* 0x42423c7c */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float ps3[5] = {
 | |
| #else
 | |
| static float ps3[5] = {
 | |
| #endif
 | |
|   3.4791309357e+01, /* 0x420b2a4d */
 | |
|   3.3676245117e+02, /* 0x43a86198 */
 | |
|   1.0468714600e+03, /* 0x4482dbe3 */
 | |
|   8.9081134033e+02, /* 0x445eb3ed */
 | |
|   1.0378793335e+02, /* 0x42cf936c */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
 | |
| #else
 | |
| static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
 | |
| #endif
 | |
|   1.0771083225e-07, /* 0x33e74ea8 */
 | |
|   1.1717621982e-01, /* 0x3deffa16 */
 | |
|   2.3685150146e+00, /* 0x401795c0 */
 | |
|   1.2242610931e+01, /* 0x4143e1bc */
 | |
|   1.7693971634e+01, /* 0x418d8d41 */
 | |
|   5.0735230446e+00, /* 0x40a25a4d */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float ps2[5] = {
 | |
| #else
 | |
| static float ps2[5] = {
 | |
| #endif
 | |
|   2.1436485291e+01, /* 0x41ab7dec */
 | |
|   1.2529022980e+02, /* 0x42fa9499 */
 | |
|   2.3227647400e+02, /* 0x436846c7 */
 | |
|   1.1767937469e+02, /* 0x42eb5bd7 */
 | |
|   8.3646392822e+00, /* 0x4105d590 */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	static float ponef(float x)
 | |
| #else
 | |
| 	static float ponef(x)
 | |
| 	float x;
 | |
| #endif
 | |
| {
 | |
| #ifdef __STDC__
 | |
| 	const float *p,*q;
 | |
| #else
 | |
| 	float *p,*q;
 | |
| #endif
 | |
| 	float z,r,s;
 | |
|         __int32_t ix;
 | |
| 	GET_FLOAT_WORD(ix,x);
 | |
| 	ix &= 0x7fffffff;
 | |
|         if(ix>=0x41000000)     {p = pr8; q= ps8;}
 | |
|         else if(ix>=0x40f71c58){p = pr5; q= ps5;}
 | |
|         else if(ix>=0x4036db68){p = pr3; q= ps3;}
 | |
|         else {p = pr2; q= ps2;}
 | |
|         z = one/(x*x);
 | |
|         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
 | |
|         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
 | |
|         return one+ r/s;
 | |
| }
 | |
| 		
 | |
| 
 | |
| /* For x >= 8, the asymptotic expansions of qone is
 | |
|  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x.
 | |
|  * We approximate qone by
 | |
|  * 	qone(x) = s*(0.375 + (R/S))
 | |
|  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
 | |
|  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12
 | |
|  * and
 | |
|  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
 | |
|  */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
 | |
| #else
 | |
| static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
 | |
| #endif
 | |
|   0.0000000000e+00, /* 0x00000000 */
 | |
|  -1.0253906250e-01, /* 0xbdd20000 */
 | |
|  -1.6271753311e+01, /* 0xc1822c8d */
 | |
|  -7.5960174561e+02, /* 0xc43de683 */
 | |
|  -1.1849806641e+04, /* 0xc639273a */
 | |
|  -4.8438511719e+04, /* 0xc73d3683 */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float qs8[6] = {
 | |
| #else
 | |
| static float qs8[6] = {
 | |
| #endif
 | |
|   1.6139537048e+02, /* 0x43216537 */
 | |
|   7.8253862305e+03, /* 0x45f48b17 */
 | |
|   1.3387534375e+05, /* 0x4802bcd6 */
 | |
|   7.1965775000e+05, /* 0x492fb29c */
 | |
|   6.6660125000e+05, /* 0x4922be94 */
 | |
|  -2.9449025000e+05, /* 0xc88fcb48 */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
 | |
| #else
 | |
| static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
 | |
| #endif
 | |
|  -2.0897993405e-11, /* 0xadb7d219 */
 | |
|  -1.0253904760e-01, /* 0xbdd1fffe */
 | |
|  -8.0564479828e+00, /* 0xc100e736 */
 | |
|  -1.8366960144e+02, /* 0xc337ab6b */
 | |
|  -1.3731937256e+03, /* 0xc4aba633 */
 | |
|  -2.6124443359e+03, /* 0xc523471c */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float qs5[6] = {
 | |
| #else
 | |
| static float qs5[6] = {
 | |
| #endif
 | |
|   8.1276550293e+01, /* 0x42a28d98 */
 | |
|   1.9917987061e+03, /* 0x44f8f98f */
 | |
|   1.7468484375e+04, /* 0x468878f8 */
 | |
|   4.9851425781e+04, /* 0x4742bb6d */
 | |
|   2.7948074219e+04, /* 0x46da5826 */
 | |
|  -4.7191835938e+03, /* 0xc5937978 */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float qr3[6] = {
 | |
| #else
 | |
| static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
 | |
| #endif
 | |
|  -5.0783124372e-09, /* 0xb1ae7d4f */
 | |
|  -1.0253783315e-01, /* 0xbdd1ff5b */
 | |
|  -4.6101160049e+00, /* 0xc0938612 */
 | |
|  -5.7847221375e+01, /* 0xc267638e */
 | |
|  -2.2824453735e+02, /* 0xc3643e9a */
 | |
|  -2.1921012878e+02, /* 0xc35b35cb */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float qs3[6] = {
 | |
| #else
 | |
| static float qs3[6] = {
 | |
| #endif
 | |
|   4.7665153503e+01, /* 0x423ea91e */
 | |
|   6.7386511230e+02, /* 0x4428775e */
 | |
|   3.3801528320e+03, /* 0x45534272 */
 | |
|   5.5477290039e+03, /* 0x45ad5dd5 */
 | |
|   1.9031191406e+03, /* 0x44ede3d0 */
 | |
|  -1.3520118713e+02, /* 0xc3073381 */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
 | |
| #else
 | |
| static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
 | |
| #endif
 | |
|  -1.7838172539e-07, /* 0xb43f8932 */
 | |
|  -1.0251704603e-01, /* 0xbdd1f475 */
 | |
|  -2.7522056103e+00, /* 0xc0302423 */
 | |
|  -1.9663616180e+01, /* 0xc19d4f16 */
 | |
|  -4.2325313568e+01, /* 0xc2294d1f */
 | |
|  -2.1371921539e+01, /* 0xc1aaf9b2 */
 | |
| };
 | |
| #ifdef __STDC__
 | |
| static const float qs2[6] = {
 | |
| #else
 | |
| static float qs2[6] = {
 | |
| #endif
 | |
|   2.9533363342e+01, /* 0x41ec4454 */
 | |
|   2.5298155212e+02, /* 0x437cfb47 */
 | |
|   7.5750280762e+02, /* 0x443d602e */
 | |
|   7.3939318848e+02, /* 0x4438d92a */
 | |
|   1.5594900513e+02, /* 0x431bf2f2 */
 | |
|  -4.9594988823e+00, /* 0xc09eb437 */
 | |
| };
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	static float qonef(float x)
 | |
| #else
 | |
| 	static float qonef(x)
 | |
| 	float x;
 | |
| #endif
 | |
| {
 | |
| #ifdef __STDC__
 | |
| 	const float *p,*q;
 | |
| #else
 | |
| 	float *p,*q;
 | |
| #endif
 | |
| 	float  s,r,z;
 | |
| 	__int32_t ix;
 | |
| 	GET_FLOAT_WORD(ix,x);
 | |
| 	ix &= 0x7fffffff;
 | |
| 	if(ix>=0x40200000)     {p = qr8; q= qs8;}
 | |
| 	else if(ix>=0x40f71c58){p = qr5; q= qs5;}
 | |
| 	else if(ix>=0x4036db68){p = qr3; q= qs3;}
 | |
|       else {p = qr2; q= qs2;}
 | |
| 	z = one/(x*x);
 | |
| 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
 | |
| 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
 | |
| 	return ((float).375 + r/s)/x;
 | |
| }
 |