207 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			207 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
| /* ef_jn.c -- float version of e_jn.c.
 | |
|  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float
 | |
| #else
 | |
| static float
 | |
| #endif
 | |
| two   =  2.0000000000e+00, /* 0x40000000 */
 | |
| one   =  1.0000000000e+00; /* 0x3F800000 */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const float zero  =  0.0000000000e+00;
 | |
| #else
 | |
| static float zero  =  0.0000000000e+00;
 | |
| #endif
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	float __ieee754_jnf(int n, float x)
 | |
| #else
 | |
| 	float __ieee754_jnf(n,x)
 | |
| 	int n; float x;
 | |
| #endif
 | |
| {
 | |
| 	__int32_t i,hx,ix, sgn;
 | |
| 	float a, b, temp, di;
 | |
| 	float z, w;
 | |
| 
 | |
|     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
 | |
|      * Thus, J(-n,x) = J(n,-x)
 | |
|      */
 | |
| 	GET_FLOAT_WORD(hx,x);
 | |
| 	ix = 0x7fffffff&hx;
 | |
|     /* if J(n,NaN) is NaN */
 | |
| 	if(FLT_UWORD_IS_NAN(ix)) return x+x;
 | |
| 	if(n<0){		
 | |
| 		n = -n;
 | |
| 		x = -x;
 | |
| 		hx ^= 0x80000000;
 | |
| 	}
 | |
| 	if(n==0) return(__ieee754_j0f(x));
 | |
| 	if(n==1) return(__ieee754_j1f(x));
 | |
| 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
 | |
| 	x = fabsf(x);
 | |
| 	if(FLT_UWORD_IS_ZERO(ix)||FLT_UWORD_IS_INFINITE(ix))
 | |
| 	    b = zero;
 | |
| 	else if((float)n<=x) {   
 | |
| 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
 | |
| 	    a = __ieee754_j0f(x);
 | |
| 	    b = __ieee754_j1f(x);
 | |
| 	    for(i=1;i<n;i++){
 | |
| 		temp = b;
 | |
| 		b = b*((float)(i+i)/x) - a; /* avoid underflow */
 | |
| 		a = temp;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    if(ix<0x30800000) {	/* x < 2**-29 */
 | |
|     /* x is tiny, return the first Taylor expansion of J(n,x) 
 | |
|      * J(n,x) = 1/n!*(x/2)^n  - ...
 | |
|      */
 | |
| 		if(n>33)	/* underflow */
 | |
| 		    b = zero;
 | |
| 		else {
 | |
| 		    temp = x*(float)0.5; b = temp;
 | |
| 		    for (a=one,i=2;i<=n;i++) {
 | |
| 			a *= (float)i;		/* a = n! */
 | |
| 			b *= temp;		/* b = (x/2)^n */
 | |
| 		    }
 | |
| 		    b = b/a;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		/* use backward recurrence */
 | |
| 		/* 			x      x^2      x^2       
 | |
| 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
 | |
| 		 *			2n  - 2(n+1) - 2(n+2)
 | |
| 		 *
 | |
| 		 * 			1      1        1       
 | |
| 		 *  (for large x)   =  ----  ------   ------   .....
 | |
| 		 *			2n   2(n+1)   2(n+2)
 | |
| 		 *			-- - ------ - ------ - 
 | |
| 		 *			 x     x         x
 | |
| 		 *
 | |
| 		 * Let w = 2n/x and h=2/x, then the above quotient
 | |
| 		 * is equal to the continued fraction:
 | |
| 		 *		    1
 | |
| 		 *	= -----------------------
 | |
| 		 *		       1
 | |
| 		 *	   w - -----------------
 | |
| 		 *			  1
 | |
| 		 * 	        w+h - ---------
 | |
| 		 *		       w+2h - ...
 | |
| 		 *
 | |
| 		 * To determine how many terms needed, let
 | |
| 		 * Q(0) = w, Q(1) = w(w+h) - 1,
 | |
| 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
 | |
| 		 * When Q(k) > 1e4	good for single 
 | |
| 		 * When Q(k) > 1e9	good for double 
 | |
| 		 * When Q(k) > 1e17	good for quadruple 
 | |
| 		 */
 | |
| 	    /* determine k */
 | |
| 		float t,v;
 | |
| 		float q0,q1,h,tmp; __int32_t k,m;
 | |
| 		w  = (n+n)/(float)x; h = (float)2.0/(float)x;
 | |
| 		q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
 | |
| 		while(q1<(float)1.0e9) {
 | |
| 			k += 1; z += h;
 | |
| 			tmp = z*q1 - q0;
 | |
| 			q0 = q1;
 | |
| 			q1 = tmp;
 | |
| 		}
 | |
| 		m = n+n;
 | |
| 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
 | |
| 		a = t;
 | |
| 		b = one;
 | |
| 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
 | |
| 		 *  Hence, if n*(log(2n/x)) > ...
 | |
| 		 *  single 8.8722839355e+01
 | |
| 		 *  double 7.09782712893383973096e+02
 | |
| 		 *  long double 1.1356523406294143949491931077970765006170e+04
 | |
| 		 *  then recurrent value may overflow and the result is 
 | |
| 		 *  likely underflow to zero
 | |
| 		 */
 | |
| 		tmp = n;
 | |
| 		v = two/x;
 | |
| 		tmp = tmp*__ieee754_logf(fabsf(v*tmp));
 | |
| 		if(tmp<(float)8.8721679688e+01) {
 | |
| 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
 | |
| 		        temp = b;
 | |
| 			b *= di;
 | |
| 			b  = b/x - a;
 | |
| 		        a = temp;
 | |
| 			di -= two;
 | |
| 	     	    }
 | |
| 		} else {
 | |
| 	    	    for(i=n-1,di=(float)(i+i);i>0;i--){
 | |
| 		        temp = b;
 | |
| 			b *= di;
 | |
| 			b  = b/x - a;
 | |
| 		        a = temp;
 | |
| 			di -= two;
 | |
| 		    /* scale b to avoid spurious overflow */
 | |
| 			if(b>(float)1e10) {
 | |
| 			    a /= b;
 | |
| 			    t /= b;
 | |
| 			    b  = one;
 | |
| 			}
 | |
| 	     	    }
 | |
| 		}
 | |
| 	    	b = (t*__ieee754_j0f(x)/b);
 | |
| 	    }
 | |
| 	}
 | |
| 	if(sgn==1) return -b; else return b;
 | |
| }
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	float __ieee754_ynf(int n, float x) 
 | |
| #else
 | |
| 	float __ieee754_ynf(n,x) 
 | |
| 	int n; float x;
 | |
| #endif
 | |
| {
 | |
| 	__int32_t i,hx,ix,ib;
 | |
| 	__int32_t sign;
 | |
| 	float a, b, temp;
 | |
| 
 | |
| 	GET_FLOAT_WORD(hx,x);
 | |
| 	ix = 0x7fffffff&hx;
 | |
|     /* if Y(n,NaN) is NaN */
 | |
| 	if(FLT_UWORD_IS_NAN(ix)) return x+x;
 | |
| 	if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
 | |
| 	if(hx<0) return zero/zero;
 | |
| 	sign = 1;
 | |
| 	if(n<0){
 | |
| 		n = -n;
 | |
| 		sign = 1 - ((n&1)<<1);
 | |
| 	}
 | |
| 	if(n==0) return(__ieee754_y0f(x));
 | |
| 	if(n==1) return(sign*__ieee754_y1f(x));
 | |
| 	if(FLT_UWORD_IS_INFINITE(ix)) return zero;
 | |
| 
 | |
| 	a = __ieee754_y0f(x);
 | |
| 	b = __ieee754_y1f(x);
 | |
| 	/* quit if b is -inf */
 | |
| 	GET_FLOAT_WORD(ib,b);
 | |
| 	for(i=1;i<n&&ib!=0xff800000;i++){ 
 | |
| 	    temp = b;
 | |
| 	    b = ((float)(i+i)/x)*b - a;
 | |
| 	    GET_FLOAT_WORD(ib,b);
 | |
| 	    a = temp;
 | |
| 	}
 | |
| 	if(sign>0) return b; else return -b;
 | |
| }
 |