366 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			366 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
| 
 | |
| /* @(#)fdlibm.h 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /* REDHAT LOCAL: Include files.  */
 | |
| #include <math.h>
 | |
| #include <sys/types.h>
 | |
| #include <machine/ieeefp.h>
 | |
| 
 | |
| /* REDHAT LOCAL: Default to XOPEN_MODE.  */
 | |
| #define _XOPEN_MODE
 | |
| 
 | |
| /* Most routines need to check whether a float is finite, infinite, or not a
 | |
|    number, and many need to know whether the result of an operation will
 | |
|    overflow.  These conditions depend on whether the largest exponent is
 | |
|    used for NaNs & infinities, or whether it's used for finite numbers.  The
 | |
|    macros below wrap up that kind of information:
 | |
| 
 | |
|    FLT_UWORD_IS_FINITE(X)
 | |
| 	True if a positive float with bitmask X is finite.
 | |
| 
 | |
|    FLT_UWORD_IS_NAN(X)
 | |
| 	True if a positive float with bitmask X is not a number.
 | |
| 
 | |
|    FLT_UWORD_IS_INFINITE(X)
 | |
| 	True if a positive float with bitmask X is +infinity.
 | |
| 
 | |
|    FLT_UWORD_MAX
 | |
| 	The bitmask of FLT_MAX.
 | |
| 
 | |
|    FLT_UWORD_HALF_MAX
 | |
| 	The bitmask of FLT_MAX/2.
 | |
| 
 | |
|    FLT_UWORD_EXP_MAX
 | |
| 	The bitmask of the largest finite exponent (129 if the largest
 | |
| 	exponent is used for finite numbers, 128 otherwise).
 | |
| 
 | |
|    FLT_UWORD_LOG_MAX
 | |
| 	The bitmask of log(FLT_MAX), rounded down.  This value is the largest
 | |
| 	input that can be passed to exp() without producing overflow.
 | |
| 
 | |
|    FLT_UWORD_LOG_2MAX
 | |
| 	The bitmask of log(2*FLT_MAX), rounded down.  This value is the
 | |
| 	largest input than can be passed to cosh() without producing
 | |
| 	overflow.
 | |
| 
 | |
|    FLT_LARGEST_EXP
 | |
| 	The largest biased exponent that can be used for finite numbers
 | |
| 	(255 if the largest exponent is used for finite numbers, 254
 | |
| 	otherwise) */
 | |
| 
 | |
| #ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL
 | |
| #define FLT_UWORD_IS_FINITE(x) 1
 | |
| #define FLT_UWORD_IS_NAN(x) 0
 | |
| #define FLT_UWORD_IS_INFINITE(x) 0
 | |
| #define FLT_UWORD_MAX 0x7fffffff
 | |
| #define FLT_UWORD_EXP_MAX 0x43010000
 | |
| #define FLT_UWORD_LOG_MAX 0x42b2d4fc
 | |
| #define FLT_UWORD_LOG_2MAX 0x42b437e0
 | |
| #define HUGE ((float)0X1.FFFFFEP128)
 | |
| #else
 | |
| #define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
 | |
| #define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)
 | |
| #define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)
 | |
| #define FLT_UWORD_MAX 0x7f7fffff
 | |
| #define FLT_UWORD_EXP_MAX 0x43000000
 | |
| #define FLT_UWORD_LOG_MAX 0x42b17217
 | |
| #define FLT_UWORD_LOG_2MAX 0x42b2d4fc
 | |
| #define HUGE ((float)3.40282346638528860e+38)
 | |
| #endif
 | |
| #define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1<<23))
 | |
| #define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)
 | |
| 
 | |
| /* Many routines check for zero and subnormal numbers.  Such things depend
 | |
|    on whether the target supports denormals or not:
 | |
| 
 | |
|    FLT_UWORD_IS_ZERO(X)
 | |
| 	True if a positive float with bitmask X is +0.	Without denormals,
 | |
| 	any float with a zero exponent is a +0 representation.	With
 | |
| 	denormals, the only +0 representation is a 0 bitmask.
 | |
| 
 | |
|    FLT_UWORD_IS_SUBNORMAL(X)
 | |
| 	True if a non-zero positive float with bitmask X is subnormal.
 | |
| 	(Routines should check for zeros first.)
 | |
| 
 | |
|    FLT_UWORD_MIN
 | |
| 	The bitmask of the smallest float above +0.  Call this number
 | |
| 	REAL_FLT_MIN...
 | |
| 
 | |
|    FLT_UWORD_EXP_MIN
 | |
| 	The bitmask of the float representation of REAL_FLT_MIN's exponent.
 | |
| 
 | |
|    FLT_UWORD_LOG_MIN
 | |
| 	The bitmask of |log(REAL_FLT_MIN)|, rounding down.
 | |
| 
 | |
|    FLT_SMALLEST_EXP
 | |
| 	REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,
 | |
| 	-22 if they are).
 | |
| */
 | |
| 
 | |
| #ifdef _FLT_NO_DENORMALS
 | |
| #define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)
 | |
| #define FLT_UWORD_IS_SUBNORMAL(x) 0
 | |
| #define FLT_UWORD_MIN 0x00800000
 | |
| #define FLT_UWORD_EXP_MIN 0x42fc0000
 | |
| #define FLT_UWORD_LOG_MIN 0x42aeac50
 | |
| #define FLT_SMALLEST_EXP 1
 | |
| #else
 | |
| #define FLT_UWORD_IS_ZERO(x) ((x)==0)
 | |
| #define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)
 | |
| #define FLT_UWORD_MIN 0x00000001
 | |
| #define FLT_UWORD_EXP_MIN 0x43160000
 | |
| #define FLT_UWORD_LOG_MIN 0x42cff1b5
 | |
| #define FLT_SMALLEST_EXP -22
 | |
| #endif
 | |
| 
 | |
| #ifdef __STDC__
 | |
| #undef __P
 | |
| #define	__P(p)	p
 | |
| #else
 | |
| #define	__P(p)	()
 | |
| #endif
 | |
| 
 | |
| /* 
 | |
|  * set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
 | |
|  * (one may replace the following line by "#include <values.h>")
 | |
|  */
 | |
| 
 | |
| #define X_TLOSS		1.41484755040568800000e+16 
 | |
| 
 | |
| /* Functions that are not documented, and are not in <math.h>.  */
 | |
| 
 | |
| extern double logb __P((double));
 | |
| #ifdef _SCALB_INT
 | |
| extern double scalb __P((double, int));
 | |
| #else
 | |
| extern double scalb __P((double, double));
 | |
| #endif
 | |
| extern double significand __P((double));
 | |
| 
 | |
| /* ieee style elementary functions */
 | |
| extern double __ieee754_sqrt __P((double));			
 | |
| extern double __ieee754_acos __P((double));			
 | |
| extern double __ieee754_acosh __P((double));			
 | |
| extern double __ieee754_log __P((double));			
 | |
| extern double __ieee754_atanh __P((double));			
 | |
| extern double __ieee754_asin __P((double));			
 | |
| extern double __ieee754_atan2 __P((double,double));			
 | |
| extern double __ieee754_exp __P((double));
 | |
| extern double __ieee754_cosh __P((double));
 | |
| extern double __ieee754_fmod __P((double,double));
 | |
| extern double __ieee754_pow __P((double,double));
 | |
| extern double __ieee754_lgamma_r __P((double,int *));
 | |
| extern double __ieee754_gamma_r __P((double,int *));
 | |
| extern double __ieee754_log10 __P((double));
 | |
| extern double __ieee754_sinh __P((double));
 | |
| extern double __ieee754_hypot __P((double,double));
 | |
| extern double __ieee754_j0 __P((double));
 | |
| extern double __ieee754_j1 __P((double));
 | |
| extern double __ieee754_y0 __P((double));
 | |
| extern double __ieee754_y1 __P((double));
 | |
| extern double __ieee754_jn __P((int,double));
 | |
| extern double __ieee754_yn __P((int,double));
 | |
| extern double __ieee754_remainder __P((double,double));
 | |
| extern __int32_t __ieee754_rem_pio2 __P((double,double*));
 | |
| #ifdef _SCALB_INT
 | |
| extern double __ieee754_scalb __P((double,int));
 | |
| #else
 | |
| extern double __ieee754_scalb __P((double,double));
 | |
| #endif
 | |
| 
 | |
| /* fdlibm kernel function */
 | |
| extern double __kernel_standard __P((double,double,int));
 | |
| extern double __kernel_sin __P((double,double,int));
 | |
| extern double __kernel_cos __P((double,double));
 | |
| extern double __kernel_tan __P((double,double,int));
 | |
| extern int    __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*));
 | |
| 
 | |
| /* Undocumented float functions.  */
 | |
| extern float logbf __P((float));
 | |
| #ifdef _SCALB_INT
 | |
| extern float scalbf __P((float, int));
 | |
| #else
 | |
| extern float scalbf __P((float, float));
 | |
| #endif
 | |
| extern float significandf __P((float));
 | |
| 
 | |
| /* ieee style elementary float functions */
 | |
| extern float __ieee754_sqrtf __P((float));			
 | |
| extern float __ieee754_acosf __P((float));			
 | |
| extern float __ieee754_acoshf __P((float));			
 | |
| extern float __ieee754_logf __P((float));			
 | |
| extern float __ieee754_atanhf __P((float));			
 | |
| extern float __ieee754_asinf __P((float));			
 | |
| extern float __ieee754_atan2f __P((float,float));			
 | |
| extern float __ieee754_expf __P((float));
 | |
| extern float __ieee754_coshf __P((float));
 | |
| extern float __ieee754_fmodf __P((float,float));
 | |
| extern float __ieee754_powf __P((float,float));
 | |
| extern float __ieee754_lgammaf_r __P((float,int *));
 | |
| extern float __ieee754_gammaf_r __P((float,int *));
 | |
| extern float __ieee754_log10f __P((float));
 | |
| extern float __ieee754_sinhf __P((float));
 | |
| extern float __ieee754_hypotf __P((float,float));
 | |
| extern float __ieee754_j0f __P((float));
 | |
| extern float __ieee754_j1f __P((float));
 | |
| extern float __ieee754_y0f __P((float));
 | |
| extern float __ieee754_y1f __P((float));
 | |
| extern float __ieee754_jnf __P((int,float));
 | |
| extern float __ieee754_ynf __P((int,float));
 | |
| extern float __ieee754_remainderf __P((float,float));
 | |
| extern __int32_t __ieee754_rem_pio2f __P((float,float*));
 | |
| #ifdef _SCALB_INT
 | |
| extern float __ieee754_scalbf __P((float,int));
 | |
| #else
 | |
| extern float __ieee754_scalbf __P((float,float));
 | |
| #endif
 | |
| 
 | |
| /* float versions of fdlibm kernel functions */
 | |
| extern float __kernel_sinf __P((float,float,int));
 | |
| extern float __kernel_cosf __P((float,float));
 | |
| extern float __kernel_tanf __P((float,float,int));
 | |
| extern int   __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*));
 | |
| 
 | |
| /* The original code used statements like
 | |
| 	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
 | |
| 	ix0 = *(n0+(int*)&x);			* high word of x *
 | |
| 	ix1 = *((1-n0)+(int*)&x);		* low word of x *
 | |
|    to dig two 32 bit words out of the 64 bit IEEE floating point
 | |
|    value.  That is non-ANSI, and, moreover, the gcc instruction
 | |
|    scheduler gets it wrong.  We instead use the following macros.
 | |
|    Unlike the original code, we determine the endianness at compile
 | |
|    time, not at run time; I don't see much benefit to selecting
 | |
|    endianness at run time.  */
 | |
| 
 | |
| #ifndef __IEEE_BIG_ENDIAN
 | |
| #ifndef __IEEE_LITTLE_ENDIAN
 | |
|  #error Must define endianness
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* A union which permits us to convert between a double and two 32 bit
 | |
|    ints.  */
 | |
| 
 | |
| #ifdef __IEEE_BIG_ENDIAN
 | |
| 
 | |
| typedef union 
 | |
| {
 | |
|   double value;
 | |
|   struct 
 | |
|   {
 | |
|     __uint32_t msw;
 | |
|     __uint32_t lsw;
 | |
|   } parts;
 | |
| } ieee_double_shape_type;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef __IEEE_LITTLE_ENDIAN
 | |
| 
 | |
| typedef union 
 | |
| {
 | |
|   double value;
 | |
|   struct 
 | |
|   {
 | |
|     __uint32_t lsw;
 | |
|     __uint32_t msw;
 | |
|   } parts;
 | |
| } ieee_double_shape_type;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Get two 32 bit ints from a double.  */
 | |
| 
 | |
| #define EXTRACT_WORDS(ix0,ix1,d)				\
 | |
| do {								\
 | |
|   ieee_double_shape_type ew_u;					\
 | |
|   ew_u.value = (d);						\
 | |
|   (ix0) = ew_u.parts.msw;					\
 | |
|   (ix1) = ew_u.parts.lsw;					\
 | |
| } while (0)
 | |
| 
 | |
| /* Get the more significant 32 bit int from a double.  */
 | |
| 
 | |
| #define GET_HIGH_WORD(i,d)					\
 | |
| do {								\
 | |
|   ieee_double_shape_type gh_u;					\
 | |
|   gh_u.value = (d);						\
 | |
|   (i) = gh_u.parts.msw;						\
 | |
| } while (0)
 | |
| 
 | |
| /* Get the less significant 32 bit int from a double.  */
 | |
| 
 | |
| #define GET_LOW_WORD(i,d)					\
 | |
| do {								\
 | |
|   ieee_double_shape_type gl_u;					\
 | |
|   gl_u.value = (d);						\
 | |
|   (i) = gl_u.parts.lsw;						\
 | |
| } while (0)
 | |
| 
 | |
| /* Set a double from two 32 bit ints.  */
 | |
| 
 | |
| #define INSERT_WORDS(d,ix0,ix1)					\
 | |
| do {								\
 | |
|   ieee_double_shape_type iw_u;					\
 | |
|   iw_u.parts.msw = (ix0);					\
 | |
|   iw_u.parts.lsw = (ix1);					\
 | |
|   (d) = iw_u.value;						\
 | |
| } while (0)
 | |
| 
 | |
| /* Set the more significant 32 bits of a double from an int.  */
 | |
| 
 | |
| #define SET_HIGH_WORD(d,v)					\
 | |
| do {								\
 | |
|   ieee_double_shape_type sh_u;					\
 | |
|   sh_u.value = (d);						\
 | |
|   sh_u.parts.msw = (v);						\
 | |
|   (d) = sh_u.value;						\
 | |
| } while (0)
 | |
| 
 | |
| /* Set the less significant 32 bits of a double from an int.  */
 | |
| 
 | |
| #define SET_LOW_WORD(d,v)					\
 | |
| do {								\
 | |
|   ieee_double_shape_type sl_u;					\
 | |
|   sl_u.value = (d);						\
 | |
|   sl_u.parts.lsw = (v);						\
 | |
|   (d) = sl_u.value;						\
 | |
| } while (0)
 | |
| 
 | |
| /* A union which permits us to convert between a float and a 32 bit
 | |
|    int.  */
 | |
| 
 | |
| typedef union
 | |
| {
 | |
|   float value;
 | |
|   __uint32_t word;
 | |
| } ieee_float_shape_type;
 | |
| 
 | |
| /* Get a 32 bit int from a float.  */
 | |
| 
 | |
| #define GET_FLOAT_WORD(i,d)					\
 | |
| do {								\
 | |
|   ieee_float_shape_type gf_u;					\
 | |
|   gf_u.value = (d);						\
 | |
|   (i) = gf_u.word;						\
 | |
| } while (0)
 | |
| 
 | |
| /* Set a float from a 32 bit int.  */
 | |
| 
 | |
| #define SET_FLOAT_WORD(d,i)					\
 | |
| do {								\
 | |
|   ieee_float_shape_type sf_u;					\
 | |
|   sf_u.word = (i);						\
 | |
|   (d) = sf_u.value;						\
 | |
| } while (0)
 |