182 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C
		
	
	
	
 | 
						|
/* @(#)s_atan.c 5.1 93/09/24 */
 | 
						|
/*
 | 
						|
 * ====================================================
 | 
						|
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
						|
 *
 | 
						|
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 | 
						|
 * Permission to use, copy, modify, and distribute this
 | 
						|
 * software is freely granted, provided that this notice 
 | 
						|
 * is preserved.
 | 
						|
 * ====================================================
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
FUNCTION
 | 
						|
        <<atan>>, <<atanf>>---arc tangent
 | 
						|
 | 
						|
INDEX
 | 
						|
   atan
 | 
						|
INDEX
 | 
						|
   atanf
 | 
						|
 | 
						|
ANSI_SYNOPSIS
 | 
						|
        #include <math.h>
 | 
						|
        double atan(double <[x]>);
 | 
						|
        float atanf(float <[x]>);
 | 
						|
 | 
						|
TRAD_SYNOPSIS
 | 
						|
        #include <math.h>
 | 
						|
        double atan(<[x]>);
 | 
						|
        double <[x]>;
 | 
						|
 | 
						|
        float atanf(<[x]>);
 | 
						|
        float <[x]>;
 | 
						|
 | 
						|
DESCRIPTION
 | 
						|
 | 
						|
<<atan>> computes the inverse tangent (arc tangent) of the input value.
 | 
						|
 | 
						|
<<atanf>> is identical to <<atan>>, save that it operates on <<floats>>.
 | 
						|
 | 
						|
RETURNS
 | 
						|
@ifnottex
 | 
						|
<<atan>> returns a value in radians, in the range of -pi/2 to pi/2.
 | 
						|
@end ifnottex
 | 
						|
@tex
 | 
						|
<<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$.
 | 
						|
@end tex
 | 
						|
 | 
						|
PORTABILITY
 | 
						|
<<atan>> is ANSI C.  <<atanf>> is an extension.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
/* atan(x)
 | 
						|
 * Method
 | 
						|
 *   1. Reduce x to positive by atan(x) = -atan(-x).
 | 
						|
 *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
 | 
						|
 *      is further reduced to one of the following intervals and the
 | 
						|
 *      arctangent of t is evaluated by the corresponding formula:
 | 
						|
 *
 | 
						|
 *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
 | 
						|
 *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
 | 
						|
 *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
 | 
						|
 *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
 | 
						|
 *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
 | 
						|
 *
 | 
						|
 * Constants:
 | 
						|
 * The hexadecimal values are the intended ones for the following 
 | 
						|
 * constants. The decimal values may be used, provided that the 
 | 
						|
 * compiler will convert from decimal to binary accurately enough 
 | 
						|
 * to produce the hexadecimal values shown.
 | 
						|
 */
 | 
						|
 | 
						|
#include "fdlibm.h"
 | 
						|
 | 
						|
#ifndef _DOUBLE_IS_32BITS
 | 
						|
 | 
						|
#ifdef __STDC__
 | 
						|
static const double atanhi[] = {
 | 
						|
#else
 | 
						|
static double atanhi[] = {
 | 
						|
#endif
 | 
						|
  4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
 | 
						|
  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
 | 
						|
  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
 | 
						|
  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
 | 
						|
};
 | 
						|
 | 
						|
#ifdef __STDC__
 | 
						|
static const double atanlo[] = {
 | 
						|
#else
 | 
						|
static double atanlo[] = {
 | 
						|
#endif
 | 
						|
  2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
 | 
						|
  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
 | 
						|
  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
 | 
						|
  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
 | 
						|
};
 | 
						|
 | 
						|
#ifdef __STDC__
 | 
						|
static const double aT[] = {
 | 
						|
#else
 | 
						|
static double aT[] = {
 | 
						|
#endif
 | 
						|
  3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
 | 
						|
 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
 | 
						|
  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
 | 
						|
 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
 | 
						|
  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
 | 
						|
 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
 | 
						|
  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
 | 
						|
 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
 | 
						|
  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
 | 
						|
 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
 | 
						|
  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
 | 
						|
};
 | 
						|
 | 
						|
#ifdef __STDC__
 | 
						|
	static const double 
 | 
						|
#else
 | 
						|
	static double 
 | 
						|
#endif
 | 
						|
one   = 1.0,
 | 
						|
huge   = 1.0e300;
 | 
						|
 | 
						|
#ifdef __STDC__
 | 
						|
	double atan(double x)
 | 
						|
#else
 | 
						|
	double atan(x)
 | 
						|
	double x;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	double w,s1,s2,z;
 | 
						|
	__int32_t ix,hx,id;
 | 
						|
 | 
						|
	GET_HIGH_WORD(hx,x);
 | 
						|
	ix = hx&0x7fffffff;
 | 
						|
	if(ix>=0x44100000) {	/* if |x| >= 2^66 */
 | 
						|
	    __uint32_t low;
 | 
						|
	    GET_LOW_WORD(low,x);
 | 
						|
	    if(ix>0x7ff00000||
 | 
						|
		(ix==0x7ff00000&&(low!=0)))
 | 
						|
		return x+x;		/* NaN */
 | 
						|
	    if(hx>0) return  atanhi[3]+atanlo[3];
 | 
						|
	    else     return -atanhi[3]-atanlo[3];
 | 
						|
	} if (ix < 0x3fdc0000) {	/* |x| < 0.4375 */
 | 
						|
	    if (ix < 0x3e200000) {	/* |x| < 2^-29 */
 | 
						|
		if(huge+x>one) return x;	/* raise inexact */
 | 
						|
	    }
 | 
						|
	    id = -1;
 | 
						|
	} else {
 | 
						|
	x = fabs(x);
 | 
						|
	if (ix < 0x3ff30000) {		/* |x| < 1.1875 */
 | 
						|
	    if (ix < 0x3fe60000) {	/* 7/16 <=|x|<11/16 */
 | 
						|
		id = 0; x = (2.0*x-one)/(2.0+x); 
 | 
						|
	    } else {			/* 11/16<=|x|< 19/16 */
 | 
						|
		id = 1; x  = (x-one)/(x+one); 
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    if (ix < 0x40038000) {	/* |x| < 2.4375 */
 | 
						|
		id = 2; x  = (x-1.5)/(one+1.5*x);
 | 
						|
	    } else {			/* 2.4375 <= |x| < 2^66 */
 | 
						|
		id = 3; x  = -1.0/x;
 | 
						|
	    }
 | 
						|
	}}
 | 
						|
    /* end of argument reduction */
 | 
						|
	z = x*x;
 | 
						|
	w = z*z;
 | 
						|
    /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
 | 
						|
	s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
 | 
						|
	s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
 | 
						|
	if (id<0) return x - x*(s1+s2);
 | 
						|
	else {
 | 
						|
	    z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
 | 
						|
	    return (hx<0)? -z:z;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#endif /* _DOUBLE_IS_32BITS */
 |