5083 lines
		
	
	
		
			154 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			5083 lines
		
	
	
		
			154 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Malloc implementation for multiple threads without lock contention.
 | ||
|    Copyright (C) 1996-2001, 2002 Free Software Foundation, Inc.
 | ||
|    This file is part of the GNU C Library.
 | ||
|    Contributed by Wolfram Gloger <wmglo@dent.med.uni-muenchen.de>
 | ||
|    and Doug Lea <dl@cs.oswego.edu>, 1996.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Lesser General Public
 | ||
|    License as published by the Free Software Foundation; either
 | ||
|    version 2.1 of the License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Lesser General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Lesser General Public
 | ||
|    License along with the GNU C Library; if not, write to the Free
 | ||
|    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
 | ||
|    02111-1307 USA.  */
 | ||
| 
 | ||
| /* $Id$
 | ||
| 
 | ||
|   This work is mainly derived from malloc-2.6.4 by Doug Lea
 | ||
|   <dl@cs.oswego.edu>, which is available from:
 | ||
| 
 | ||
|                  ftp://g.oswego.edu/pub/misc/malloc.c
 | ||
| 
 | ||
|   Most of the original comments are reproduced in the code below.
 | ||
| 
 | ||
| * Why use this malloc?
 | ||
| 
 | ||
|   This is not the fastest, most space-conserving, most portable, or
 | ||
|   most tunable malloc ever written. However it is among the fastest
 | ||
|   while also being among the most space-conserving, portable and tunable.
 | ||
|   Consistent balance across these factors results in a good general-purpose
 | ||
|   allocator. For a high-level description, see
 | ||
|      http://g.oswego.edu/dl/html/malloc.html
 | ||
| 
 | ||
|   On many systems, the standard malloc implementation is by itself not
 | ||
|   thread-safe, and therefore wrapped with a single global lock around
 | ||
|   all malloc-related functions.  In some applications, especially with
 | ||
|   multiple available processors, this can lead to contention problems
 | ||
|   and bad performance.  This malloc version was designed with the goal
 | ||
|   to avoid waiting for locks as much as possible.  Statistics indicate
 | ||
|   that this goal is achieved in many cases.
 | ||
| 
 | ||
| * Synopsis of public routines
 | ||
| 
 | ||
|   (Much fuller descriptions are contained in the program documentation below.)
 | ||
| 
 | ||
|   ptmalloc_init();
 | ||
|      Initialize global configuration.  When compiled for multiple threads,
 | ||
|      this function must be called once before any other function in the
 | ||
|      package.  It is not required otherwise.  It is called automatically
 | ||
|      in the Linux/GNU C libray or when compiling with MALLOC_HOOKS.
 | ||
|   malloc(size_t n);
 | ||
|      Return a pointer to a newly allocated chunk of at least n bytes, or null
 | ||
|      if no space is available.
 | ||
|   free(Void_t* p);
 | ||
|      Release the chunk of memory pointed to by p, or no effect if p is null.
 | ||
|   realloc(Void_t* p, size_t n);
 | ||
|      Return a pointer to a chunk of size n that contains the same data
 | ||
|      as does chunk p up to the minimum of (n, p's size) bytes, or null
 | ||
|      if no space is available. The returned pointer may or may not be
 | ||
|      the same as p. If p is null, equivalent to malloc.  Unless the
 | ||
|      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
 | ||
|      size argument of zero (re)allocates a minimum-sized chunk.
 | ||
|   memalign(size_t alignment, size_t n);
 | ||
|      Return a pointer to a newly allocated chunk of n bytes, aligned
 | ||
|      in accord with the alignment argument, which must be a power of
 | ||
|      two.
 | ||
|   valloc(size_t n);
 | ||
|      Equivalent to memalign(pagesize, n), where pagesize is the page
 | ||
|      size of the system (or as near to this as can be figured out from
 | ||
|      all the includes/defines below.)
 | ||
|   pvalloc(size_t n);
 | ||
|      Equivalent to valloc(minimum-page-that-holds(n)), that is,
 | ||
|      round up n to nearest pagesize.
 | ||
|   calloc(size_t unit, size_t quantity);
 | ||
|      Returns a pointer to quantity * unit bytes, with all locations
 | ||
|      set to zero.
 | ||
|   cfree(Void_t* p);
 | ||
|      Equivalent to free(p).
 | ||
|   malloc_trim(size_t pad);
 | ||
|      Release all but pad bytes of freed top-most memory back
 | ||
|      to the system. Return 1 if successful, else 0.
 | ||
|   malloc_usable_size(Void_t* p);
 | ||
|      Report the number usable allocated bytes associated with allocated
 | ||
|      chunk p. This may or may not report more bytes than were requested,
 | ||
|      due to alignment and minimum size constraints.
 | ||
|   malloc_stats();
 | ||
|      Prints brief summary statistics on stderr.
 | ||
|   mallinfo()
 | ||
|      Returns (by copy) a struct containing various summary statistics.
 | ||
|   mallopt(int parameter_number, int parameter_value)
 | ||
|      Changes one of the tunable parameters described below. Returns
 | ||
|      1 if successful in changing the parameter, else 0.
 | ||
| 
 | ||
| * Vital statistics:
 | ||
| 
 | ||
|   Alignment:                            8-byte
 | ||
|        8 byte alignment is currently hardwired into the design.  This
 | ||
|        seems to suffice for all current machines and C compilers.
 | ||
| 
 | ||
|   Assumed pointer representation:       4 or 8 bytes
 | ||
|        Code for 8-byte pointers is untested by me but has worked
 | ||
|        reliably by Wolfram Gloger, who contributed most of the
 | ||
|        changes supporting this.
 | ||
| 
 | ||
|   Assumed size_t  representation:       4 or 8 bytes
 | ||
|        Note that size_t is allowed to be 4 bytes even if pointers are 8.
 | ||
| 
 | ||
|   Minimum overhead per allocated chunk: 4 or 8 bytes
 | ||
|        Each malloced chunk has a hidden overhead of 4 bytes holding size
 | ||
|        and status information.
 | ||
| 
 | ||
|   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
 | ||
|                           8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
 | ||
| 
 | ||
|        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
 | ||
|        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
 | ||
|        needed; 4 (8) for a trailing size field
 | ||
|        and 8 (16) bytes for free list pointers. Thus, the minimum
 | ||
|        allocatable size is 16/24/32 bytes.
 | ||
| 
 | ||
|        Even a request for zero bytes (i.e., malloc(0)) returns a
 | ||
|        pointer to something of the minimum allocatable size.
 | ||
| 
 | ||
|   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
 | ||
|                           8-byte size_t: 2^63 - 16 bytes
 | ||
| 
 | ||
|        It is assumed that (possibly signed) size_t bit values suffice to
 | ||
|        represent chunk sizes. `Possibly signed' is due to the fact
 | ||
|        that `size_t' may be defined on a system as either a signed or
 | ||
|        an unsigned type. To be conservative, values that would appear
 | ||
|        as negative numbers are avoided.
 | ||
|        Requests for sizes with a negative sign bit will return a
 | ||
|        minimum-sized chunk.
 | ||
| 
 | ||
|   Maximum overhead wastage per allocated chunk: normally 15 bytes
 | ||
| 
 | ||
|        Alignment demands, plus the minimum allocatable size restriction
 | ||
|        make the normal worst-case wastage 15 bytes (i.e., up to 15
 | ||
|        more bytes will be allocated than were requested in malloc), with
 | ||
|        two exceptions:
 | ||
|          1. Because requests for zero bytes allocate non-zero space,
 | ||
|             the worst case wastage for a request of zero bytes is 24 bytes.
 | ||
|          2. For requests >= mmap_threshold that are serviced via
 | ||
|             mmap(), the worst case wastage is 8 bytes plus the remainder
 | ||
|             from a system page (the minimal mmap unit); typically 4096 bytes.
 | ||
| 
 | ||
| * Limitations
 | ||
| 
 | ||
|     Here are some features that are NOT currently supported
 | ||
| 
 | ||
|     * No automated mechanism for fully checking that all accesses
 | ||
|       to malloced memory stay within their bounds.
 | ||
|     * No support for compaction.
 | ||
| 
 | ||
| * Synopsis of compile-time options:
 | ||
| 
 | ||
|     People have reported using previous versions of this malloc on all
 | ||
|     versions of Unix, sometimes by tweaking some of the defines
 | ||
|     below. It has been tested most extensively on Solaris and
 | ||
|     Linux. People have also reported adapting this malloc for use in
 | ||
|     stand-alone embedded systems.
 | ||
| 
 | ||
|     The implementation is in straight, hand-tuned ANSI C.  Among other
 | ||
|     consequences, it uses a lot of macros.  Because of this, to be at
 | ||
|     all usable, this code should be compiled using an optimizing compiler
 | ||
|     (for example gcc -O2) that can simplify expressions and control
 | ||
|     paths.
 | ||
| 
 | ||
|   __STD_C                  (default: derived from C compiler defines)
 | ||
|      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
 | ||
|      a C compiler sufficiently close to ANSI to get away with it.
 | ||
|   MALLOC_DEBUG             (default: NOT defined)
 | ||
|      Define to enable debugging. Adds fairly extensive assertion-based
 | ||
|      checking to help track down memory errors, but noticeably slows down
 | ||
|      execution.
 | ||
|   MALLOC_HOOKS             (default: NOT defined)
 | ||
|      Define to enable support run-time replacement of the allocation
 | ||
|      functions through user-defined `hooks'.
 | ||
|   REALLOC_ZERO_BYTES_FREES (default: defined)
 | ||
|      Define this if you think that realloc(p, 0) should be equivalent
 | ||
|      to free(p).  (The C standard requires this behaviour, therefore
 | ||
|      it is the default.)  Otherwise, since malloc returns a unique
 | ||
|      pointer for malloc(0), so does realloc(p, 0).
 | ||
|   HAVE_MEMCPY               (default: defined)
 | ||
|      Define if you are not otherwise using ANSI STD C, but still
 | ||
|      have memcpy and memset in your C library and want to use them.
 | ||
|      Otherwise, simple internal versions are supplied.
 | ||
|   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
 | ||
|      Define as 1 if you want the C library versions of memset and
 | ||
|      memcpy called in realloc and calloc (otherwise macro versions are used).
 | ||
|      At least on some platforms, the simple macro versions usually
 | ||
|      outperform libc versions.
 | ||
|   HAVE_MMAP                 (default: defined as 1)
 | ||
|      Define to non-zero to optionally make malloc() use mmap() to
 | ||
|      allocate very large blocks.
 | ||
|   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
 | ||
|      Define to non-zero to optionally make realloc() use mremap() to
 | ||
|      reallocate very large blocks.
 | ||
|   USE_ARENAS                (default: the same as HAVE_MMAP)
 | ||
|      Enable support for multiple arenas, allocated using mmap().
 | ||
|   malloc_getpagesize        (default: derived from system #includes)
 | ||
|      Either a constant or routine call returning the system page size.
 | ||
|   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
 | ||
|      Optionally define if you are on a system with a /usr/include/malloc.h
 | ||
|      that declares struct mallinfo. It is not at all necessary to
 | ||
|      define this even if you do, but will ensure consistency.
 | ||
|   INTERNAL_SIZE_T           (default: size_t)
 | ||
|      Define to a 32-bit type (probably `unsigned int') if you are on a
 | ||
|      64-bit machine, yet do not want or need to allow malloc requests of
 | ||
|      greater than 2^31 to be handled. This saves space, especially for
 | ||
|      very small chunks.
 | ||
|   _LIBC                     (default: NOT defined)
 | ||
|      Defined only when compiled as part of the Linux libc/glibc.
 | ||
|      Also note that there is some odd internal name-mangling via defines
 | ||
|      (for example, internally, `malloc' is named `mALLOc') needed
 | ||
|      when compiling in this case. These look funny but don't otherwise
 | ||
|      affect anything.
 | ||
|   LACKS_UNISTD_H            (default: undefined)
 | ||
|      Define this if your system does not have a <unistd.h>.
 | ||
|   MORECORE                  (default: sbrk)
 | ||
|      The name of the routine to call to obtain more memory from the system.
 | ||
|   MORECORE_FAILURE          (default: -1)
 | ||
|      The value returned upon failure of MORECORE.
 | ||
|   MORECORE_CLEARS           (default 1)
 | ||
|      The degree to which the routine mapped to MORECORE zeroes out
 | ||
|      memory: never (0), only for newly allocated space (1) or always
 | ||
|      (2).  The distinction between (1) and (2) is necessary because on
 | ||
|      some systems, if the application first decrements and then
 | ||
|      increments the break value, the contents of the reallocated space
 | ||
|      are unspecified.
 | ||
|   DEFAULT_TRIM_THRESHOLD
 | ||
|   DEFAULT_TOP_PAD
 | ||
|   DEFAULT_MMAP_THRESHOLD
 | ||
|   DEFAULT_MMAP_MAX
 | ||
|      Default values of tunable parameters (described in detail below)
 | ||
|      controlling interaction with host system routines (sbrk, mmap, etc).
 | ||
|      These values may also be changed dynamically via mallopt(). The
 | ||
|      preset defaults are those that give best performance for typical
 | ||
|      programs/systems.
 | ||
|   DEFAULT_CHECK_ACTION
 | ||
|      When the standard debugging hooks are in place, and a pointer is
 | ||
|      detected as corrupt, do nothing (0), print an error message (1),
 | ||
|      or call abort() (2).
 | ||
| 
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
| * Compile-time options for multiple threads:
 | ||
| 
 | ||
|   USE_PTHREADS, USE_THR, USE_SPROC
 | ||
|      Define one of these as 1 to select the thread interface:
 | ||
|      POSIX threads, Solaris threads or SGI sproc's, respectively.
 | ||
|      If none of these is defined as non-zero, you get a `normal'
 | ||
|      malloc implementation which is not thread-safe.  Support for
 | ||
|      multiple threads requires HAVE_MMAP=1.  As an exception, when
 | ||
|      compiling for GNU libc, i.e. when _LIBC is defined, then none of
 | ||
|      the USE_... symbols have to be defined.
 | ||
| 
 | ||
|   HEAP_MIN_SIZE
 | ||
|   HEAP_MAX_SIZE
 | ||
|      When thread support is enabled, additional `heap's are created
 | ||
|      with mmap calls.  These are limited in size; HEAP_MIN_SIZE should
 | ||
|      be a multiple of the page size, while HEAP_MAX_SIZE must be a power
 | ||
|      of two for alignment reasons.  HEAP_MAX_SIZE should be at least
 | ||
|      twice as large as the mmap threshold.
 | ||
|   THREAD_STATS
 | ||
|      When this is defined as non-zero, some statistics on mutex locking
 | ||
|      are computed.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Preliminaries */
 | ||
| 
 | ||
| #ifndef __STD_C
 | ||
| #if defined (__STDC__)
 | ||
| #define __STD_C     1
 | ||
| #else
 | ||
| #if __cplusplus
 | ||
| #define __STD_C     1
 | ||
| #else
 | ||
| #define __STD_C     0
 | ||
| #endif /*__cplusplus*/
 | ||
| #endif /*__STDC__*/
 | ||
| #endif /*__STD_C*/
 | ||
| 
 | ||
| #ifndef Void_t
 | ||
| #if __STD_C
 | ||
| #define Void_t      void
 | ||
| #else
 | ||
| #define Void_t      char
 | ||
| #endif
 | ||
| #endif /*Void_t*/
 | ||
| 
 | ||
| #define _GNU_SOURCE
 | ||
| #include <features.h>
 | ||
| #define _LIBC 1
 | ||
| #define NOT_IN_libc 1
 | ||
| 
 | ||
| #if __STD_C
 | ||
| # include <stddef.h>   /* for size_t */
 | ||
| # if defined _LIBC || defined MALLOC_HOOKS
 | ||
| #  include <stdlib.h>  /* for getenv(), abort() */
 | ||
| # endif
 | ||
| #else
 | ||
| # include <sys/types.h>
 | ||
| # if defined _LIBC || defined MALLOC_HOOKS
 | ||
| extern char* getenv();
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
| /* newlib modifications */
 | ||
| 
 | ||
| #include <libc-symbols.h>
 | ||
| #include <sys/types.h>
 | ||
| 
 | ||
| extern void __pthread_initialize (void) __attribute__((weak));
 | ||
| extern void *__mmap (void *__addr, size_t __len, int __prot,
 | ||
|                      int __flags, int __fd, off_t __offset);
 | ||
| extern int __munmap (void *__addr, size_t __len);
 | ||
| extern void *__mremap (void *__addr, size_t __old_len, size_t __new_len,
 | ||
|                        int __may_move);
 | ||
| extern int __getpagesize (void);
 | ||
| 
 | ||
| #define __libc_enable_secure 1
 | ||
| 
 | ||
| /* Macros for handling mutexes and thread-specific data.  This is
 | ||
|    included early, because some thread-related header files (such as
 | ||
|    pthread.h) should be included before any others. */
 | ||
| #include <bits/libc-lock.h>
 | ||
| #include "thread-m.h"
 | ||
| 
 | ||
| void *(*__malloc_internal_tsd_get) (enum __libc_tsd_key_t) = NULL;
 | ||
| int (*__malloc_internal_tsd_set) (enum __libc_tsd_key_t,
 | ||
|                                        __const void *) = NULL;
 | ||
| 
 | ||
| weak_alias(__malloc_internal_tsd_get, __libc_internal_tsd_get)
 | ||
| weak_alias(__malloc_internal_tsd_set, __libc_internal_tsd_set)
 | ||
| 
 | ||
| 
 | ||
| #ifdef __cplusplus
 | ||
| extern "C" {
 | ||
| #endif
 | ||
| 
 | ||
| #include <errno.h>
 | ||
| #include <stdio.h>    /* needed for malloc_stats */
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Compile-time options
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|     Debugging:
 | ||
| 
 | ||
|     Because freed chunks may be overwritten with link fields, this
 | ||
|     malloc will often die when freed memory is overwritten by user
 | ||
|     programs.  This can be very effective (albeit in an annoying way)
 | ||
|     in helping track down dangling pointers.
 | ||
| 
 | ||
|     If you compile with -DMALLOC_DEBUG, a number of assertion checks are
 | ||
|     enabled that will catch more memory errors. You probably won't be
 | ||
|     able to make much sense of the actual assertion errors, but they
 | ||
|     should help you locate incorrectly overwritten memory.  The
 | ||
|     checking is fairly extensive, and will slow down execution
 | ||
|     noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set will
 | ||
|     attempt to check every non-mmapped allocated and free chunk in the
 | ||
|     course of computing the summaries. (By nature, mmapped regions
 | ||
|     cannot be checked very much automatically.)
 | ||
| 
 | ||
|     Setting MALLOC_DEBUG may also be helpful if you are trying to modify
 | ||
|     this code. The assertions in the check routines spell out in more
 | ||
|     detail the assumptions and invariants underlying the algorithms.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #if MALLOC_DEBUG
 | ||
| #include <assert.h>
 | ||
| #else
 | ||
| #define assert(x) ((void)0)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
 | ||
|   of chunk sizes. On a 64-bit machine, you can reduce malloc
 | ||
|   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
 | ||
|   at the expense of not being able to handle requests greater than
 | ||
|   2^31. This limitation is hardly ever a concern; you are encouraged
 | ||
|   to set this. However, the default version is the same as size_t.
 | ||
| */
 | ||
| 
 | ||
| #ifndef INTERNAL_SIZE_T
 | ||
| #define INTERNAL_SIZE_T size_t
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|   REALLOC_ZERO_BYTES_FREES should be set if a call to realloc with
 | ||
|   zero bytes should be the same as a call to free.  The C standard
 | ||
|   requires this. Otherwise, since this malloc returns a unique pointer
 | ||
|   for malloc(0), so does realloc(p, 0).
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #define REALLOC_ZERO_BYTES_FREES
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   HAVE_MEMCPY should be defined if you are not otherwise using
 | ||
|   ANSI STD C, but still have memcpy and memset in your C library
 | ||
|   and want to use them in calloc and realloc. Otherwise simple
 | ||
|   macro versions are defined here.
 | ||
| 
 | ||
|   USE_MEMCPY should be defined as 1 if you actually want to
 | ||
|   have memset and memcpy called. People report that the macro
 | ||
|   versions are often enough faster than libc versions on many
 | ||
|   systems that it is better to use them.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #define HAVE_MEMCPY 1
 | ||
| 
 | ||
| #ifndef USE_MEMCPY
 | ||
| #ifdef HAVE_MEMCPY
 | ||
| #define USE_MEMCPY 1
 | ||
| #else
 | ||
| #define USE_MEMCPY 0
 | ||
| #endif
 | ||
| #endif
 | ||
| 
 | ||
| #if (__STD_C || defined(HAVE_MEMCPY))
 | ||
| 
 | ||
| #if __STD_C
 | ||
| void* memset(void*, int, size_t);
 | ||
| void* memcpy(void*, const void*, size_t);
 | ||
| void* memmove(void*, const void*, size_t);
 | ||
| #else
 | ||
| Void_t* memset();
 | ||
| Void_t* memcpy();
 | ||
| Void_t* memmove();
 | ||
| #endif
 | ||
| #endif
 | ||
| 
 | ||
| /* The following macros are only invoked with (2n+1)-multiples of
 | ||
|    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
 | ||
|    for fast inline execution when n is small.  If the regions to be
 | ||
|    copied do overlap, the destination lies always _below_ the source.  */
 | ||
| 
 | ||
| #if USE_MEMCPY
 | ||
| 
 | ||
| #define MALLOC_ZERO(charp, nbytes)                                            \
 | ||
| do {                                                                          \
 | ||
|   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
 | ||
|   if(mzsz <= 9*sizeof(mzsz)) {                                                \
 | ||
|     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
 | ||
|     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
 | ||
|                                      *mz++ = 0;                               \
 | ||
|       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
 | ||
|                                      *mz++ = 0;                               \
 | ||
|         if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
 | ||
|                                      *mz++ = 0; }}}                           \
 | ||
|                                      *mz++ = 0;                               \
 | ||
|                                      *mz++ = 0;                               \
 | ||
|                                      *mz   = 0;                               \
 | ||
|   } else memset((charp), 0, mzsz);                                            \
 | ||
| } while(0)
 | ||
| 
 | ||
| /* If the regions overlap, dest is always _below_ src.  */
 | ||
| 
 | ||
| #define MALLOC_COPY(dest,src,nbytes,overlap)                                  \
 | ||
| do {                                                                          \
 | ||
|   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
 | ||
|   if(mcsz <= 9*sizeof(mcsz)) {                                                \
 | ||
|     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
 | ||
|     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
 | ||
|     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
 | ||
|                                      *mcdst++ = *mcsrc++;                     \
 | ||
|       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
 | ||
|                                      *mcdst++ = *mcsrc++;                     \
 | ||
|         if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
 | ||
|                                      *mcdst++ = *mcsrc++; }}}                 \
 | ||
|                                      *mcdst++ = *mcsrc++;                     \
 | ||
|                                      *mcdst++ = *mcsrc++;                     \
 | ||
|                                      *mcdst   = *mcsrc  ;                     \
 | ||
|   } else if(overlap)                                                          \
 | ||
|     memmove(dest, src, mcsz);                                                 \
 | ||
|   else                                                                        \
 | ||
|     memcpy(dest, src, mcsz);                                                  \
 | ||
| } while(0)
 | ||
| 
 | ||
| #else /* !USE_MEMCPY */
 | ||
| 
 | ||
| /* Use Duff's device for good zeroing/copying performance. */
 | ||
| 
 | ||
| #define MALLOC_ZERO(charp, nbytes)                                            \
 | ||
| do {                                                                          \
 | ||
|   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
 | ||
|   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
 | ||
|   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
 | ||
|   switch (mctmp) {                                                            \
 | ||
|     case 0: for(;;) { *mzp++ = 0;                                             \
 | ||
|     case 7:           *mzp++ = 0;                                             \
 | ||
|     case 6:           *mzp++ = 0;                                             \
 | ||
|     case 5:           *mzp++ = 0;                                             \
 | ||
|     case 4:           *mzp++ = 0;                                             \
 | ||
|     case 3:           *mzp++ = 0;                                             \
 | ||
|     case 2:           *mzp++ = 0;                                             \
 | ||
|     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
 | ||
|   }                                                                           \
 | ||
| } while(0)
 | ||
| 
 | ||
| /* If the regions overlap, dest is always _below_ src.  */
 | ||
| 
 | ||
| #define MALLOC_COPY(dest,src,nbytes,overlap)                                  \
 | ||
| do {                                                                          \
 | ||
|   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
 | ||
|   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
 | ||
|   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
 | ||
|   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
 | ||
|   switch (mctmp) {                                                            \
 | ||
|     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
 | ||
|     case 7:           *mcdst++ = *mcsrc++;                                    \
 | ||
|     case 6:           *mcdst++ = *mcsrc++;                                    \
 | ||
|     case 5:           *mcdst++ = *mcsrc++;                                    \
 | ||
|     case 4:           *mcdst++ = *mcsrc++;                                    \
 | ||
|     case 3:           *mcdst++ = *mcsrc++;                                    \
 | ||
|     case 2:           *mcdst++ = *mcsrc++;                                    \
 | ||
|     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
 | ||
|   }                                                                           \
 | ||
| } while(0)
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| #ifndef LACKS_UNISTD_H
 | ||
| #  include <unistd.h>
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|   Define HAVE_MMAP to optionally make malloc() use mmap() to allocate
 | ||
|   very large blocks.  These will be returned to the operating system
 | ||
|   immediately after a free().  HAVE_MMAP is also a prerequisite to
 | ||
|   support multiple `arenas' (see USE_ARENAS below).
 | ||
| */
 | ||
| 
 | ||
| #ifndef HAVE_MMAP
 | ||
| # ifdef _POSIX_MAPPED_FILES
 | ||
| #  define HAVE_MMAP 1
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
 | ||
|   large blocks.  This is currently only possible on Linux with
 | ||
|   kernel versions newer than 1.3.77.
 | ||
| */
 | ||
| 
 | ||
| #ifndef HAVE_MREMAP
 | ||
| #define HAVE_MREMAP defined(__linux__)
 | ||
| #endif
 | ||
| 
 | ||
| /* Define USE_ARENAS to enable support for multiple `arenas'.  These
 | ||
|    are allocated using mmap(), are necessary for threads and
 | ||
|    occasionally useful to overcome address space limitations affecting
 | ||
|    sbrk(). */
 | ||
| 
 | ||
| #ifndef USE_ARENAS
 | ||
| #define USE_ARENAS HAVE_MMAP
 | ||
| #endif
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
| 
 | ||
| #include <unistd.h>
 | ||
| #include <fcntl.h>
 | ||
| #include <sys/mman.h>
 | ||
| 
 | ||
| #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
 | ||
| #define MAP_ANONYMOUS MAP_ANON
 | ||
| #endif
 | ||
| #if !defined(MAP_FAILED)
 | ||
| #define MAP_FAILED ((char*)-1)
 | ||
| #endif
 | ||
| 
 | ||
| #ifndef MAP_NORESERVE
 | ||
| # ifdef MAP_AUTORESRV
 | ||
| #  define MAP_NORESERVE MAP_AUTORESRV
 | ||
| # else
 | ||
| #  define MAP_NORESERVE 0
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
| #endif /* HAVE_MMAP */
 | ||
| 
 | ||
| /*
 | ||
|   Access to system page size. To the extent possible, this malloc
 | ||
|   manages memory from the system in page-size units.
 | ||
| 
 | ||
|   The following mechanics for getpagesize were adapted from
 | ||
|   bsd/gnu getpagesize.h
 | ||
| */
 | ||
| 
 | ||
| #ifndef malloc_getpagesize
 | ||
| #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
 | ||
| #    ifndef _SC_PAGE_SIZE
 | ||
| #      define _SC_PAGE_SIZE _SC_PAGESIZE
 | ||
| #    endif
 | ||
| #  endif
 | ||
| #  ifdef _SC_PAGE_SIZE
 | ||
| #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
 | ||
| #  else
 | ||
| #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
 | ||
|        extern size_t getpagesize();
 | ||
| #      define malloc_getpagesize getpagesize()
 | ||
| #    else
 | ||
| #      include <sys/param.h>
 | ||
| #      ifdef EXEC_PAGESIZE
 | ||
| #        define malloc_getpagesize EXEC_PAGESIZE
 | ||
| #      else
 | ||
| #        ifdef NBPG
 | ||
| #          ifndef CLSIZE
 | ||
| #            define malloc_getpagesize NBPG
 | ||
| #          else
 | ||
| #            define malloc_getpagesize (NBPG * CLSIZE)
 | ||
| #          endif
 | ||
| #        else
 | ||
| #          ifdef NBPC
 | ||
| #            define malloc_getpagesize NBPC
 | ||
| #          else
 | ||
| #            ifdef PAGESIZE
 | ||
| #              define malloc_getpagesize PAGESIZE
 | ||
| #            else
 | ||
| #              define malloc_getpagesize (4096) /* just guess */
 | ||
| #            endif
 | ||
| #          endif
 | ||
| #        endif
 | ||
| #      endif
 | ||
| #    endif
 | ||
| #  endif
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|   This version of malloc supports the standard SVID/XPG mallinfo
 | ||
|   routine that returns a struct containing the same kind of
 | ||
|   information you can get from malloc_stats. It should work on
 | ||
|   any SVID/XPG compliant system that has a /usr/include/malloc.h
 | ||
|   defining struct mallinfo. (If you'd like to install such a thing
 | ||
|   yourself, cut out the preliminary declarations as described above
 | ||
|   and below and save them in a malloc.h file. But there's no
 | ||
|   compelling reason to bother to do this.)
 | ||
| 
 | ||
|   The main declaration needed is the mallinfo struct that is returned
 | ||
|   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
 | ||
|   bunch of fields, most of which are not even meaningful in this
 | ||
|   version of malloc. Some of these fields are are instead filled by
 | ||
|   mallinfo() with other numbers that might possibly be of interest.
 | ||
| 
 | ||
|   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
 | ||
|   /usr/include/malloc.h file that includes a declaration of struct
 | ||
|   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
 | ||
|   version is declared below.  These must be precisely the same for
 | ||
|   mallinfo() to work.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| /* #define HAVE_USR_INCLUDE_MALLOC_H */
 | ||
| 
 | ||
| #if HAVE_USR_INCLUDE_MALLOC_H
 | ||
| # include "/usr/include/malloc.h"
 | ||
| #else
 | ||
| # ifdef _LIBC
 | ||
| #  include "malloc.h"
 | ||
| # else
 | ||
| #  include "ptmalloc.h"
 | ||
| # endif
 | ||
| #endif
 | ||
| 
 | ||
| #include <bp-checks.h>
 | ||
| 
 | ||
| #ifndef DEFAULT_TRIM_THRESHOLD
 | ||
| #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
 | ||
|       to keep before releasing via malloc_trim in free().
 | ||
| 
 | ||
|       Automatic trimming is mainly useful in long-lived programs.
 | ||
|       Because trimming via sbrk can be slow on some systems, and can
 | ||
|       sometimes be wasteful (in cases where programs immediately
 | ||
|       afterward allocate more large chunks) the value should be high
 | ||
|       enough so that your overall system performance would improve by
 | ||
|       releasing.
 | ||
| 
 | ||
|       The trim threshold and the mmap control parameters (see below)
 | ||
|       can be traded off with one another. Trimming and mmapping are
 | ||
|       two different ways of releasing unused memory back to the
 | ||
|       system. Between these two, it is often possible to keep
 | ||
|       system-level demands of a long-lived program down to a bare
 | ||
|       minimum. For example, in one test suite of sessions measuring
 | ||
|       the XF86 X server on Linux, using a trim threshold of 128K and a
 | ||
|       mmap threshold of 192K led to near-minimal long term resource
 | ||
|       consumption.
 | ||
| 
 | ||
|       If you are using this malloc in a long-lived program, it should
 | ||
|       pay to experiment with these values.  As a rough guide, you
 | ||
|       might set to a value close to the average size of a process
 | ||
|       (program) running on your system.  Releasing this much memory
 | ||
|       would allow such a process to run in memory.  Generally, it's
 | ||
|       worth it to tune for trimming rather than memory mapping when a
 | ||
|       program undergoes phases where several large chunks are
 | ||
|       allocated and released in ways that can reuse each other's
 | ||
|       storage, perhaps mixed with phases where there are no such
 | ||
|       chunks at all.  And in well-behaved long-lived programs,
 | ||
|       controlling release of large blocks via trimming versus mapping
 | ||
|       is usually faster.
 | ||
| 
 | ||
|       However, in most programs, these parameters serve mainly as
 | ||
|       protection against the system-level effects of carrying around
 | ||
|       massive amounts of unneeded memory. Since frequent calls to
 | ||
|       sbrk, mmap, and munmap otherwise degrade performance, the default
 | ||
|       parameters are set to relatively high values that serve only as
 | ||
|       safeguards.
 | ||
| 
 | ||
|       The default trim value is high enough to cause trimming only in
 | ||
|       fairly extreme (by current memory consumption standards) cases.
 | ||
|       It must be greater than page size to have any useful effect.  To
 | ||
|       disable trimming completely, you can set to (unsigned long)(-1);
 | ||
| 
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #ifndef DEFAULT_TOP_PAD
 | ||
| #define DEFAULT_TOP_PAD        (0)
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|     M_TOP_PAD is the amount of extra `padding' space to allocate or
 | ||
|       retain whenever sbrk is called. It is used in two ways internally:
 | ||
| 
 | ||
|       * When sbrk is called to extend the top of the arena to satisfy
 | ||
|         a new malloc request, this much padding is added to the sbrk
 | ||
|         request.
 | ||
| 
 | ||
|       * When malloc_trim is called automatically from free(),
 | ||
|         it is used as the `pad' argument.
 | ||
| 
 | ||
|       In both cases, the actual amount of padding is rounded
 | ||
|       so that the end of the arena is always a system page boundary.
 | ||
| 
 | ||
|       The main reason for using padding is to avoid calling sbrk so
 | ||
|       often. Having even a small pad greatly reduces the likelihood
 | ||
|       that nearly every malloc request during program start-up (or
 | ||
|       after trimming) will invoke sbrk, which needlessly wastes
 | ||
|       time.
 | ||
| 
 | ||
|       Automatic rounding-up to page-size units is normally sufficient
 | ||
|       to avoid measurable overhead, so the default is 0.  However, in
 | ||
|       systems where sbrk is relatively slow, it can pay to increase
 | ||
|       this value, at the expense of carrying around more memory than
 | ||
|       the program needs.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #ifndef DEFAULT_MMAP_THRESHOLD
 | ||
| #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|     M_MMAP_THRESHOLD is the request size threshold for using mmap()
 | ||
|       to service a request. Requests of at least this size that cannot
 | ||
|       be allocated using already-existing space will be serviced via mmap.
 | ||
|       (If enough normal freed space already exists it is used instead.)
 | ||
| 
 | ||
|       Using mmap segregates relatively large chunks of memory so that
 | ||
|       they can be individually obtained and released from the host
 | ||
|       system. A request serviced through mmap is never reused by any
 | ||
|       other request (at least not directly; the system may just so
 | ||
|       happen to remap successive requests to the same locations).
 | ||
| 
 | ||
|       Segregating space in this way has the benefit that mmapped space
 | ||
|       can ALWAYS be individually released back to the system, which
 | ||
|       helps keep the system level memory demands of a long-lived
 | ||
|       program low. Mapped memory can never become `locked' between
 | ||
|       other chunks, as can happen with normally allocated chunks, which
 | ||
|       menas that even trimming via malloc_trim would not release them.
 | ||
| 
 | ||
|       However, it has the disadvantages that:
 | ||
| 
 | ||
|          1. The space cannot be reclaimed, consolidated, and then
 | ||
|             used to service later requests, as happens with normal chunks.
 | ||
|          2. It can lead to more wastage because of mmap page alignment
 | ||
|             requirements
 | ||
|          3. It causes malloc performance to be more dependent on host
 | ||
|             system memory management support routines which may vary in
 | ||
|             implementation quality and may impose arbitrary
 | ||
|             limitations. Generally, servicing a request via normal
 | ||
|             malloc steps is faster than going through a system's mmap.
 | ||
| 
 | ||
|       All together, these considerations should lead you to use mmap
 | ||
|       only for relatively large requests.
 | ||
| 
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| #ifndef DEFAULT_MMAP_MAX
 | ||
| #if HAVE_MMAP
 | ||
| #define DEFAULT_MMAP_MAX       (1024)
 | ||
| #else
 | ||
| #define DEFAULT_MMAP_MAX       (0)
 | ||
| #endif
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
|     M_MMAP_MAX is the maximum number of requests to simultaneously
 | ||
|       service using mmap. This parameter exists because:
 | ||
| 
 | ||
|          1. Some systems have a limited number of internal tables for
 | ||
|             use by mmap.
 | ||
|          2. In most systems, overreliance on mmap can degrade overall
 | ||
|             performance.
 | ||
|          3. If a program allocates many large regions, it is probably
 | ||
|             better off using normal sbrk-based allocation routines that
 | ||
|             can reclaim and reallocate normal heap memory. Using a
 | ||
|             small value allows transition into this mode after the
 | ||
|             first few allocations.
 | ||
| 
 | ||
|       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
 | ||
|       the default value is 0, and attempts to set it to non-zero values
 | ||
|       in mallopt will fail.
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| #ifndef DEFAULT_CHECK_ACTION
 | ||
| #define DEFAULT_CHECK_ACTION 1
 | ||
| #endif
 | ||
| 
 | ||
| /* What to do if the standard debugging hooks are in place and a
 | ||
|    corrupt pointer is detected: do nothing (0), print an error message
 | ||
|    (1), or call abort() (2). */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| #define HEAP_MIN_SIZE (32*1024)
 | ||
| #define HEAP_MAX_SIZE (1024*1024) /* must be a power of two */
 | ||
| 
 | ||
| /* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps
 | ||
|       that are dynamically created for multi-threaded programs.  The
 | ||
|       maximum size must be a power of two, for fast determination of
 | ||
|       which heap belongs to a chunk.  It should be much larger than
 | ||
|       the mmap threshold, so that requests with a size just below that
 | ||
|       threshold can be fulfilled without creating too many heaps.
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| #ifndef THREAD_STATS
 | ||
| #define THREAD_STATS 0
 | ||
| #endif
 | ||
| 
 | ||
| /* If THREAD_STATS is non-zero, some statistics on mutex locking are
 | ||
|    computed. */
 | ||
| 
 | ||
| 
 | ||
| /* Macro to set errno.  */
 | ||
| #ifndef __set_errno
 | ||
| # define __set_errno(val) errno = (val)
 | ||
| #endif
 | ||
| 
 | ||
| /* On some platforms we can compile internal, not exported functions better.
 | ||
|    Let the environment provide a macro and define it to be empty if it
 | ||
|    is not available.  */
 | ||
| #ifndef internal_function
 | ||
| # define internal_function
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|   Special defines for the Linux/GNU C library.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
| 
 | ||
| #if __STD_C
 | ||
| 
 | ||
| Void_t * __default_morecore (ptrdiff_t);
 | ||
| Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
 | ||
| 
 | ||
| #else
 | ||
| 
 | ||
| Void_t * __default_morecore ();
 | ||
| Void_t *(*__morecore)() = __default_morecore;
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| #define MORECORE (*__morecore)
 | ||
| #define MORECORE_FAILURE 0
 | ||
| 
 | ||
| #ifndef MORECORE_CLEARS
 | ||
| #define MORECORE_CLEARS 1
 | ||
| #endif
 | ||
| 
 | ||
| static size_t __libc_pagesize;
 | ||
| 
 | ||
| #define access	__access
 | ||
| #define mmap    __mmap
 | ||
| #define munmap  __munmap
 | ||
| #define mremap  __mremap
 | ||
| #define mprotect __mprotect
 | ||
| #undef malloc_getpagesize
 | ||
| #define malloc_getpagesize __libc_pagesize
 | ||
| 
 | ||
| #else /* _LIBC */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| extern Void_t*     sbrk(ptrdiff_t);
 | ||
| #else
 | ||
| extern Void_t*     sbrk();
 | ||
| #endif
 | ||
| 
 | ||
| #ifndef MORECORE
 | ||
| #define MORECORE sbrk
 | ||
| #endif
 | ||
| 
 | ||
| #ifndef MORECORE_FAILURE
 | ||
| #define MORECORE_FAILURE -1
 | ||
| #endif
 | ||
| 
 | ||
| #ifndef MORECORE_CLEARS
 | ||
| #define MORECORE_CLEARS 1
 | ||
| #endif
 | ||
| 
 | ||
| #endif /* _LIBC */
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
| 
 | ||
| #define cALLOc          __libc_calloc
 | ||
| #define fREe            __libc_free
 | ||
| #define mALLOc          __libc_malloc
 | ||
| #define mEMALIGn        __libc_memalign
 | ||
| #define rEALLOc         __libc_realloc
 | ||
| #define vALLOc          __libc_valloc
 | ||
| #define pvALLOc         __libc_pvalloc
 | ||
| #define mALLINFo        __libc_mallinfo
 | ||
| #define mALLOPt         __libc_mallopt
 | ||
| #define mALLOC_STATs    __malloc_stats
 | ||
| #define mALLOC_USABLE_SIZe __malloc_usable_size
 | ||
| #define mALLOC_TRIm     __malloc_trim
 | ||
| #define mALLOC_GET_STATe __malloc_get_state
 | ||
| #define mALLOC_SET_STATe __malloc_set_state
 | ||
| 
 | ||
| #else
 | ||
| 
 | ||
| #define cALLOc          calloc
 | ||
| #define fREe            free
 | ||
| #define mALLOc          malloc
 | ||
| #define mEMALIGn        memalign
 | ||
| #define rEALLOc         realloc
 | ||
| #define vALLOc          valloc
 | ||
| #define pvALLOc         pvalloc
 | ||
| #define mALLINFo        mallinfo
 | ||
| #define mALLOPt         mallopt
 | ||
| #define mALLOC_STATs    malloc_stats
 | ||
| #define mALLOC_USABLE_SIZe malloc_usable_size
 | ||
| #define mALLOC_TRIm     malloc_trim
 | ||
| #define mALLOC_GET_STATe malloc_get_state
 | ||
| #define mALLOC_SET_STATe malloc_set_state
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| /* Public routines */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| 
 | ||
| #ifndef _LIBC
 | ||
| void    ptmalloc_init(void);
 | ||
| #endif
 | ||
| Void_t* mALLOc(size_t);
 | ||
| void    fREe(Void_t*);
 | ||
| Void_t* rEALLOc(Void_t*, size_t);
 | ||
| Void_t* mEMALIGn(size_t, size_t);
 | ||
| Void_t* vALLOc(size_t);
 | ||
| Void_t* pvALLOc(size_t);
 | ||
| Void_t* cALLOc(size_t, size_t);
 | ||
| void    cfree(Void_t*);
 | ||
| int     mALLOC_TRIm(size_t);
 | ||
| size_t  mALLOC_USABLE_SIZe(Void_t*);
 | ||
| void    mALLOC_STATs(void);
 | ||
| int     mALLOPt(int, int);
 | ||
| struct mallinfo mALLINFo(void);
 | ||
| Void_t* mALLOC_GET_STATe(void);
 | ||
| int     mALLOC_SET_STATe(Void_t*);
 | ||
| 
 | ||
| #else /* !__STD_C */
 | ||
| 
 | ||
| #ifndef _LIBC
 | ||
| void    ptmalloc_init();
 | ||
| #endif
 | ||
| Void_t* mALLOc();
 | ||
| void    fREe();
 | ||
| Void_t* rEALLOc();
 | ||
| Void_t* mEMALIGn();
 | ||
| Void_t* vALLOc();
 | ||
| Void_t* pvALLOc();
 | ||
| Void_t* cALLOc();
 | ||
| void    cfree();
 | ||
| int     mALLOC_TRIm();
 | ||
| size_t  mALLOC_USABLE_SIZe();
 | ||
| void    mALLOC_STATs();
 | ||
| int     mALLOPt();
 | ||
| struct mallinfo mALLINFo();
 | ||
| Void_t* mALLOC_GET_STATe();
 | ||
| int     mALLOC_SET_STATe();
 | ||
| 
 | ||
| #endif /* __STD_C */
 | ||
| 
 | ||
| 
 | ||
| #ifdef __cplusplus
 | ||
| } /* end of extern "C" */
 | ||
| #endif
 | ||
| 
 | ||
| #if !defined(NO_THREADS) && !HAVE_MMAP
 | ||
| "Can't have threads support without mmap"
 | ||
| #endif
 | ||
| #if USE_ARENAS && !HAVE_MMAP
 | ||
| "Can't have multiple arenas without mmap"
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Type declarations
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| struct malloc_chunk
 | ||
| {
 | ||
|   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
 | ||
|   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
 | ||
|   struct malloc_chunk* fd;   /* double links -- used only if free. */
 | ||
|   struct malloc_chunk* bk;
 | ||
| };
 | ||
| 
 | ||
| typedef struct malloc_chunk* mchunkptr;
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|    malloc_chunk details:
 | ||
| 
 | ||
|     (The following includes lightly edited explanations by Colin Plumb.)
 | ||
| 
 | ||
|     Chunks of memory are maintained using a `boundary tag' method as
 | ||
|     described in e.g., Knuth or Standish.  (See the paper by Paul
 | ||
|     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
 | ||
|     survey of such techniques.)  Sizes of free chunks are stored both
 | ||
|     in the front of each chunk and at the end.  This makes
 | ||
|     consolidating fragmented chunks into bigger chunks very fast.  The
 | ||
|     size fields also hold bits representing whether chunks are free or
 | ||
|     in use.
 | ||
| 
 | ||
|     An allocated chunk looks like this:
 | ||
| 
 | ||
| 
 | ||
|     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|             |             Size of previous chunk, if allocated            | |
 | ||
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|             |             Size of chunk, in bytes                         |P|
 | ||
|       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|             |             User data starts here...                          .
 | ||
|             .                                                               .
 | ||
|             .             (malloc_usable_space() bytes)                     .
 | ||
|             .                                                               |
 | ||
| nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|             |             Size of chunk                                     |
 | ||
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
| 
 | ||
| 
 | ||
|     Where "chunk" is the front of the chunk for the purpose of most of
 | ||
|     the malloc code, but "mem" is the pointer that is returned to the
 | ||
|     user.  "Nextchunk" is the beginning of the next contiguous chunk.
 | ||
| 
 | ||
|     Chunks always begin on even word boundaries, so the mem portion
 | ||
|     (which is returned to the user) is also on an even word boundary, and
 | ||
|     thus double-word aligned.
 | ||
| 
 | ||
|     Free chunks are stored in circular doubly-linked lists, and look like this:
 | ||
| 
 | ||
|     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|             |             Size of previous chunk                            |
 | ||
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|     `head:' |             Size of chunk, in bytes                         |P|
 | ||
|       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|             |             Forward pointer to next chunk in list             |
 | ||
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|             |             Back pointer to previous chunk in list            |
 | ||
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|             |             Unused space (may be 0 bytes long)                .
 | ||
|             .                                                               .
 | ||
|             .                                                               |
 | ||
| nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
|     `foot:' |             Size of chunk, in bytes                           |
 | ||
|             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ||
| 
 | ||
|     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
 | ||
|     chunk size (which is always a multiple of two words), is an in-use
 | ||
|     bit for the *previous* chunk.  If that bit is *clear*, then the
 | ||
|     word before the current chunk size contains the previous chunk
 | ||
|     size, and can be used to find the front of the previous chunk.
 | ||
|     (The very first chunk allocated always has this bit set,
 | ||
|     preventing access to non-existent (or non-owned) memory.)
 | ||
| 
 | ||
|     Note that the `foot' of the current chunk is actually represented
 | ||
|     as the prev_size of the NEXT chunk. (This makes it easier to
 | ||
|     deal with alignments etc).
 | ||
| 
 | ||
|     The two exceptions to all this are
 | ||
| 
 | ||
|      1. The special chunk `top', which doesn't bother using the
 | ||
|         trailing size field since there is no
 | ||
|         next contiguous chunk that would have to index off it. (After
 | ||
|         initialization, `top' is forced to always exist.  If it would
 | ||
|         become less than MINSIZE bytes long, it is replenished via
 | ||
|         malloc_extend_top.)
 | ||
| 
 | ||
|      2. Chunks allocated via mmap, which have the second-lowest-order
 | ||
|         bit (IS_MMAPPED) set in their size fields.  Because they are
 | ||
|         never merged or traversed from any other chunk, they have no
 | ||
|         foot size or inuse information.
 | ||
| 
 | ||
|     Available chunks are kept in any of several places (all declared below):
 | ||
| 
 | ||
|     * `av': An array of chunks serving as bin headers for consolidated
 | ||
|        chunks. Each bin is doubly linked.  The bins are approximately
 | ||
|        proportionally (log) spaced.  There are a lot of these bins
 | ||
|        (128). This may look excessive, but works very well in
 | ||
|        practice.  All procedures maintain the invariant that no
 | ||
|        consolidated chunk physically borders another one. Chunks in
 | ||
|        bins are kept in size order, with ties going to the
 | ||
|        approximately least recently used chunk.
 | ||
| 
 | ||
|        The chunks in each bin are maintained in decreasing sorted order by
 | ||
|        size.  This is irrelevant for the small bins, which all contain
 | ||
|        the same-sized chunks, but facilitates best-fit allocation for
 | ||
|        larger chunks. (These lists are just sequential. Keeping them in
 | ||
|        order almost never requires enough traversal to warrant using
 | ||
|        fancier ordered data structures.)  Chunks of the same size are
 | ||
|        linked with the most recently freed at the front, and allocations
 | ||
|        are taken from the back.  This results in LRU or FIFO allocation
 | ||
|        order, which tends to give each chunk an equal opportunity to be
 | ||
|        consolidated with adjacent freed chunks, resulting in larger free
 | ||
|        chunks and less fragmentation.
 | ||
| 
 | ||
|     * `top': The top-most available chunk (i.e., the one bordering the
 | ||
|        end of available memory) is treated specially. It is never
 | ||
|        included in any bin, is used only if no other chunk is
 | ||
|        available, and is released back to the system if it is very
 | ||
|        large (see M_TRIM_THRESHOLD).
 | ||
| 
 | ||
|     * `last_remainder': A bin holding only the remainder of the
 | ||
|        most recently split (non-top) chunk. This bin is checked
 | ||
|        before other non-fitting chunks, so as to provide better
 | ||
|        locality for runs of sequentially allocated chunks.
 | ||
| 
 | ||
|     *  Implicitly, through the host system's memory mapping tables.
 | ||
|        If supported, requests greater than a threshold are usually
 | ||
|        serviced via calls to mmap, and then later released via munmap.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| /*
 | ||
|    Bins
 | ||
| 
 | ||
|     The bins are an array of pairs of pointers serving as the
 | ||
|     heads of (initially empty) doubly-linked lists of chunks, laid out
 | ||
|     in a way so that each pair can be treated as if it were in a
 | ||
|     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
 | ||
|     and chunks are the same).
 | ||
| 
 | ||
|     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
 | ||
|     8 bytes apart. Larger bins are approximately logarithmically
 | ||
|     spaced. (See the table below.)
 | ||
| 
 | ||
|     Bin layout:
 | ||
| 
 | ||
|     64 bins of size       8
 | ||
|     32 bins of size      64
 | ||
|     16 bins of size     512
 | ||
|      8 bins of size    4096
 | ||
|      4 bins of size   32768
 | ||
|      2 bins of size  262144
 | ||
|      1 bin  of size what's left
 | ||
| 
 | ||
|     There is actually a little bit of slop in the numbers in bin_index
 | ||
|     for the sake of speed. This makes no difference elsewhere.
 | ||
| 
 | ||
|     The special chunks `top' and `last_remainder' get their own bins,
 | ||
|     (this is implemented via yet more trickery with the av array),
 | ||
|     although `top' is never properly linked to its bin since it is
 | ||
|     always handled specially.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #define NAV             128   /* number of bins */
 | ||
| 
 | ||
| typedef struct malloc_chunk* mbinptr;
 | ||
| 
 | ||
| /* An arena is a configuration of malloc_chunks together with an array
 | ||
|    of bins.  With multiple threads, it must be locked via a mutex
 | ||
|    before changing its data structures.  One or more `heaps' are
 | ||
|    associated with each arena, except for the main_arena, which is
 | ||
|    associated only with the `main heap', i.e.  the conventional free
 | ||
|    store obtained with calls to MORECORE() (usually sbrk).  The `av'
 | ||
|    array is never mentioned directly in the code, but instead used via
 | ||
|    bin access macros. */
 | ||
| 
 | ||
| typedef struct _arena {
 | ||
|   mbinptr av[2*NAV + 2];
 | ||
|   struct _arena *next;
 | ||
|   size_t size;
 | ||
| #if THREAD_STATS
 | ||
|   long stat_lock_direct, stat_lock_loop, stat_lock_wait;
 | ||
| #endif
 | ||
|   mutex_t mutex;
 | ||
| } arena;
 | ||
| 
 | ||
| 
 | ||
| /* A heap is a single contiguous memory region holding (coalesceable)
 | ||
|    malloc_chunks.  It is allocated with mmap() and always starts at an
 | ||
|    address aligned to HEAP_MAX_SIZE.  Not used unless compiling with
 | ||
|    USE_ARENAS. */
 | ||
| 
 | ||
| typedef struct _heap_info {
 | ||
|   arena *ar_ptr; /* Arena for this heap. */
 | ||
|   struct _heap_info *prev; /* Previous heap. */
 | ||
|   size_t size;   /* Current size in bytes. */
 | ||
|   size_t pad;    /* Make sure the following data is properly aligned. */
 | ||
| } heap_info;
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Static functions (forward declarations)
 | ||
| */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| 
 | ||
| static void      chunk_free(arena *ar_ptr, mchunkptr p) internal_function;
 | ||
| static mchunkptr chunk_alloc(arena *ar_ptr, INTERNAL_SIZE_T size)
 | ||
|      internal_function;
 | ||
| static mchunkptr chunk_realloc(arena *ar_ptr, mchunkptr oldp,
 | ||
|                                INTERNAL_SIZE_T oldsize, INTERNAL_SIZE_T nb)
 | ||
|      internal_function;
 | ||
| static mchunkptr chunk_align(arena *ar_ptr, INTERNAL_SIZE_T nb,
 | ||
|                              size_t alignment) internal_function;
 | ||
| static int       main_trim(size_t pad) internal_function;
 | ||
| #if USE_ARENAS
 | ||
| static int       heap_trim(heap_info *heap, size_t pad) internal_function;
 | ||
| #endif
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
| static Void_t*   malloc_check(size_t sz, const Void_t *caller);
 | ||
| static void      free_check(Void_t* mem, const Void_t *caller);
 | ||
| static Void_t*   realloc_check(Void_t* oldmem, size_t bytes,
 | ||
| 			       const Void_t *caller);
 | ||
| static Void_t*   memalign_check(size_t alignment, size_t bytes,
 | ||
| 				const Void_t *caller);
 | ||
| #ifndef NO_THREADS
 | ||
| static Void_t*   malloc_starter(size_t sz, const Void_t *caller);
 | ||
| static void      free_starter(Void_t* mem, const Void_t *caller);
 | ||
| static Void_t*   malloc_atfork(size_t sz, const Void_t *caller);
 | ||
| static void      free_atfork(Void_t* mem, const Void_t *caller);
 | ||
| #endif
 | ||
| #endif
 | ||
| 
 | ||
| #else
 | ||
| 
 | ||
| static void      chunk_free();
 | ||
| static mchunkptr chunk_alloc();
 | ||
| static mchunkptr chunk_realloc();
 | ||
| static mchunkptr chunk_align();
 | ||
| static int       main_trim();
 | ||
| #if USE_ARENAS
 | ||
| static int       heap_trim();
 | ||
| #endif
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
| static Void_t*   malloc_check();
 | ||
| static void      free_check();
 | ||
| static Void_t*   realloc_check();
 | ||
| static Void_t*   memalign_check();
 | ||
| #ifndef NO_THREADS
 | ||
| static Void_t*   malloc_starter();
 | ||
| static void      free_starter();
 | ||
| static Void_t*   malloc_atfork();
 | ||
| static void      free_atfork();
 | ||
| #endif
 | ||
| #endif
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* sizes, alignments */
 | ||
| 
 | ||
| #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
 | ||
| /* Allow the default to be overwritten on the compiler command line.  */
 | ||
| #ifndef MALLOC_ALIGNMENT
 | ||
| # define MALLOC_ALIGNMENT      (SIZE_SZ + SIZE_SZ)
 | ||
| #endif
 | ||
| #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
 | ||
| #define MINSIZE                (sizeof(struct malloc_chunk))
 | ||
| 
 | ||
| /* conversion from malloc headers to user pointers, and back */
 | ||
| 
 | ||
| #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
 | ||
| #define mem2chunk(mem) chunk_at_offset((mem), -2*SIZE_SZ)
 | ||
| 
 | ||
| /* pad request bytes into a usable size, return non-zero on overflow */
 | ||
| 
 | ||
| #define request2size(req, nb) \
 | ||
|  ((nb = (req) + (SIZE_SZ + MALLOC_ALIGN_MASK)),\
 | ||
|   ((long)nb <= 0 || nb < (INTERNAL_SIZE_T) (req) \
 | ||
|    ? (__set_errno (ENOMEM), 1) \
 | ||
|    : ((nb < (MINSIZE + MALLOC_ALIGN_MASK) \
 | ||
| 	   ? (nb = MINSIZE) : (nb &= ~MALLOC_ALIGN_MASK)), 0)))
 | ||
| 
 | ||
| /* Check if m has acceptable alignment */
 | ||
| 
 | ||
| #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Physical chunk operations
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
 | ||
| 
 | ||
| #define PREV_INUSE 0x1UL
 | ||
| 
 | ||
| /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
 | ||
| 
 | ||
| #define IS_MMAPPED 0x2UL
 | ||
| 
 | ||
| /* Bits to mask off when extracting size */
 | ||
| 
 | ||
| #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
 | ||
| 
 | ||
| 
 | ||
| /* Ptr to next physical malloc_chunk. */
 | ||
| 
 | ||
| #define next_chunk(p) chunk_at_offset((p), (p)->size & ~PREV_INUSE)
 | ||
| 
 | ||
| /* Ptr to previous physical malloc_chunk */
 | ||
| 
 | ||
| #define prev_chunk(p) chunk_at_offset((p), -(p)->prev_size)
 | ||
| 
 | ||
| 
 | ||
| /* Treat space at ptr + offset as a chunk */
 | ||
| 
 | ||
| #define chunk_at_offset(p, s)  BOUNDED_1((mchunkptr)(((char*)(p)) + (s)))
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Dealing with use bits
 | ||
| */
 | ||
| 
 | ||
| /* extract p's inuse bit */
 | ||
| 
 | ||
| #define inuse(p) (next_chunk(p)->size & PREV_INUSE)
 | ||
| 
 | ||
| /* extract inuse bit of previous chunk */
 | ||
| 
 | ||
| #define prev_inuse(p)  ((p)->size & PREV_INUSE)
 | ||
| 
 | ||
| /* check for mmap()'ed chunk */
 | ||
| 
 | ||
| #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
 | ||
| 
 | ||
| /* set/clear chunk as in use without otherwise disturbing */
 | ||
| 
 | ||
| #define set_inuse(p) (next_chunk(p)->size |= PREV_INUSE)
 | ||
| 
 | ||
| #define clear_inuse(p) (next_chunk(p)->size &= ~PREV_INUSE)
 | ||
| 
 | ||
| /* check/set/clear inuse bits in known places */
 | ||
| 
 | ||
| #define inuse_bit_at_offset(p, s) \
 | ||
|   (chunk_at_offset((p), (s))->size & PREV_INUSE)
 | ||
| 
 | ||
| #define set_inuse_bit_at_offset(p, s) \
 | ||
|   (chunk_at_offset((p), (s))->size |= PREV_INUSE)
 | ||
| 
 | ||
| #define clear_inuse_bit_at_offset(p, s) \
 | ||
|   (chunk_at_offset((p), (s))->size &= ~(PREV_INUSE))
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Dealing with size fields
 | ||
| */
 | ||
| 
 | ||
| /* Get size, ignoring use bits */
 | ||
| 
 | ||
| #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
 | ||
| 
 | ||
| /* Set size at head, without disturbing its use bit */
 | ||
| 
 | ||
| #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
 | ||
| 
 | ||
| /* Set size/use ignoring previous bits in header */
 | ||
| 
 | ||
| #define set_head(p, s)        ((p)->size = (s))
 | ||
| 
 | ||
| /* Set size at footer (only when chunk is not in use) */
 | ||
| 
 | ||
| #define set_foot(p, s)   (chunk_at_offset(p, s)->prev_size = (s))
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* access macros */
 | ||
| 
 | ||
| #define bin_at(a, i)   BOUNDED_1(_bin_at(a, i))
 | ||
| #define _bin_at(a, i)  ((mbinptr)((char*)&(((a)->av)[2*(i)+2]) - 2*SIZE_SZ))
 | ||
| #define init_bin(a, i) ((a)->av[2*(i)+2] = (a)->av[2*(i)+3] = bin_at((a), (i)))
 | ||
| #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(((arena*)0)->av[0])))
 | ||
| #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(((arena*)0)->av[0])))
 | ||
| 
 | ||
| /*
 | ||
|    The first 2 bins are never indexed. The corresponding av cells are instead
 | ||
|    used for bookkeeping. This is not to save space, but to simplify
 | ||
|    indexing, maintain locality, and avoid some initialization tests.
 | ||
| */
 | ||
| 
 | ||
| #define binblocks(a)      (bin_at(a,0)->size)/* bitvector of nonempty blocks */
 | ||
| #define top(a)            (bin_at(a,0)->fd)  /* The topmost chunk */
 | ||
| #define last_remainder(a) (bin_at(a,1))      /* remainder from last split */
 | ||
| 
 | ||
| /*
 | ||
|    Because top initially points to its own bin with initial
 | ||
|    zero size, thus forcing extension on the first malloc request,
 | ||
|    we avoid having any special code in malloc to check whether
 | ||
|    it even exists yet. But we still need to in malloc_extend_top.
 | ||
| */
 | ||
| 
 | ||
| #define initial_top(a)    ((mchunkptr)bin_at(a, 0))
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* field-extraction macros */
 | ||
| 
 | ||
| #define first(b) ((b)->fd)
 | ||
| #define last(b)  ((b)->bk)
 | ||
| 
 | ||
| /*
 | ||
|   Indexing into bins
 | ||
| */
 | ||
| 
 | ||
| #define bin_index(sz)                                                         \
 | ||
| (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3):\
 | ||
|  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6):\
 | ||
|  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9):\
 | ||
|  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12):\
 | ||
|  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15):\
 | ||
|  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18):\
 | ||
|                                           126)
 | ||
| /*
 | ||
|   bins for chunks < 512 are all spaced 8 bytes apart, and hold
 | ||
|   identically sized chunks. This is exploited in malloc.
 | ||
| */
 | ||
| 
 | ||
| #define MAX_SMALLBIN         63
 | ||
| #define MAX_SMALLBIN_SIZE   512
 | ||
| #define SMALLBIN_WIDTH        8
 | ||
| 
 | ||
| #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
 | ||
| 
 | ||
| /*
 | ||
|    Requests are `small' if both the corresponding and the next bin are small
 | ||
| */
 | ||
| 
 | ||
| #define is_small_request(nb) ((nb) < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|     To help compensate for the large number of bins, a one-level index
 | ||
|     structure is used for bin-by-bin searching.  `binblocks' is a
 | ||
|     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
 | ||
|     have any (possibly) non-empty bins, so they can be skipped over
 | ||
|     all at once during during traversals. The bits are NOT always
 | ||
|     cleared as soon as all bins in a block are empty, but instead only
 | ||
|     when all are noticed to be empty during traversal in malloc.
 | ||
| */
 | ||
| 
 | ||
| #define BINBLOCKWIDTH     4   /* bins per block */
 | ||
| 
 | ||
| /* bin<->block macros */
 | ||
| 
 | ||
| #define idx2binblock(ix)      ((unsigned)1 << ((ix) / BINBLOCKWIDTH))
 | ||
| #define mark_binblock(a, ii)  (binblocks(a) |= idx2binblock(ii))
 | ||
| #define clear_binblock(a, ii) (binblocks(a) &= ~(idx2binblock(ii)))
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Static bookkeeping data */
 | ||
| 
 | ||
| /* Helper macro to initialize bins */
 | ||
| #define IAV(i) _bin_at(&main_arena, i), _bin_at(&main_arena, i)
 | ||
| 
 | ||
| static arena main_arena = {
 | ||
|     {
 | ||
|  0, 0,
 | ||
|  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
 | ||
|  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
 | ||
|  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
 | ||
|  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
 | ||
|  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
 | ||
|  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
 | ||
|  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
 | ||
|  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
 | ||
|  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
 | ||
|  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
 | ||
|  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
 | ||
|  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
 | ||
|  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
 | ||
|  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
 | ||
|  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
 | ||
|  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
 | ||
|     },
 | ||
|     &main_arena, /* next */
 | ||
|     0, /* size */
 | ||
| #if THREAD_STATS
 | ||
|     0, 0, 0, /* stat_lock_direct, stat_lock_loop, stat_lock_wait */
 | ||
| #endif
 | ||
|     MUTEX_INITIALIZER /* mutex */
 | ||
| };
 | ||
| 
 | ||
| #undef IAV
 | ||
| 
 | ||
| /* Thread specific data */
 | ||
| 
 | ||
| static tsd_key_t arena_key;
 | ||
| static mutex_t list_lock = MUTEX_INITIALIZER;
 | ||
| 
 | ||
| #if THREAD_STATS
 | ||
| static int stat_n_heaps;
 | ||
| #define THREAD_STAT(x) x
 | ||
| #else
 | ||
| #define THREAD_STAT(x) do ; while(0)
 | ||
| #endif
 | ||
| 
 | ||
| /* variables holding tunable values */
 | ||
| 
 | ||
| static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
 | ||
| static unsigned long top_pad          = DEFAULT_TOP_PAD;
 | ||
| static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
 | ||
| static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
 | ||
| static int           check_action     = DEFAULT_CHECK_ACTION;
 | ||
| 
 | ||
| /* The first value returned from sbrk */
 | ||
| static char* sbrk_base = (char*)(-1);
 | ||
| 
 | ||
| /* The maximum memory obtained from system via sbrk */
 | ||
| static unsigned long max_sbrked_mem;
 | ||
| 
 | ||
| /* The maximum via either sbrk or mmap (too difficult to track with threads) */
 | ||
| #ifdef NO_THREADS
 | ||
| static unsigned long max_total_mem;
 | ||
| #endif
 | ||
| 
 | ||
| /* The total memory obtained from system via sbrk */
 | ||
| #define sbrked_mem (main_arena.size)
 | ||
| 
 | ||
| /* Tracking mmaps */
 | ||
| 
 | ||
| static unsigned int n_mmaps;
 | ||
| static unsigned int max_n_mmaps;
 | ||
| static unsigned long mmapped_mem;
 | ||
| static unsigned long max_mmapped_mem;
 | ||
| 
 | ||
| /* Mapped memory in non-main arenas (reliable only for NO_THREADS). */
 | ||
| static unsigned long arena_mem;
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| #ifndef _LIBC
 | ||
| #define weak_variable
 | ||
| #else
 | ||
| /* In GNU libc we want the hook variables to be weak definitions to
 | ||
|    avoid a problem with Emacs.  */
 | ||
| #define weak_variable weak_function
 | ||
| #endif
 | ||
| 
 | ||
| /* Already initialized? */
 | ||
| int __malloc_initialized = -1;
 | ||
| 
 | ||
| 
 | ||
| #ifndef NO_THREADS
 | ||
| 
 | ||
| /* Magic value for the thread-specific arena pointer when
 | ||
|    malloc_atfork() is in use.  */
 | ||
| 
 | ||
| #define ATFORK_ARENA_PTR ((Void_t*)-1)
 | ||
| 
 | ||
| /* The following two functions are registered via thread_atfork() to
 | ||
|    make sure that the mutexes remain in a consistent state in the
 | ||
|    fork()ed version of a thread.  Also adapt the malloc and free hooks
 | ||
|    temporarily, because the `atfork' handler mechanism may use
 | ||
|    malloc/free internally (e.g. in LinuxThreads). */
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
| static __malloc_ptr_t (*save_malloc_hook) __MALLOC_P ((size_t __size,
 | ||
| 						       const __malloc_ptr_t));
 | ||
| static void           (*save_free_hook) __MALLOC_P ((__malloc_ptr_t __ptr,
 | ||
| 						     const __malloc_ptr_t));
 | ||
| static Void_t*        save_arena;
 | ||
| #endif
 | ||
| 
 | ||
| static void
 | ||
| ptmalloc_lock_all __MALLOC_P((void))
 | ||
| {
 | ||
|   arena *ar_ptr;
 | ||
| 
 | ||
|   (void)mutex_lock(&list_lock);
 | ||
|   for(ar_ptr = &main_arena;;) {
 | ||
|     (void)mutex_lock(&ar_ptr->mutex);
 | ||
|     ar_ptr = ar_ptr->next;
 | ||
|     if(ar_ptr == &main_arena) break;
 | ||
|   }
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   save_malloc_hook = __malloc_hook;
 | ||
|   save_free_hook = __free_hook;
 | ||
|   __malloc_hook = malloc_atfork;
 | ||
|   __free_hook = free_atfork;
 | ||
|   /* Only the current thread may perform malloc/free calls now. */
 | ||
|   tsd_getspecific(arena_key, save_arena);
 | ||
|   tsd_setspecific(arena_key, ATFORK_ARENA_PTR);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| ptmalloc_unlock_all __MALLOC_P((void))
 | ||
| {
 | ||
|   arena *ar_ptr;
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   tsd_setspecific(arena_key, save_arena);
 | ||
|   __malloc_hook = save_malloc_hook;
 | ||
|   __free_hook = save_free_hook;
 | ||
| #endif
 | ||
|   for(ar_ptr = &main_arena;;) {
 | ||
|     (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|     ar_ptr = ar_ptr->next;
 | ||
|     if(ar_ptr == &main_arena) break;
 | ||
|   }
 | ||
|   (void)mutex_unlock(&list_lock);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| ptmalloc_init_all __MALLOC_P((void))
 | ||
| {
 | ||
|   arena *ar_ptr;
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   tsd_setspecific(arena_key, save_arena);
 | ||
|   __malloc_hook = save_malloc_hook;
 | ||
|   __free_hook = save_free_hook;
 | ||
| #endif
 | ||
|   for(ar_ptr = &main_arena;;) {
 | ||
|     (void)mutex_init(&ar_ptr->mutex);
 | ||
|     ar_ptr = ar_ptr->next;
 | ||
|     if(ar_ptr == &main_arena) break;
 | ||
|   }
 | ||
|   (void)mutex_init(&list_lock);
 | ||
| }
 | ||
| 
 | ||
| #endif /* !defined NO_THREADS */
 | ||
| 
 | ||
| /* Initialization routine. */
 | ||
| #if defined(_LIBC)
 | ||
| #if 0
 | ||
| static void ptmalloc_init __MALLOC_P ((void)) __attribute__ ((constructor));
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
| #include <string.h>
 | ||
| extern char **environ;
 | ||
| 
 | ||
| static char *
 | ||
| internal_function
 | ||
| next_env_entry (char ***position)
 | ||
| {
 | ||
|   char **current = *position;
 | ||
|   char *result = NULL;
 | ||
| 
 | ||
|   while (*current != NULL)
 | ||
|     {
 | ||
|       if (__builtin_expect ((*current)[0] == 'M', 0)
 | ||
| 	  && (*current)[1] == 'A'
 | ||
| 	  && (*current)[2] == 'L'
 | ||
| 	  && (*current)[3] == 'L'
 | ||
| 	  && (*current)[4] == 'O'
 | ||
| 	  && (*current)[5] == 'C'
 | ||
| 	  && (*current)[6] == '_')
 | ||
| 	{
 | ||
| 	  result = &(*current)[7];
 | ||
| 
 | ||
| 	  /* Save current position for next visit.  */
 | ||
| 	  *position = ++current;
 | ||
| 
 | ||
| 	  break;
 | ||
| 	}
 | ||
| 
 | ||
|       ++current;
 | ||
|     }
 | ||
| 
 | ||
|   return result;
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| static void
 | ||
| ptmalloc_init __MALLOC_P((void))
 | ||
| #else
 | ||
| void
 | ||
| ptmalloc_init __MALLOC_P((void))
 | ||
| #endif
 | ||
| {
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
| # if __STD_C
 | ||
|   const char* s;
 | ||
| # else
 | ||
|   char* s;
 | ||
| # endif
 | ||
| #endif
 | ||
|   int secure;
 | ||
| 
 | ||
|   if(__malloc_initialized >= 0) return;
 | ||
|   __malloc_initialized = 0;
 | ||
| #ifdef _LIBC
 | ||
|   __libc_pagesize = __getpagesize();
 | ||
| #endif
 | ||
| #ifndef NO_THREADS
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   /* With some threads implementations, creating thread-specific data
 | ||
|      or initializing a mutex may call malloc() itself.  Provide a
 | ||
|      simple starter version (realloc() won't work). */
 | ||
|   save_malloc_hook = __malloc_hook;
 | ||
|   save_free_hook = __free_hook;
 | ||
|   __malloc_hook = malloc_starter;
 | ||
|   __free_hook = free_starter;
 | ||
| #endif
 | ||
| #ifdef _LIBC
 | ||
|   /* Initialize the pthreads interface. */
 | ||
|   if (__pthread_initialize != NULL)
 | ||
|     __pthread_initialize();
 | ||
| #endif
 | ||
| #endif /* !defined NO_THREADS */
 | ||
|   mutex_init(&main_arena.mutex);
 | ||
|   mutex_init(&list_lock);
 | ||
|   tsd_key_create(&arena_key, NULL);
 | ||
|   tsd_setspecific(arena_key, (Void_t *)&main_arena);
 | ||
|   thread_atfork(ptmalloc_lock_all, ptmalloc_unlock_all, ptmalloc_init_all);
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
| #ifndef NO_THREADS
 | ||
|   __malloc_hook = save_malloc_hook;
 | ||
|   __free_hook = save_free_hook;
 | ||
| #endif
 | ||
|   secure = __libc_enable_secure;
 | ||
| #ifdef _LIBC
 | ||
|   s = NULL;
 | ||
|   if (environ != NULL)
 | ||
|     {
 | ||
|       char **runp = environ;
 | ||
|       char *envline;
 | ||
| 
 | ||
|       while (__builtin_expect ((envline = next_env_entry (&runp)) != NULL, 0))
 | ||
| 	{
 | ||
| 	  size_t len = strcspn (envline, "=");
 | ||
| 
 | ||
| 	  if (envline[len] != '=')
 | ||
| 	    /* This is a "MALLOC_" variable at the end of the string
 | ||
| 	       without a '=' character.  Ignore it since otherwise we
 | ||
| 	       will access invalid memory below.  */
 | ||
| 	    continue;
 | ||
| 
 | ||
| 	  switch (len)
 | ||
| 	    {
 | ||
| 	    case 6:
 | ||
| 	      if (memcmp (envline, "CHECK_", 6) == 0)
 | ||
| 		s = &envline[7];
 | ||
| 	      break;
 | ||
| 	    case 8:
 | ||
| 	      if (! secure && memcmp (envline, "TOP_PAD_", 8) == 0)
 | ||
| 		mALLOPt(M_TOP_PAD, atoi(&envline[9]));
 | ||
| 	      break;
 | ||
| 	    case 9:
 | ||
| 	      if (! secure && memcmp (envline, "MMAP_MAX_", 9) == 0)
 | ||
| 		mALLOPt(M_MMAP_MAX, atoi(&envline[10]));
 | ||
| 	      break;
 | ||
| 	    case 15:
 | ||
| 	      if (! secure)
 | ||
| 		{
 | ||
| 		  if (memcmp (envline, "TRIM_THRESHOLD_", 15) == 0)
 | ||
| 		    mALLOPt(M_TRIM_THRESHOLD, atoi(&envline[16]));
 | ||
| 		  else if (memcmp (envline, "MMAP_THRESHOLD_", 15) == 0)
 | ||
| 		    mALLOPt(M_MMAP_THRESHOLD, atoi(&envline[16]));
 | ||
| 		}
 | ||
| 	      break;
 | ||
| 	    default:
 | ||
| 	      break;
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
| #else
 | ||
|   if (! secure)
 | ||
|     {
 | ||
|       if((s = getenv("MALLOC_TRIM_THRESHOLD_")))
 | ||
| 	mALLOPt(M_TRIM_THRESHOLD, atoi(s));
 | ||
|       if((s = getenv("MALLOC_TOP_PAD_")))
 | ||
| 	mALLOPt(M_TOP_PAD, atoi(s));
 | ||
|       if((s = getenv("MALLOC_MMAP_THRESHOLD_")))
 | ||
| 	mALLOPt(M_MMAP_THRESHOLD, atoi(s));
 | ||
|       if((s = getenv("MALLOC_MMAP_MAX_")))
 | ||
| 	mALLOPt(M_MMAP_MAX, atoi(s));
 | ||
|     }
 | ||
|   s = getenv("MALLOC_CHECK_");
 | ||
| #endif
 | ||
|   if(s) {
 | ||
|     if(s[0]) mALLOPt(M_CHECK_ACTION, (int)(s[0] - '0'));
 | ||
|     __malloc_check_init();
 | ||
|   }
 | ||
|   if(__malloc_initialize_hook != NULL)
 | ||
|     (*__malloc_initialize_hook)();
 | ||
| #endif
 | ||
|   __malloc_initialized = 1;
 | ||
| }
 | ||
| 
 | ||
| /* There are platforms (e.g. Hurd) with a link-time hook mechanism. */
 | ||
| #ifdef thread_atfork_static
 | ||
| thread_atfork_static(ptmalloc_lock_all, ptmalloc_unlock_all, \
 | ||
|                      ptmalloc_init_all)
 | ||
| #endif
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
| 
 | ||
| /* Hooks for debugging versions.  The initial hooks just call the
 | ||
|    initialization routine, then do the normal work. */
 | ||
| 
 | ||
| static Void_t*
 | ||
| #if __STD_C
 | ||
| malloc_hook_ini(size_t sz, const __malloc_ptr_t caller)
 | ||
| #else
 | ||
| malloc_hook_ini(sz, caller)
 | ||
|      size_t sz; const __malloc_ptr_t caller;
 | ||
| #endif
 | ||
| {
 | ||
|   __malloc_hook = NULL;
 | ||
|   ptmalloc_init();
 | ||
|   return mALLOc(sz);
 | ||
| }
 | ||
| 
 | ||
| static Void_t*
 | ||
| #if __STD_C
 | ||
| realloc_hook_ini(Void_t* ptr, size_t sz, const __malloc_ptr_t caller)
 | ||
| #else
 | ||
| realloc_hook_ini(ptr, sz, caller)
 | ||
|      Void_t* ptr; size_t sz; const __malloc_ptr_t caller;
 | ||
| #endif
 | ||
| {
 | ||
|   __malloc_hook = NULL;
 | ||
|   __realloc_hook = NULL;
 | ||
|   ptmalloc_init();
 | ||
|   return rEALLOc(ptr, sz);
 | ||
| }
 | ||
| 
 | ||
| static Void_t*
 | ||
| #if __STD_C
 | ||
| memalign_hook_ini(size_t alignment, size_t sz, const __malloc_ptr_t caller)
 | ||
| #else
 | ||
| memalign_hook_ini(alignment, sz, caller)
 | ||
|      size_t alignment; size_t sz; const __malloc_ptr_t caller;
 | ||
| #endif
 | ||
| {
 | ||
|   __memalign_hook = NULL;
 | ||
|   ptmalloc_init();
 | ||
|   return mEMALIGn(alignment, sz);
 | ||
| }
 | ||
| 
 | ||
| void weak_variable (*__malloc_initialize_hook) __MALLOC_P ((void)) = NULL;
 | ||
| void weak_variable (*__free_hook) __MALLOC_P ((__malloc_ptr_t __ptr,
 | ||
| 					       const __malloc_ptr_t)) = NULL;
 | ||
| __malloc_ptr_t weak_variable (*__malloc_hook)
 | ||
|  __MALLOC_P ((size_t __size, const __malloc_ptr_t)) = malloc_hook_ini;
 | ||
| __malloc_ptr_t weak_variable (*__realloc_hook)
 | ||
|  __MALLOC_P ((__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t))
 | ||
|      = realloc_hook_ini;
 | ||
| __malloc_ptr_t weak_variable (*__memalign_hook)
 | ||
|  __MALLOC_P ((size_t __alignment, size_t __size, const __malloc_ptr_t))
 | ||
|      = memalign_hook_ini;
 | ||
| void weak_variable (*__after_morecore_hook) __MALLOC_P ((void)) = NULL;
 | ||
| 
 | ||
| /* Whether we are using malloc checking.  */
 | ||
| static int using_malloc_checking;
 | ||
| 
 | ||
| /* A flag that is set by malloc_set_state, to signal that malloc checking
 | ||
|    must not be enabled on the request from the user (via the MALLOC_CHECK_
 | ||
|    environment variable).  It is reset by __malloc_check_init to tell
 | ||
|    malloc_set_state that the user has requested malloc checking.
 | ||
| 
 | ||
|    The purpose of this flag is to make sure that malloc checking is not
 | ||
|    enabled when the heap to be restored was constructed without malloc
 | ||
|    checking, and thus does not contain the required magic bytes.
 | ||
|    Otherwise the heap would be corrupted by calls to free and realloc.  If
 | ||
|    it turns out that the heap was created with malloc checking and the
 | ||
|    user has requested it malloc_set_state just calls __malloc_check_init
 | ||
|    again to enable it.  On the other hand, reusing such a heap without
 | ||
|    further malloc checking is safe.  */
 | ||
| static int disallow_malloc_check;
 | ||
| 
 | ||
| /* Activate a standard set of debugging hooks. */
 | ||
| void
 | ||
| __malloc_check_init()
 | ||
| {
 | ||
|   if (disallow_malloc_check) {
 | ||
|     disallow_malloc_check = 0;
 | ||
|     return;
 | ||
|   }
 | ||
|   using_malloc_checking = 1;
 | ||
|   __malloc_hook = malloc_check;
 | ||
|   __free_hook = free_check;
 | ||
|   __realloc_hook = realloc_check;
 | ||
|   __memalign_hook = memalign_check;
 | ||
|   if(check_action & 1)
 | ||
|     fprintf(stderr, "malloc: using debugging hooks\n");
 | ||
| }
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Routines dealing with mmap(). */
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
| 
 | ||
| #ifndef MAP_ANONYMOUS
 | ||
| 
 | ||
| static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
 | ||
| 
 | ||
| #define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
 | ||
|  (dev_zero_fd = open("/dev/zero", O_RDWR), \
 | ||
|   mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
 | ||
|    mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
 | ||
| 
 | ||
| #else
 | ||
| 
 | ||
| #define MMAP(addr, size, prot, flags) \
 | ||
|  (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| #if defined __GNUC__ && __GNUC__ >= 2
 | ||
| /* This function is only called from one place, inline it.  */
 | ||
| __inline__
 | ||
| #endif
 | ||
| static mchunkptr
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| mmap_chunk(size_t size)
 | ||
| #else
 | ||
| mmap_chunk(size) size_t size;
 | ||
| #endif
 | ||
| {
 | ||
|   size_t page_mask = malloc_getpagesize - 1;
 | ||
|   mchunkptr p;
 | ||
| 
 | ||
|   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
 | ||
|    * there is no following chunk whose prev_size field could be used.
 | ||
|    */
 | ||
|   size = (size + SIZE_SZ + page_mask) & ~page_mask;
 | ||
| 
 | ||
|   p = (mchunkptr)MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE);
 | ||
|   if(p == (mchunkptr) MAP_FAILED) return 0;
 | ||
| 
 | ||
|   n_mmaps++;
 | ||
|   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
 | ||
| 
 | ||
|   /* We demand that eight bytes into a page must be 8-byte aligned. */
 | ||
|   assert(aligned_OK(chunk2mem(p)));
 | ||
| 
 | ||
|   /* The offset to the start of the mmapped region is stored
 | ||
|    * in the prev_size field of the chunk; normally it is zero,
 | ||
|    * but that can be changed in memalign().
 | ||
|    */
 | ||
|   p->prev_size = 0;
 | ||
|   set_head(p, size|IS_MMAPPED);
 | ||
| 
 | ||
|   mmapped_mem += size;
 | ||
|   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
 | ||
|     max_mmapped_mem = mmapped_mem;
 | ||
| #ifdef NO_THREADS
 | ||
|   if ((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
 | ||
|     max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
 | ||
| #endif
 | ||
|   return p;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| munmap_chunk(mchunkptr p)
 | ||
| #else
 | ||
| munmap_chunk(p) mchunkptr p;
 | ||
| #endif
 | ||
| {
 | ||
|   INTERNAL_SIZE_T size = chunksize(p);
 | ||
|   int ret;
 | ||
| 
 | ||
|   assert (chunk_is_mmapped(p));
 | ||
|   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
 | ||
|   assert((n_mmaps > 0));
 | ||
|   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
 | ||
| 
 | ||
|   n_mmaps--;
 | ||
|   mmapped_mem -= (size + p->prev_size);
 | ||
| 
 | ||
|   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
 | ||
| 
 | ||
|   /* munmap returns non-zero on failure */
 | ||
|   assert(ret == 0);
 | ||
| }
 | ||
| 
 | ||
| #if HAVE_MREMAP
 | ||
| 
 | ||
| static mchunkptr
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| mremap_chunk(mchunkptr p, size_t new_size)
 | ||
| #else
 | ||
| mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
 | ||
| #endif
 | ||
| {
 | ||
|   size_t page_mask = malloc_getpagesize - 1;
 | ||
|   INTERNAL_SIZE_T offset = p->prev_size;
 | ||
|   INTERNAL_SIZE_T size = chunksize(p);
 | ||
|   char *cp;
 | ||
| 
 | ||
|   assert (chunk_is_mmapped(p));
 | ||
|   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
 | ||
|   assert((n_mmaps > 0));
 | ||
|   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
 | ||
| 
 | ||
|   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
 | ||
|   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
 | ||
| 
 | ||
|   cp = (char *)mremap((char *)p - offset, size + offset, new_size,
 | ||
|                       MREMAP_MAYMOVE);
 | ||
| 
 | ||
|   if (cp == MAP_FAILED) return 0;
 | ||
| 
 | ||
|   p = (mchunkptr)(cp + offset);
 | ||
| 
 | ||
|   assert(aligned_OK(chunk2mem(p)));
 | ||
| 
 | ||
|   assert((p->prev_size == offset));
 | ||
|   set_head(p, (new_size - offset)|IS_MMAPPED);
 | ||
| 
 | ||
|   mmapped_mem -= size + offset;
 | ||
|   mmapped_mem += new_size;
 | ||
|   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
 | ||
|     max_mmapped_mem = mmapped_mem;
 | ||
| #ifdef NO_THREADS
 | ||
|   if ((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
 | ||
|     max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
 | ||
| #endif
 | ||
|   return p;
 | ||
| }
 | ||
| 
 | ||
| #endif /* HAVE_MREMAP */
 | ||
| 
 | ||
| #endif /* HAVE_MMAP */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Managing heaps and arenas (for concurrent threads) */
 | ||
| 
 | ||
| #if USE_ARENAS
 | ||
| 
 | ||
| /* Create a new heap.  size is automatically rounded up to a multiple
 | ||
|    of the page size. */
 | ||
| 
 | ||
| static heap_info *
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| new_heap(size_t size)
 | ||
| #else
 | ||
| new_heap(size) size_t size;
 | ||
| #endif
 | ||
| {
 | ||
|   size_t page_mask = malloc_getpagesize - 1;
 | ||
|   char *p1, *p2;
 | ||
|   unsigned long ul;
 | ||
|   heap_info *h;
 | ||
| 
 | ||
|   if(size+top_pad < HEAP_MIN_SIZE)
 | ||
|     size = HEAP_MIN_SIZE;
 | ||
|   else if(size+top_pad <= HEAP_MAX_SIZE)
 | ||
|     size += top_pad;
 | ||
|   else if(size > HEAP_MAX_SIZE)
 | ||
|     return 0;
 | ||
|   else
 | ||
|     size = HEAP_MAX_SIZE;
 | ||
|   size = (size + page_mask) & ~page_mask;
 | ||
| 
 | ||
|   /* A memory region aligned to a multiple of HEAP_MAX_SIZE is needed.
 | ||
|      No swap space needs to be reserved for the following large
 | ||
|      mapping (on Linux, this is the case for all non-writable mappings
 | ||
|      anyway). */
 | ||
|   p1 = (char *)MMAP(0, HEAP_MAX_SIZE<<1, PROT_NONE, MAP_PRIVATE|MAP_NORESERVE);
 | ||
|   if(p1 != MAP_FAILED) {
 | ||
|     p2 = (char *)(((unsigned long)p1 + (HEAP_MAX_SIZE-1)) & ~(HEAP_MAX_SIZE-1));
 | ||
|     ul = p2 - p1;
 | ||
|     if (ul)
 | ||
|       munmap(p1, ul);
 | ||
|     munmap(p2 + HEAP_MAX_SIZE, HEAP_MAX_SIZE - ul);
 | ||
|   } else {
 | ||
|     /* Try to take the chance that an allocation of only HEAP_MAX_SIZE
 | ||
|        is already aligned. */
 | ||
|     p2 = (char *)MMAP(0, HEAP_MAX_SIZE, PROT_NONE, MAP_PRIVATE|MAP_NORESERVE);
 | ||
|     if(p2 == MAP_FAILED)
 | ||
|       return 0;
 | ||
|     if((unsigned long)p2 & (HEAP_MAX_SIZE-1)) {
 | ||
|       munmap(p2, HEAP_MAX_SIZE);
 | ||
|       return 0;
 | ||
|     }
 | ||
|   }
 | ||
|   if(MMAP(p2, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED)
 | ||
|      == (char *) MAP_FAILED) {
 | ||
|     munmap(p2, HEAP_MAX_SIZE);
 | ||
|     return 0;
 | ||
|   }
 | ||
|   h = (heap_info *)p2;
 | ||
|   h->size = size;
 | ||
|   THREAD_STAT(stat_n_heaps++);
 | ||
|   return h;
 | ||
| }
 | ||
| 
 | ||
| /* Grow or shrink a heap.  size is automatically rounded up to a
 | ||
|    multiple of the page size if it is positive. */
 | ||
| 
 | ||
| static int
 | ||
| #if __STD_C
 | ||
| grow_heap(heap_info *h, long diff)
 | ||
| #else
 | ||
| grow_heap(h, diff) heap_info *h; long diff;
 | ||
| #endif
 | ||
| {
 | ||
|   size_t page_mask = malloc_getpagesize - 1;
 | ||
|   long new_size;
 | ||
| 
 | ||
|   if(diff >= 0) {
 | ||
|     diff = (diff + page_mask) & ~page_mask;
 | ||
|     new_size = (long)h->size + diff;
 | ||
|     if(new_size > HEAP_MAX_SIZE)
 | ||
|       return -1;
 | ||
|     if(MMAP((char *)h + h->size, diff, PROT_READ|PROT_WRITE,
 | ||
| 	    MAP_PRIVATE|MAP_FIXED) == (char *) MAP_FAILED)
 | ||
|       return -2;
 | ||
|   } else {
 | ||
|     new_size = (long)h->size + diff;
 | ||
|     if(new_size < (long)sizeof(*h))
 | ||
|       return -1;
 | ||
|     /* Try to re-map the extra heap space freshly to save memory, and
 | ||
|        make it inaccessible. */
 | ||
|     if((char *)MMAP((char *)h + new_size, -diff, PROT_NONE,
 | ||
|                     MAP_PRIVATE|MAP_FIXED) == (char *) MAP_FAILED)
 | ||
|       return -2;
 | ||
|   }
 | ||
|   h->size = new_size;
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Delete a heap. */
 | ||
| 
 | ||
| #define delete_heap(heap) munmap((char*)(heap), HEAP_MAX_SIZE)
 | ||
| 
 | ||
| /* arena_get() acquires an arena and locks the corresponding mutex.
 | ||
|    First, try the one last locked successfully by this thread.  (This
 | ||
|    is the common case and handled with a macro for speed.)  Then, loop
 | ||
|    once over the circularly linked list of arenas.  If no arena is
 | ||
|    readily available, create a new one.  In this latter case, `size'
 | ||
|    is just a hint as to how much memory will be required immediately
 | ||
|    in the new arena. */
 | ||
| 
 | ||
| #define arena_get(ptr, size) do { \
 | ||
|   Void_t *vptr = NULL; \
 | ||
|   ptr = (arena *)tsd_getspecific(arena_key, vptr); \
 | ||
|   if(ptr && !mutex_trylock(&ptr->mutex)) { \
 | ||
|     THREAD_STAT(++(ptr->stat_lock_direct)); \
 | ||
|   } else \
 | ||
|     ptr = arena_get2(ptr, (size)); \
 | ||
| } while(0)
 | ||
| 
 | ||
| static arena *
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| arena_get2(arena *a_tsd, size_t size)
 | ||
| #else
 | ||
| arena_get2(a_tsd, size) arena *a_tsd; size_t size;
 | ||
| #endif
 | ||
| {
 | ||
|   arena *a;
 | ||
|   heap_info *h;
 | ||
|   char *ptr;
 | ||
|   int i;
 | ||
|   unsigned long misalign;
 | ||
| 
 | ||
|   if(!a_tsd)
 | ||
|     a = a_tsd = &main_arena;
 | ||
|   else {
 | ||
|     a = a_tsd->next;
 | ||
|     if(!a) {
 | ||
|       /* This can only happen while initializing the new arena. */
 | ||
|       (void)mutex_lock(&main_arena.mutex);
 | ||
|       THREAD_STAT(++(main_arena.stat_lock_wait));
 | ||
|       return &main_arena;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   /* Check the global, circularly linked list for available arenas. */
 | ||
|  repeat:
 | ||
|   do {
 | ||
|     if(!mutex_trylock(&a->mutex)) {
 | ||
|       THREAD_STAT(++(a->stat_lock_loop));
 | ||
|       tsd_setspecific(arena_key, (Void_t *)a);
 | ||
|       return a;
 | ||
|     }
 | ||
|     a = a->next;
 | ||
|   } while(a != a_tsd);
 | ||
| 
 | ||
|   /* If not even the list_lock can be obtained, try again.  This can
 | ||
|      happen during `atfork', or for example on systems where thread
 | ||
|      creation makes it temporarily impossible to obtain _any_
 | ||
|      locks. */
 | ||
|   if(mutex_trylock(&list_lock)) {
 | ||
|     a = a_tsd;
 | ||
|     goto repeat;
 | ||
|   }
 | ||
|   (void)mutex_unlock(&list_lock);
 | ||
| 
 | ||
|   /* Nothing immediately available, so generate a new arena. */
 | ||
|   h = new_heap(size + (sizeof(*h) + sizeof(*a) + MALLOC_ALIGNMENT));
 | ||
|   if(!h) {
 | ||
|     /* Maybe size is too large to fit in a single heap.  So, just try
 | ||
|        to create a minimally-sized arena and let chunk_alloc() attempt
 | ||
|        to deal with the large request via mmap_chunk(). */
 | ||
|     h = new_heap(sizeof(*h) + sizeof(*a) + MALLOC_ALIGNMENT);
 | ||
|     if(!h)
 | ||
|       return 0;
 | ||
|   }
 | ||
|   a = h->ar_ptr = (arena *)(h+1);
 | ||
|   for(i=0; i<NAV; i++)
 | ||
|     init_bin(a, i);
 | ||
|   a->next = NULL;
 | ||
|   a->size = h->size;
 | ||
|   arena_mem += h->size;
 | ||
| #ifdef NO_THREADS
 | ||
|   if((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
 | ||
|     max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
 | ||
| #endif
 | ||
|   tsd_setspecific(arena_key, (Void_t *)a);
 | ||
|   mutex_init(&a->mutex);
 | ||
|   i = mutex_lock(&a->mutex); /* remember result */
 | ||
| 
 | ||
|   /* Set up the top chunk, with proper alignment. */
 | ||
|   ptr = (char *)(a + 1);
 | ||
|   misalign = (unsigned long)chunk2mem(ptr) & MALLOC_ALIGN_MASK;
 | ||
|   if (misalign > 0)
 | ||
|     ptr += MALLOC_ALIGNMENT - misalign;
 | ||
|   top(a) = (mchunkptr)ptr;
 | ||
|   set_head(top(a), (((char*)h + h->size) - ptr) | PREV_INUSE);
 | ||
| 
 | ||
|   /* Add the new arena to the list. */
 | ||
|   (void)mutex_lock(&list_lock);
 | ||
|   a->next = main_arena.next;
 | ||
|   main_arena.next = a;
 | ||
|   (void)mutex_unlock(&list_lock);
 | ||
| 
 | ||
|   if(i) /* locking failed; keep arena for further attempts later */
 | ||
|     return 0;
 | ||
| 
 | ||
|   THREAD_STAT(++(a->stat_lock_loop));
 | ||
|   return a;
 | ||
| }
 | ||
| 
 | ||
| /* find the heap and corresponding arena for a given ptr */
 | ||
| 
 | ||
| #define heap_for_ptr(ptr) \
 | ||
|  ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1)))
 | ||
| #define arena_for_ptr(ptr) \
 | ||
|  (((mchunkptr)(ptr) < top(&main_arena) && (char *)(ptr) >= sbrk_base) ? \
 | ||
|   &main_arena : heap_for_ptr(ptr)->ar_ptr)
 | ||
| 
 | ||
| #else /* !USE_ARENAS */
 | ||
| 
 | ||
| /* There is only one arena, main_arena. */
 | ||
| 
 | ||
| #define arena_get(ptr, sz) (ptr = &main_arena)
 | ||
| #define arena_for_ptr(ptr) (&main_arena)
 | ||
| 
 | ||
| #endif /* USE_ARENAS */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Debugging support
 | ||
| */
 | ||
| 
 | ||
| #if MALLOC_DEBUG
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   These routines make a number of assertions about the states
 | ||
|   of data structures that should be true at all times. If any
 | ||
|   are not true, it's very likely that a user program has somehow
 | ||
|   trashed memory. (It's also possible that there is a coding error
 | ||
|   in malloc. In which case, please report it!)
 | ||
| */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| static void do_check_chunk(arena *ar_ptr, mchunkptr p)
 | ||
| #else
 | ||
| static void do_check_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
 | ||
| #endif
 | ||
| {
 | ||
|   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 | ||
| 
 | ||
|   /* No checkable chunk is mmapped */
 | ||
|   assert(!chunk_is_mmapped(p));
 | ||
| 
 | ||
| #if USE_ARENAS
 | ||
|   if(ar_ptr != &main_arena) {
 | ||
|     heap_info *heap = heap_for_ptr(p);
 | ||
|     assert(heap->ar_ptr == ar_ptr);
 | ||
|     if(p != top(ar_ptr))
 | ||
|       assert((char *)p + sz <= (char *)heap + heap->size);
 | ||
|     else
 | ||
|       assert((char *)p + sz == (char *)heap + heap->size);
 | ||
|     return;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   /* Check for legal address ... */
 | ||
|   assert((char*)p >= sbrk_base);
 | ||
|   if (p != top(ar_ptr))
 | ||
|     assert((char*)p + sz <= (char*)top(ar_ptr));
 | ||
|   else
 | ||
|     assert((char*)p + sz <= sbrk_base + sbrked_mem);
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| #if __STD_C
 | ||
| static void do_check_free_chunk(arena *ar_ptr, mchunkptr p)
 | ||
| #else
 | ||
| static void do_check_free_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
 | ||
| #endif
 | ||
| {
 | ||
|   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 | ||
|   mchunkptr next = chunk_at_offset(p, sz);
 | ||
| 
 | ||
|   do_check_chunk(ar_ptr, p);
 | ||
| 
 | ||
|   /* Check whether it claims to be free ... */
 | ||
|   assert(!inuse(p));
 | ||
| 
 | ||
|   /* Must have OK size and fields */
 | ||
|   assert((long)sz >= (long)MINSIZE);
 | ||
|   assert((sz & MALLOC_ALIGN_MASK) == 0);
 | ||
|   assert(aligned_OK(chunk2mem(p)));
 | ||
|   /* ... matching footer field */
 | ||
|   assert(next->prev_size == sz);
 | ||
|   /* ... and is fully consolidated */
 | ||
|   assert(prev_inuse(p));
 | ||
|   assert (next == top(ar_ptr) || inuse(next));
 | ||
| 
 | ||
|   /* ... and has minimally sane links */
 | ||
|   assert(p->fd->bk == p);
 | ||
|   assert(p->bk->fd == p);
 | ||
| }
 | ||
| 
 | ||
| #if __STD_C
 | ||
| static void do_check_inuse_chunk(arena *ar_ptr, mchunkptr p)
 | ||
| #else
 | ||
| static void do_check_inuse_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr next = next_chunk(p);
 | ||
|   do_check_chunk(ar_ptr, p);
 | ||
| 
 | ||
|   /* Check whether it claims to be in use ... */
 | ||
|   assert(inuse(p));
 | ||
| 
 | ||
|   /* ... whether its size is OK (it might be a fencepost) ... */
 | ||
|   assert(chunksize(p) >= MINSIZE || next->size == (0|PREV_INUSE));
 | ||
| 
 | ||
|   /* ... and is surrounded by OK chunks.
 | ||
|     Since more things can be checked with free chunks than inuse ones,
 | ||
|     if an inuse chunk borders them and debug is on, it's worth doing them.
 | ||
|   */
 | ||
|   if (!prev_inuse(p))
 | ||
|   {
 | ||
|     mchunkptr prv = prev_chunk(p);
 | ||
|     assert(next_chunk(prv) == p);
 | ||
|     do_check_free_chunk(ar_ptr, prv);
 | ||
|   }
 | ||
|   if (next == top(ar_ptr))
 | ||
|   {
 | ||
|     assert(prev_inuse(next));
 | ||
|     assert(chunksize(next) >= MINSIZE);
 | ||
|   }
 | ||
|   else if (!inuse(next))
 | ||
|     do_check_free_chunk(ar_ptr, next);
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| #if __STD_C
 | ||
| static void do_check_malloced_chunk(arena *ar_ptr,
 | ||
|                                     mchunkptr p, INTERNAL_SIZE_T s)
 | ||
| #else
 | ||
| static void do_check_malloced_chunk(ar_ptr, p, s)
 | ||
| arena *ar_ptr; mchunkptr p; INTERNAL_SIZE_T s;
 | ||
| #endif
 | ||
| {
 | ||
|   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
 | ||
|   long room = sz - s;
 | ||
| 
 | ||
|   do_check_inuse_chunk(ar_ptr, p);
 | ||
| 
 | ||
|   /* Legal size ... */
 | ||
|   assert((long)sz >= (long)MINSIZE);
 | ||
|   assert((sz & MALLOC_ALIGN_MASK) == 0);
 | ||
|   assert(room >= 0);
 | ||
|   assert(room < (long)MINSIZE);
 | ||
| 
 | ||
|   /* ... and alignment */
 | ||
|   assert(aligned_OK(chunk2mem(p)));
 | ||
| 
 | ||
| 
 | ||
|   /* ... and was allocated at front of an available chunk */
 | ||
|   assert(prev_inuse(p));
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| #define check_free_chunk(A,P) do_check_free_chunk(A,P)
 | ||
| #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
 | ||
| #define check_chunk(A,P) do_check_chunk(A,P)
 | ||
| #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
 | ||
| #else
 | ||
| #define check_free_chunk(A,P)
 | ||
| #define check_inuse_chunk(A,P)
 | ||
| #define check_chunk(A,P)
 | ||
| #define check_malloced_chunk(A,P,N)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Macro-based internal utilities
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Linking chunks in bin lists.
 | ||
|   Call these only with variables, not arbitrary expressions, as arguments.
 | ||
| */
 | ||
| 
 | ||
| /*
 | ||
|   Place chunk p of size s in its bin, in size order,
 | ||
|   putting it ahead of others of same size.
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #define frontlink(A, P, S, IDX, BK, FD)                                       \
 | ||
| {                                                                             \
 | ||
|   if (S < MAX_SMALLBIN_SIZE)                                                  \
 | ||
|   {                                                                           \
 | ||
|     IDX = smallbin_index(S);                                                  \
 | ||
|     mark_binblock(A, IDX);                                                    \
 | ||
|     BK = bin_at(A, IDX);                                                      \
 | ||
|     FD = BK->fd;                                                              \
 | ||
|     P->bk = BK;                                                               \
 | ||
|     P->fd = FD;                                                               \
 | ||
|     FD->bk = BK->fd = P;                                                      \
 | ||
|   }                                                                           \
 | ||
|   else                                                                        \
 | ||
|   {                                                                           \
 | ||
|     IDX = bin_index(S);                                                       \
 | ||
|     BK = bin_at(A, IDX);                                                      \
 | ||
|     FD = BK->fd;                                                              \
 | ||
|     if (FD == BK) mark_binblock(A, IDX);                                      \
 | ||
|     else                                                                      \
 | ||
|     {                                                                         \
 | ||
|       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
 | ||
|       BK = FD->bk;                                                            \
 | ||
|     }                                                                         \
 | ||
|     P->bk = BK;                                                               \
 | ||
|     P->fd = FD;                                                               \
 | ||
|     FD->bk = BK->fd = P;                                                      \
 | ||
|   }                                                                           \
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* take a chunk off a list */
 | ||
| 
 | ||
| #define unlink(P, BK, FD)                                                     \
 | ||
| {                                                                             \
 | ||
|   BK = P->bk;                                                                 \
 | ||
|   FD = P->fd;                                                                 \
 | ||
|   FD->bk = BK;                                                                \
 | ||
|   BK->fd = FD;                                                                \
 | ||
| }                                                                             \
 | ||
| 
 | ||
| /* Place p as the last remainder */
 | ||
| 
 | ||
| #define link_last_remainder(A, P)                                             \
 | ||
| {                                                                             \
 | ||
|   last_remainder(A)->fd = last_remainder(A)->bk = P;                          \
 | ||
|   P->fd = P->bk = last_remainder(A);                                          \
 | ||
| }
 | ||
| 
 | ||
| /* Clear the last_remainder bin */
 | ||
| 
 | ||
| #define clear_last_remainder(A) \
 | ||
|   (last_remainder(A)->fd = last_remainder(A)->bk = last_remainder(A))
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Extend the top-most chunk by obtaining memory from system.
 | ||
|   Main interface to sbrk (but see also malloc_trim).
 | ||
| */
 | ||
| 
 | ||
| #if defined __GNUC__ && __GNUC__ >= 2
 | ||
| /* This function is called only from one place, inline it.  */
 | ||
| __inline__
 | ||
| #endif
 | ||
| static void
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| malloc_extend_top(arena *ar_ptr, INTERNAL_SIZE_T nb)
 | ||
| #else
 | ||
| malloc_extend_top(ar_ptr, nb) arena *ar_ptr; INTERNAL_SIZE_T nb;
 | ||
| #endif
 | ||
| {
 | ||
|   unsigned long pagesz   = malloc_getpagesize;
 | ||
|   mchunkptr old_top      = top(ar_ptr);        /* Record state of old top */
 | ||
|   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
 | ||
|   INTERNAL_SIZE_T top_size;                    /* new size of top chunk */
 | ||
| 
 | ||
| #if USE_ARENAS
 | ||
|   if(ar_ptr == &main_arena) {
 | ||
| #endif
 | ||
| 
 | ||
|     char*     brk;                  /* return value from sbrk */
 | ||
|     INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
 | ||
|     INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
 | ||
|     char*     new_brk;              /* return of 2nd sbrk call */
 | ||
|     char*     old_end = (char*)(chunk_at_offset(old_top, old_top_size));
 | ||
| 
 | ||
|     /* Pad request with top_pad plus minimal overhead */
 | ||
|     INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
 | ||
| 
 | ||
|     /* If not the first time through, round to preserve page boundary */
 | ||
|     /* Otherwise, we need to correct to a page size below anyway. */
 | ||
|     /* (We also correct below if an intervening foreign sbrk call.) */
 | ||
| 
 | ||
|     if (sbrk_base != (char*)(-1))
 | ||
|       sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
 | ||
| 
 | ||
|     brk = (char*)(MORECORE (sbrk_size));
 | ||
| 
 | ||
|     /* Fail if sbrk failed or if a foreign sbrk call killed our space */
 | ||
|     if (brk == (char*)(MORECORE_FAILURE) ||
 | ||
|         (brk < old_end && old_top != initial_top(&main_arena)))
 | ||
|       return;
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|     /* Call the `morecore' hook if necessary.  */
 | ||
|     if (__after_morecore_hook)
 | ||
|       (*__after_morecore_hook) ();
 | ||
| #endif
 | ||
| 
 | ||
|     sbrked_mem += sbrk_size;
 | ||
| 
 | ||
|     if (brk == old_end) { /* can just add bytes to current top */
 | ||
|       top_size = sbrk_size + old_top_size;
 | ||
|       set_head(old_top, top_size | PREV_INUSE);
 | ||
|       old_top = 0; /* don't free below */
 | ||
|     } else {
 | ||
|       if (sbrk_base == (char*)(-1)) /* First time through. Record base */
 | ||
|         sbrk_base = brk;
 | ||
|       else
 | ||
|         /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
 | ||
|         sbrked_mem += brk - (char*)old_end;
 | ||
| 
 | ||
|       /* Guarantee alignment of first new chunk made from this space */
 | ||
|       front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
 | ||
|       if (front_misalign > 0) {
 | ||
|         correction = (MALLOC_ALIGNMENT) - front_misalign;
 | ||
|         brk += correction;
 | ||
|       } else
 | ||
|         correction = 0;
 | ||
| 
 | ||
|       /* Guarantee the next brk will be at a page boundary */
 | ||
|       correction += pagesz - ((unsigned long)(brk + sbrk_size) & (pagesz - 1));
 | ||
| 
 | ||
|       /* Allocate correction */
 | ||
|       new_brk = (char*)(MORECORE (correction));
 | ||
|       if (new_brk == (char*)(MORECORE_FAILURE)) return;
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|       /* Call the `morecore' hook if necessary.  */
 | ||
|       if (__after_morecore_hook)
 | ||
|         (*__after_morecore_hook) ();
 | ||
| #endif
 | ||
| 
 | ||
|       sbrked_mem += correction;
 | ||
| 
 | ||
|       top(&main_arena) = chunk_at_offset(brk, 0);
 | ||
|       top_size = new_brk - brk + correction;
 | ||
|       set_head(top(&main_arena), top_size | PREV_INUSE);
 | ||
| 
 | ||
|       if (old_top == initial_top(&main_arena))
 | ||
|         old_top = 0; /* don't free below */
 | ||
|     }
 | ||
| 
 | ||
|     if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
 | ||
|       max_sbrked_mem = sbrked_mem;
 | ||
| #ifdef NO_THREADS
 | ||
|     if ((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
 | ||
|       max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
 | ||
| #endif
 | ||
| 
 | ||
| #if USE_ARENAS
 | ||
|   } else { /* ar_ptr != &main_arena */
 | ||
|     heap_info *old_heap, *heap;
 | ||
|     size_t old_heap_size;
 | ||
| 
 | ||
|     if(old_top_size < MINSIZE) /* this should never happen */
 | ||
|       return;
 | ||
| 
 | ||
|     /* First try to extend the current heap. */
 | ||
|     if(MINSIZE + nb <= old_top_size)
 | ||
|       return;
 | ||
|     old_heap = heap_for_ptr(old_top);
 | ||
|     old_heap_size = old_heap->size;
 | ||
|     if(grow_heap(old_heap, MINSIZE + nb - old_top_size) == 0) {
 | ||
|       ar_ptr->size += old_heap->size - old_heap_size;
 | ||
|       arena_mem += old_heap->size - old_heap_size;
 | ||
| #ifdef NO_THREADS
 | ||
|       if(mmapped_mem + arena_mem + sbrked_mem > max_total_mem)
 | ||
|         max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
 | ||
| #endif
 | ||
|       top_size = ((char *)old_heap + old_heap->size) - (char *)old_top;
 | ||
|       set_head(old_top, top_size | PREV_INUSE);
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|     /* A new heap must be created. */
 | ||
|     heap = new_heap(nb + (MINSIZE + sizeof(*heap)));
 | ||
|     if(!heap)
 | ||
|       return;
 | ||
|     heap->ar_ptr = ar_ptr;
 | ||
|     heap->prev = old_heap;
 | ||
|     ar_ptr->size += heap->size;
 | ||
|     arena_mem += heap->size;
 | ||
| #ifdef NO_THREADS
 | ||
|     if((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
 | ||
|       max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
 | ||
| #endif
 | ||
| 
 | ||
|     /* Set up the new top, so we can safely use chunk_free() below. */
 | ||
|     top(ar_ptr) = chunk_at_offset(heap, sizeof(*heap));
 | ||
|     top_size = heap->size - sizeof(*heap);
 | ||
|     set_head(top(ar_ptr), top_size | PREV_INUSE);
 | ||
|   }
 | ||
| #endif /* USE_ARENAS */
 | ||
| 
 | ||
|   /* We always land on a page boundary */
 | ||
|   assert(((unsigned long)((char*)top(ar_ptr) + top_size) & (pagesz-1)) == 0);
 | ||
| 
 | ||
|   /* Setup fencepost and free the old top chunk. */
 | ||
|   if(old_top) {
 | ||
|     /* The fencepost takes at least MINSIZE bytes, because it might
 | ||
|        become the top chunk again later.  Note that a footer is set
 | ||
|        up, too, although the chunk is marked in use. */
 | ||
|     old_top_size -= MINSIZE;
 | ||
|     set_head(chunk_at_offset(old_top, old_top_size + 2*SIZE_SZ), 0|PREV_INUSE);
 | ||
|     if(old_top_size >= MINSIZE) {
 | ||
|       set_head(chunk_at_offset(old_top, old_top_size), (2*SIZE_SZ)|PREV_INUSE);
 | ||
|       set_foot(chunk_at_offset(old_top, old_top_size), (2*SIZE_SZ));
 | ||
|       set_head_size(old_top, old_top_size);
 | ||
|       chunk_free(ar_ptr, old_top);
 | ||
|     } else {
 | ||
|       set_head(old_top, (old_top_size + 2*SIZE_SZ)|PREV_INUSE);
 | ||
|       set_foot(old_top, (old_top_size + 2*SIZE_SZ));
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Main public routines */
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   Malloc Algorithm:
 | ||
| 
 | ||
|     The requested size is first converted into a usable form, `nb'.
 | ||
|     This currently means to add 4 bytes overhead plus possibly more to
 | ||
|     obtain 8-byte alignment and/or to obtain a size of at least
 | ||
|     MINSIZE (currently 16, 24, or 32 bytes), the smallest allocatable
 | ||
|     size.  (All fits are considered `exact' if they are within MINSIZE
 | ||
|     bytes.)
 | ||
| 
 | ||
|     From there, the first successful of the following steps is taken:
 | ||
| 
 | ||
|       1. The bin corresponding to the request size is scanned, and if
 | ||
|          a chunk of exactly the right size is found, it is taken.
 | ||
| 
 | ||
|       2. The most recently remaindered chunk is used if it is big
 | ||
|          enough.  This is a form of (roving) first fit, used only in
 | ||
|          the absence of exact fits. Runs of consecutive requests use
 | ||
|          the remainder of the chunk used for the previous such request
 | ||
|          whenever possible. This limited use of a first-fit style
 | ||
|          allocation strategy tends to give contiguous chunks
 | ||
|          coextensive lifetimes, which improves locality and can reduce
 | ||
|          fragmentation in the long run.
 | ||
| 
 | ||
|       3. Other bins are scanned in increasing size order, using a
 | ||
|          chunk big enough to fulfill the request, and splitting off
 | ||
|          any remainder.  This search is strictly by best-fit; i.e.,
 | ||
|          the smallest (with ties going to approximately the least
 | ||
|          recently used) chunk that fits is selected.
 | ||
| 
 | ||
|       4. If large enough, the chunk bordering the end of memory
 | ||
|          (`top') is split off. (This use of `top' is in accord with
 | ||
|          the best-fit search rule.  In effect, `top' is treated as
 | ||
|          larger (and thus less well fitting) than any other available
 | ||
|          chunk since it can be extended to be as large as necessary
 | ||
|          (up to system limitations).
 | ||
| 
 | ||
|       5. If the request size meets the mmap threshold and the
 | ||
|          system supports mmap, and there are few enough currently
 | ||
|          allocated mmapped regions, and a call to mmap succeeds,
 | ||
|          the request is allocated via direct memory mapping.
 | ||
| 
 | ||
|       6. Otherwise, the top of memory is extended by
 | ||
|          obtaining more space from the system (normally using sbrk,
 | ||
|          but definable to anything else via the MORECORE macro).
 | ||
|          Memory is gathered from the system (in system page-sized
 | ||
|          units) in a way that allows chunks obtained across different
 | ||
|          sbrk calls to be consolidated, but does not require
 | ||
|          contiguous memory. Thus, it should be safe to intersperse
 | ||
|          mallocs with other sbrk calls.
 | ||
| 
 | ||
| 
 | ||
|       All allocations are made from the `lowest' part of any found
 | ||
|       chunk. (The implementation invariant is that prev_inuse is
 | ||
|       always true of any allocated chunk; i.e., that each allocated
 | ||
|       chunk borders either a previously allocated and still in-use chunk,
 | ||
|       or the base of its memory arena.)
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| Void_t* mALLOc(size_t bytes)
 | ||
| #else
 | ||
| Void_t* mALLOc(bytes) size_t bytes;
 | ||
| #endif
 | ||
| {
 | ||
|   arena *ar_ptr;
 | ||
|   INTERNAL_SIZE_T nb; /* padded request size */
 | ||
|   mchunkptr victim;
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, __const __malloc_ptr_t)) =
 | ||
|       __malloc_hook;
 | ||
|   if (hook != NULL) {
 | ||
|     Void_t* result;
 | ||
| 
 | ||
| #if defined __GNUC__ && __GNUC__ >= 2
 | ||
|     result = (*hook)(bytes, RETURN_ADDRESS (0));
 | ||
| #else
 | ||
|     result = (*hook)(bytes, NULL);
 | ||
| #endif
 | ||
|     return result;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   if(request2size(bytes, nb))
 | ||
|     return 0;
 | ||
|   arena_get(ar_ptr, nb);
 | ||
|   if(!ar_ptr)
 | ||
|     return 0;
 | ||
|   victim = chunk_alloc(ar_ptr, nb);
 | ||
|   if(!victim) {
 | ||
|     /* Maybe the failure is due to running out of mmapped areas. */
 | ||
|     if(ar_ptr != &main_arena) {
 | ||
|       (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|       (void)mutex_lock(&main_arena.mutex);
 | ||
|       victim = chunk_alloc(&main_arena, nb);
 | ||
|       (void)mutex_unlock(&main_arena.mutex);
 | ||
|     } else {
 | ||
| #if USE_ARENAS
 | ||
|       /* ... or sbrk() has failed and there is still a chance to mmap() */
 | ||
|       ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, nb);
 | ||
|       (void)mutex_unlock(&main_arena.mutex);
 | ||
|       if(ar_ptr) {
 | ||
|         victim = chunk_alloc(ar_ptr, nb);
 | ||
|         (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|       }
 | ||
| #endif
 | ||
|     }
 | ||
|     if(!victim) return 0;
 | ||
|   } else
 | ||
|     (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|   return BOUNDED_N(chunk2mem(victim), bytes);
 | ||
| }
 | ||
| 
 | ||
| static mchunkptr
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| chunk_alloc(arena *ar_ptr, INTERNAL_SIZE_T nb)
 | ||
| #else
 | ||
| chunk_alloc(ar_ptr, nb) arena *ar_ptr; INTERNAL_SIZE_T nb;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr victim;                  /* inspected/selected chunk */
 | ||
|   INTERNAL_SIZE_T victim_size;       /* its size */
 | ||
|   int       idx;                     /* index for bin traversal */
 | ||
|   mbinptr   bin;                     /* associated bin */
 | ||
|   mchunkptr remainder;               /* remainder from a split */
 | ||
|   long      remainder_size;          /* its size */
 | ||
|   int       remainder_index;         /* its bin index */
 | ||
|   unsigned long block;               /* block traverser bit */
 | ||
|   int       startidx;                /* first bin of a traversed block */
 | ||
|   mchunkptr fwd;                     /* misc temp for linking */
 | ||
|   mchunkptr bck;                     /* misc temp for linking */
 | ||
|   mbinptr q;                         /* misc temp */
 | ||
| 
 | ||
| 
 | ||
|   /* Check for exact match in a bin */
 | ||
| 
 | ||
|   if (is_small_request(nb))  /* Faster version for small requests */
 | ||
|   {
 | ||
|     idx = smallbin_index(nb);
 | ||
| 
 | ||
|     /* No traversal or size check necessary for small bins.  */
 | ||
| 
 | ||
|     q = _bin_at(ar_ptr, idx);
 | ||
|     victim = last(q);
 | ||
| 
 | ||
|     /* Also scan the next one, since it would have a remainder < MINSIZE */
 | ||
|     if (victim == q)
 | ||
|     {
 | ||
|       q = next_bin(q);
 | ||
|       victim = last(q);
 | ||
|     }
 | ||
|     if (victim != q)
 | ||
|     {
 | ||
|       victim_size = chunksize(victim);
 | ||
|       unlink(victim, bck, fwd);
 | ||
|       set_inuse_bit_at_offset(victim, victim_size);
 | ||
|       check_malloced_chunk(ar_ptr, victim, nb);
 | ||
|       return victim;
 | ||
|     }
 | ||
| 
 | ||
|     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
 | ||
| 
 | ||
|   }
 | ||
|   else
 | ||
|   {
 | ||
|     idx = bin_index(nb);
 | ||
|     bin = bin_at(ar_ptr, idx);
 | ||
| 
 | ||
|     for (victim = last(bin); victim != bin; victim = victim->bk)
 | ||
|     {
 | ||
|       victim_size = chunksize(victim);
 | ||
|       remainder_size = victim_size - nb;
 | ||
| 
 | ||
|       if (remainder_size >= (long)MINSIZE) /* too big */
 | ||
|       {
 | ||
|         --idx; /* adjust to rescan below after checking last remainder */
 | ||
|         break;
 | ||
|       }
 | ||
| 
 | ||
|       else if (remainder_size >= 0) /* exact fit */
 | ||
|       {
 | ||
|         unlink(victim, bck, fwd);
 | ||
|         set_inuse_bit_at_offset(victim, victim_size);
 | ||
|         check_malloced_chunk(ar_ptr, victim, nb);
 | ||
|         return victim;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     ++idx;
 | ||
| 
 | ||
|   }
 | ||
| 
 | ||
|   /* Try to use the last split-off remainder */
 | ||
| 
 | ||
|   if ( (victim = last_remainder(ar_ptr)->fd) != last_remainder(ar_ptr))
 | ||
|   {
 | ||
|     victim_size = chunksize(victim);
 | ||
|     remainder_size = victim_size - nb;
 | ||
| 
 | ||
|     if (remainder_size >= (long)MINSIZE) /* re-split */
 | ||
|     {
 | ||
|       remainder = chunk_at_offset(victim, nb);
 | ||
|       set_head(victim, nb | PREV_INUSE);
 | ||
|       link_last_remainder(ar_ptr, remainder);
 | ||
|       set_head(remainder, remainder_size | PREV_INUSE);
 | ||
|       set_foot(remainder, remainder_size);
 | ||
|       check_malloced_chunk(ar_ptr, victim, nb);
 | ||
|       return victim;
 | ||
|     }
 | ||
| 
 | ||
|     clear_last_remainder(ar_ptr);
 | ||
| 
 | ||
|     if (remainder_size >= 0)  /* exhaust */
 | ||
|     {
 | ||
|       set_inuse_bit_at_offset(victim, victim_size);
 | ||
|       check_malloced_chunk(ar_ptr, victim, nb);
 | ||
|       return victim;
 | ||
|     }
 | ||
| 
 | ||
|     /* Else place in bin */
 | ||
| 
 | ||
|     frontlink(ar_ptr, victim, victim_size, remainder_index, bck, fwd);
 | ||
|   }
 | ||
| 
 | ||
|   /*
 | ||
|      If there are any possibly nonempty big-enough blocks,
 | ||
|      search for best fitting chunk by scanning bins in blockwidth units.
 | ||
|   */
 | ||
| 
 | ||
|   if ( (block = idx2binblock(idx)) <= binblocks(ar_ptr))
 | ||
|   {
 | ||
| 
 | ||
|     /* Get to the first marked block */
 | ||
| 
 | ||
|     if ( (block & binblocks(ar_ptr)) == 0)
 | ||
|     {
 | ||
|       /* force to an even block boundary */
 | ||
|       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
 | ||
|       block <<= 1;
 | ||
|       while ((block & binblocks(ar_ptr)) == 0)
 | ||
|       {
 | ||
|         idx += BINBLOCKWIDTH;
 | ||
|         block <<= 1;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     /* For each possibly nonempty block ... */
 | ||
|     for (;;)
 | ||
|     {
 | ||
|       startidx = idx;          /* (track incomplete blocks) */
 | ||
|       q = bin = _bin_at(ar_ptr, idx);
 | ||
| 
 | ||
|       /* For each bin in this block ... */
 | ||
|       do
 | ||
|       {
 | ||
|         /* Find and use first big enough chunk ... */
 | ||
| 
 | ||
|         for (victim = last(bin); victim != bin; victim = victim->bk)
 | ||
|         {
 | ||
|           victim_size = chunksize(victim);
 | ||
|           remainder_size = victim_size - nb;
 | ||
| 
 | ||
|           if (remainder_size >= (long)MINSIZE) /* split */
 | ||
|           {
 | ||
|             remainder = chunk_at_offset(victim, nb);
 | ||
|             set_head(victim, nb | PREV_INUSE);
 | ||
|             unlink(victim, bck, fwd);
 | ||
|             link_last_remainder(ar_ptr, remainder);
 | ||
|             set_head(remainder, remainder_size | PREV_INUSE);
 | ||
|             set_foot(remainder, remainder_size);
 | ||
|             check_malloced_chunk(ar_ptr, victim, nb);
 | ||
|             return victim;
 | ||
|           }
 | ||
| 
 | ||
|           else if (remainder_size >= 0)  /* take */
 | ||
|           {
 | ||
|             set_inuse_bit_at_offset(victim, victim_size);
 | ||
|             unlink(victim, bck, fwd);
 | ||
|             check_malloced_chunk(ar_ptr, victim, nb);
 | ||
|             return victim;
 | ||
|           }
 | ||
| 
 | ||
|         }
 | ||
| 
 | ||
|        bin = next_bin(bin);
 | ||
| 
 | ||
|       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
 | ||
| 
 | ||
|       /* Clear out the block bit. */
 | ||
| 
 | ||
|       do   /* Possibly backtrack to try to clear a partial block */
 | ||
|       {
 | ||
|         if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
 | ||
|         {
 | ||
|           binblocks(ar_ptr) &= ~block;
 | ||
|           break;
 | ||
|         }
 | ||
|         --startidx;
 | ||
|         q = prev_bin(q);
 | ||
|       } while (first(q) == q);
 | ||
| 
 | ||
|       /* Get to the next possibly nonempty block */
 | ||
| 
 | ||
|       if ( (block <<= 1) <= binblocks(ar_ptr) && (block != 0) )
 | ||
|       {
 | ||
|         while ((block & binblocks(ar_ptr)) == 0)
 | ||
|         {
 | ||
|           idx += BINBLOCKWIDTH;
 | ||
|           block <<= 1;
 | ||
|         }
 | ||
|       }
 | ||
|       else
 | ||
|         break;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
| 
 | ||
|   /* Try to use top chunk */
 | ||
| 
 | ||
|   /* Require that there be a remainder, ensuring top always exists  */
 | ||
|   if ( (remainder_size = chunksize(top(ar_ptr)) - nb) < (long)MINSIZE)
 | ||
|   {
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
|     /* If the request is big and there are not yet too many regions,
 | ||
|        and we would otherwise need to extend, try to use mmap instead.  */
 | ||
|     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
 | ||
|         n_mmaps < n_mmaps_max &&
 | ||
|         (victim = mmap_chunk(nb)) != 0)
 | ||
|       return victim;
 | ||
| #endif
 | ||
| 
 | ||
|     /* Try to extend */
 | ||
|     malloc_extend_top(ar_ptr, nb);
 | ||
|     if ((remainder_size = chunksize(top(ar_ptr)) - nb) < (long)MINSIZE)
 | ||
|     {
 | ||
| #if HAVE_MMAP
 | ||
|       /* A last attempt: when we are out of address space in a
 | ||
|          non-main arena, try mmap anyway, as long as it is allowed at
 | ||
|          all.  */
 | ||
|       if (ar_ptr != &main_arena &&
 | ||
|           n_mmaps_max > 0 &&
 | ||
|           (victim = mmap_chunk(nb)) != 0)
 | ||
|         return victim;
 | ||
| #endif
 | ||
|       return 0; /* propagate failure */
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   victim = top(ar_ptr);
 | ||
|   set_head(victim, nb | PREV_INUSE);
 | ||
|   top(ar_ptr) = chunk_at_offset(victim, nb);
 | ||
|   set_head(top(ar_ptr), remainder_size | PREV_INUSE);
 | ||
|   check_malloced_chunk(ar_ptr, victim, nb);
 | ||
|   return victim;
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|   free() algorithm :
 | ||
| 
 | ||
|     cases:
 | ||
| 
 | ||
|        1. free(0) has no effect.
 | ||
| 
 | ||
|        2. If the chunk was allocated via mmap, it is released via munmap().
 | ||
| 
 | ||
|        3. If a returned chunk borders the current high end of memory,
 | ||
|           it is consolidated into the top, and if the total unused
 | ||
|           topmost memory exceeds the trim threshold, malloc_trim is
 | ||
|           called.
 | ||
| 
 | ||
|        4. Other chunks are consolidated as they arrive, and
 | ||
|           placed in corresponding bins. (This includes the case of
 | ||
|           consolidating with the current `last_remainder').
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #if __STD_C
 | ||
| void fREe(Void_t* mem)
 | ||
| #else
 | ||
| void fREe(mem) Void_t* mem;
 | ||
| #endif
 | ||
| {
 | ||
|   arena *ar_ptr;
 | ||
|   mchunkptr p;                          /* chunk corresponding to mem */
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   void (*hook) __MALLOC_PMT ((__malloc_ptr_t, __const __malloc_ptr_t)) =
 | ||
|     __free_hook;
 | ||
| 
 | ||
|   if (hook != NULL) {
 | ||
| #if defined __GNUC__ && __GNUC__ >= 2
 | ||
|     (*hook)(mem, RETURN_ADDRESS (0));
 | ||
| #else
 | ||
|     (*hook)(mem, NULL);
 | ||
| #endif
 | ||
|     return;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   if (mem == 0)                              /* free(0) has no effect */
 | ||
|     return;
 | ||
| 
 | ||
|   p = mem2chunk(mem);
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
|   if (chunk_is_mmapped(p))                       /* release mmapped memory. */
 | ||
|   {
 | ||
|     munmap_chunk(p);
 | ||
|     return;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   ar_ptr = arena_for_ptr(p);
 | ||
| #if THREAD_STATS
 | ||
|   if(!mutex_trylock(&ar_ptr->mutex))
 | ||
|     ++(ar_ptr->stat_lock_direct);
 | ||
|   else {
 | ||
|     (void)mutex_lock(&ar_ptr->mutex);
 | ||
|     ++(ar_ptr->stat_lock_wait);
 | ||
|   }
 | ||
| #else
 | ||
|   (void)mutex_lock(&ar_ptr->mutex);
 | ||
| #endif
 | ||
|   chunk_free(ar_ptr, p);
 | ||
|   (void)mutex_unlock(&ar_ptr->mutex);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| chunk_free(arena *ar_ptr, mchunkptr p)
 | ||
| #else
 | ||
| chunk_free(ar_ptr, p) arena *ar_ptr; mchunkptr p;
 | ||
| #endif
 | ||
| {
 | ||
|   INTERNAL_SIZE_T hd = p->size; /* its head field */
 | ||
|   INTERNAL_SIZE_T sz;  /* its size */
 | ||
|   int       idx;       /* its bin index */
 | ||
|   mchunkptr next;      /* next contiguous chunk */
 | ||
|   INTERNAL_SIZE_T nextsz; /* its size */
 | ||
|   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
 | ||
|   mchunkptr bck;       /* misc temp for linking */
 | ||
|   mchunkptr fwd;       /* misc temp for linking */
 | ||
|   int       islr;      /* track whether merging with last_remainder */
 | ||
| 
 | ||
|   check_inuse_chunk(ar_ptr, p);
 | ||
| 
 | ||
|   sz = hd & ~PREV_INUSE;
 | ||
|   next = chunk_at_offset(p, sz);
 | ||
|   nextsz = chunksize(next);
 | ||
| 
 | ||
|   if (next == top(ar_ptr))                         /* merge with top */
 | ||
|   {
 | ||
|     sz += nextsz;
 | ||
| 
 | ||
|     if (!(hd & PREV_INUSE))                    /* consolidate backward */
 | ||
|     {
 | ||
|       prevsz = p->prev_size;
 | ||
|       p = chunk_at_offset(p, -(long)prevsz);
 | ||
|       sz += prevsz;
 | ||
|       unlink(p, bck, fwd);
 | ||
|     }
 | ||
| 
 | ||
|     set_head(p, sz | PREV_INUSE);
 | ||
|     top(ar_ptr) = p;
 | ||
| 
 | ||
| #if USE_ARENAS
 | ||
|     if(ar_ptr == &main_arena) {
 | ||
| #endif
 | ||
|       if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
 | ||
|         main_trim(top_pad);
 | ||
| #if USE_ARENAS
 | ||
|     } else {
 | ||
|       heap_info *heap = heap_for_ptr(p);
 | ||
| 
 | ||
|       assert(heap->ar_ptr == ar_ptr);
 | ||
| 
 | ||
|       /* Try to get rid of completely empty heaps, if possible. */
 | ||
|       if((unsigned long)(sz) >= (unsigned long)trim_threshold ||
 | ||
|          p == chunk_at_offset(heap, sizeof(*heap)))
 | ||
|         heap_trim(heap, top_pad);
 | ||
|     }
 | ||
| #endif
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   islr = 0;
 | ||
| 
 | ||
|   if (!(hd & PREV_INUSE))                    /* consolidate backward */
 | ||
|   {
 | ||
|     prevsz = p->prev_size;
 | ||
|     p = chunk_at_offset(p, -(long)prevsz);
 | ||
|     sz += prevsz;
 | ||
| 
 | ||
|     if (p->fd == last_remainder(ar_ptr))     /* keep as last_remainder */
 | ||
|       islr = 1;
 | ||
|     else
 | ||
|       unlink(p, bck, fwd);
 | ||
|   }
 | ||
| 
 | ||
|   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
 | ||
|   {
 | ||
|     sz += nextsz;
 | ||
| 
 | ||
|     if (!islr && next->fd == last_remainder(ar_ptr))
 | ||
|                                               /* re-insert last_remainder */
 | ||
|     {
 | ||
|       islr = 1;
 | ||
|       link_last_remainder(ar_ptr, p);
 | ||
|     }
 | ||
|     else
 | ||
|       unlink(next, bck, fwd);
 | ||
| 
 | ||
|     next = chunk_at_offset(p, sz);
 | ||
|   }
 | ||
|   else
 | ||
|     set_head(next, nextsz);                  /* clear inuse bit */
 | ||
| 
 | ||
|   set_head(p, sz | PREV_INUSE);
 | ||
|   next->prev_size = sz;
 | ||
|   if (!islr)
 | ||
|     frontlink(ar_ptr, p, sz, idx, bck, fwd);
 | ||
| 
 | ||
| #if USE_ARENAS
 | ||
|   /* Check whether the heap containing top can go away now. */
 | ||
|   if(next->size < MINSIZE &&
 | ||
|      (unsigned long)sz > trim_threshold &&
 | ||
|      ar_ptr != &main_arena) {                /* fencepost */
 | ||
|     heap_info *heap = heap_for_ptr(top(ar_ptr));
 | ||
| 
 | ||
|     if(top(ar_ptr) == chunk_at_offset(heap, sizeof(*heap)) &&
 | ||
|        heap->prev == heap_for_ptr(p))
 | ||
|       heap_trim(heap, top_pad);
 | ||
|   }
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|   Realloc algorithm:
 | ||
| 
 | ||
|     Chunks that were obtained via mmap cannot be extended or shrunk
 | ||
|     unless HAVE_MREMAP is defined, in which case mremap is used.
 | ||
|     Otherwise, if their reallocation is for additional space, they are
 | ||
|     copied.  If for less, they are just left alone.
 | ||
| 
 | ||
|     Otherwise, if the reallocation is for additional space, and the
 | ||
|     chunk can be extended, it is, else a malloc-copy-free sequence is
 | ||
|     taken.  There are several different ways that a chunk could be
 | ||
|     extended. All are tried:
 | ||
| 
 | ||
|        * Extending forward into following adjacent free chunk.
 | ||
|        * Shifting backwards, joining preceding adjacent space
 | ||
|        * Both shifting backwards and extending forward.
 | ||
|        * Extending into newly sbrked space
 | ||
| 
 | ||
|     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
 | ||
|     size argument of zero (re)allocates a minimum-sized chunk.
 | ||
| 
 | ||
|     If the reallocation is for less space, and the new request is for
 | ||
|     a `small' (<512 bytes) size, then the newly unused space is lopped
 | ||
|     off and freed.
 | ||
| 
 | ||
|     The old unix realloc convention of allowing the last-free'd chunk
 | ||
|     to be used as an argument to realloc is no longer supported.
 | ||
|     I don't know of any programs still relying on this feature,
 | ||
|     and allowing it would also allow too many other incorrect
 | ||
|     usages of realloc to be sensible.
 | ||
| 
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #if __STD_C
 | ||
| Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
 | ||
| #else
 | ||
| Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
 | ||
| #endif
 | ||
| {
 | ||
|   arena *ar_ptr;
 | ||
|   INTERNAL_SIZE_T    nb;      /* padded request size */
 | ||
| 
 | ||
|   mchunkptr oldp;             /* chunk corresponding to oldmem */
 | ||
|   INTERNAL_SIZE_T    oldsize; /* its size */
 | ||
| 
 | ||
|   mchunkptr newp;             /* chunk to return */
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   __malloc_ptr_t (*hook) __MALLOC_PMT ((__malloc_ptr_t, size_t,
 | ||
|                                         __const __malloc_ptr_t)) =
 | ||
|     __realloc_hook;
 | ||
|   if (hook != NULL) {
 | ||
|     Void_t* result;
 | ||
| 
 | ||
| #if defined __GNUC__ && __GNUC__ >= 2
 | ||
|     result = (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
 | ||
| #else
 | ||
|     result = (*hook)(oldmem, bytes, NULL);
 | ||
| #endif
 | ||
|     return result;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef REALLOC_ZERO_BYTES_FREES
 | ||
|   if (bytes == 0 && oldmem != NULL) { fREe(oldmem); return 0; }
 | ||
| #endif
 | ||
| 
 | ||
|   /* realloc of null is supposed to be same as malloc */
 | ||
|   if (oldmem == 0) return mALLOc(bytes);
 | ||
| 
 | ||
|   oldp    = mem2chunk(oldmem);
 | ||
|   oldsize = chunksize(oldp);
 | ||
| 
 | ||
|   if(request2size(bytes, nb))
 | ||
|     return 0;
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
|   if (chunk_is_mmapped(oldp))
 | ||
|   {
 | ||
|     Void_t* newmem;
 | ||
| 
 | ||
| #if HAVE_MREMAP
 | ||
|     newp = mremap_chunk(oldp, nb);
 | ||
|     if(newp)
 | ||
|       return BOUNDED_N(chunk2mem(newp), bytes);
 | ||
| #endif
 | ||
|     /* Note the extra SIZE_SZ overhead. */
 | ||
|     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
 | ||
|     /* Must alloc, copy, free. */
 | ||
|     newmem = mALLOc(bytes);
 | ||
|     if (newmem == 0) return 0; /* propagate failure */
 | ||
|     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ, 0);
 | ||
|     munmap_chunk(oldp);
 | ||
|     return newmem;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   ar_ptr = arena_for_ptr(oldp);
 | ||
| #if THREAD_STATS
 | ||
|   if(!mutex_trylock(&ar_ptr->mutex))
 | ||
|     ++(ar_ptr->stat_lock_direct);
 | ||
|   else {
 | ||
|     (void)mutex_lock(&ar_ptr->mutex);
 | ||
|     ++(ar_ptr->stat_lock_wait);
 | ||
|   }
 | ||
| #else
 | ||
|   (void)mutex_lock(&ar_ptr->mutex);
 | ||
| #endif
 | ||
| 
 | ||
| #ifndef NO_THREADS
 | ||
|   /* As in malloc(), remember this arena for the next allocation. */
 | ||
|   tsd_setspecific(arena_key, (Void_t *)ar_ptr);
 | ||
| #endif
 | ||
| 
 | ||
|   newp = chunk_realloc(ar_ptr, oldp, oldsize, nb);
 | ||
| 
 | ||
|   (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|   return newp ? BOUNDED_N(chunk2mem(newp), bytes) : NULL;
 | ||
| }
 | ||
| 
 | ||
| static mchunkptr
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| chunk_realloc(arena* ar_ptr, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
 | ||
|               INTERNAL_SIZE_T nb)
 | ||
| #else
 | ||
| chunk_realloc(ar_ptr, oldp, oldsize, nb)
 | ||
| arena* ar_ptr; mchunkptr oldp; INTERNAL_SIZE_T oldsize, nb;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr newp = oldp;      /* chunk to return */
 | ||
|   INTERNAL_SIZE_T newsize = oldsize; /* its size */
 | ||
| 
 | ||
|   mchunkptr next;             /* next contiguous chunk after oldp */
 | ||
|   INTERNAL_SIZE_T  nextsize;  /* its size */
 | ||
| 
 | ||
|   mchunkptr prev;             /* previous contiguous chunk before oldp */
 | ||
|   INTERNAL_SIZE_T  prevsize;  /* its size */
 | ||
| 
 | ||
|   mchunkptr remainder;        /* holds split off extra space from newp */
 | ||
|   INTERNAL_SIZE_T  remainder_size;   /* its size */
 | ||
| 
 | ||
|   mchunkptr bck;              /* misc temp for linking */
 | ||
|   mchunkptr fwd;              /* misc temp for linking */
 | ||
| 
 | ||
|   check_inuse_chunk(ar_ptr, oldp);
 | ||
| 
 | ||
|   if ((long)(oldsize) < (long)(nb))
 | ||
|   {
 | ||
|     Void_t* oldmem = BOUNDED_N(chunk2mem(oldp), oldsize);
 | ||
| 
 | ||
|     /* Try expanding forward */
 | ||
| 
 | ||
|     next = chunk_at_offset(oldp, oldsize);
 | ||
|     if (next == top(ar_ptr) || !inuse(next))
 | ||
|     {
 | ||
|       nextsize = chunksize(next);
 | ||
| 
 | ||
|       /* Forward into top only if a remainder */
 | ||
|       if (next == top(ar_ptr))
 | ||
|       {
 | ||
|         if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
 | ||
|         {
 | ||
|           newsize += nextsize;
 | ||
|           top(ar_ptr) = chunk_at_offset(oldp, nb);
 | ||
|           set_head(top(ar_ptr), (newsize - nb) | PREV_INUSE);
 | ||
|           set_head_size(oldp, nb);
 | ||
|           return oldp;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       /* Forward into next chunk */
 | ||
|       else if (((long)(nextsize + newsize) >= (long)(nb)))
 | ||
|       {
 | ||
|         unlink(next, bck, fwd);
 | ||
|         newsize  += nextsize;
 | ||
|         goto split;
 | ||
|       }
 | ||
|     }
 | ||
|     else
 | ||
|     {
 | ||
|       next = 0;
 | ||
|       nextsize = 0;
 | ||
|     }
 | ||
| 
 | ||
|     oldsize -= SIZE_SZ;
 | ||
| 
 | ||
|     /* Try shifting backwards. */
 | ||
| 
 | ||
|     if (!prev_inuse(oldp))
 | ||
|     {
 | ||
|       prev = prev_chunk(oldp);
 | ||
|       prevsize = chunksize(prev);
 | ||
| 
 | ||
|       /* try forward + backward first to save a later consolidation */
 | ||
| 
 | ||
|       if (next != 0)
 | ||
|       {
 | ||
|         /* into top */
 | ||
|         if (next == top(ar_ptr))
 | ||
|         {
 | ||
|           if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
 | ||
|           {
 | ||
|             unlink(prev, bck, fwd);
 | ||
|             newp = prev;
 | ||
|             newsize += prevsize + nextsize;
 | ||
|             MALLOC_COPY(BOUNDED_N(chunk2mem(newp), oldsize), oldmem, oldsize,
 | ||
|                         1);
 | ||
|             top(ar_ptr) = chunk_at_offset(newp, nb);
 | ||
|             set_head(top(ar_ptr), (newsize - nb) | PREV_INUSE);
 | ||
|             set_head_size(newp, nb);
 | ||
|             return newp;
 | ||
|           }
 | ||
|         }
 | ||
| 
 | ||
|         /* into next chunk */
 | ||
|         else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
 | ||
|         {
 | ||
|           unlink(next, bck, fwd);
 | ||
|           unlink(prev, bck, fwd);
 | ||
|           newp = prev;
 | ||
|           newsize += nextsize + prevsize;
 | ||
|           MALLOC_COPY(BOUNDED_N(chunk2mem(newp), oldsize), oldmem, oldsize, 1);
 | ||
|           goto split;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       /* backward only */
 | ||
|       if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
 | ||
|       {
 | ||
|         unlink(prev, bck, fwd);
 | ||
|         newp = prev;
 | ||
|         newsize += prevsize;
 | ||
|         MALLOC_COPY(BOUNDED_N(chunk2mem(newp), oldsize), oldmem, oldsize, 1);
 | ||
|         goto split;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     /* Must allocate */
 | ||
| 
 | ||
|     newp = chunk_alloc (ar_ptr, nb);
 | ||
| 
 | ||
|     if (newp == 0) {
 | ||
|       /* Maybe the failure is due to running out of mmapped areas. */
 | ||
|       if (ar_ptr != &main_arena) {
 | ||
|         (void)mutex_lock(&main_arena.mutex);
 | ||
|         newp = chunk_alloc(&main_arena, nb);
 | ||
|         (void)mutex_unlock(&main_arena.mutex);
 | ||
|       } else {
 | ||
| #if USE_ARENAS
 | ||
|         /* ... or sbrk() has failed and there is still a chance to mmap() */
 | ||
|         arena* ar_ptr2 = arena_get2(ar_ptr->next ? ar_ptr : 0, nb);
 | ||
|         if(ar_ptr2) {
 | ||
|           newp = chunk_alloc(ar_ptr2, nb);
 | ||
|           (void)mutex_unlock(&ar_ptr2->mutex);
 | ||
|         }
 | ||
| #endif
 | ||
|       }
 | ||
|       if (newp == 0) /* propagate failure */
 | ||
|         return 0;
 | ||
|     }
 | ||
| 
 | ||
|     /* Avoid copy if newp is next chunk after oldp. */
 | ||
|     /* (This can only happen when new chunk is sbrk'ed.) */
 | ||
| 
 | ||
|     if ( newp == next_chunk(oldp))
 | ||
|     {
 | ||
|       newsize += chunksize(newp);
 | ||
|       newp = oldp;
 | ||
|       goto split;
 | ||
|     }
 | ||
| 
 | ||
|     /* Otherwise copy, free, and exit */
 | ||
|     MALLOC_COPY(BOUNDED_N(chunk2mem(newp), oldsize), oldmem, oldsize, 0);
 | ||
|     chunk_free(ar_ptr, oldp);
 | ||
|     return newp;
 | ||
|   }
 | ||
| 
 | ||
| 
 | ||
|  split:  /* split off extra room in old or expanded chunk */
 | ||
| 
 | ||
|   if (newsize - nb >= MINSIZE) /* split off remainder */
 | ||
|   {
 | ||
|     remainder = chunk_at_offset(newp, nb);
 | ||
|     remainder_size = newsize - nb;
 | ||
|     set_head_size(newp, nb);
 | ||
|     set_head(remainder, remainder_size | PREV_INUSE);
 | ||
|     set_inuse_bit_at_offset(remainder, remainder_size);
 | ||
|     chunk_free(ar_ptr, remainder);
 | ||
|   }
 | ||
|   else
 | ||
|   {
 | ||
|     set_head_size(newp, newsize);
 | ||
|     set_inuse_bit_at_offset(newp, newsize);
 | ||
|   }
 | ||
| 
 | ||
|   check_inuse_chunk(ar_ptr, newp);
 | ||
|   return newp;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|   memalign algorithm:
 | ||
| 
 | ||
|     memalign requests more than enough space from malloc, finds a spot
 | ||
|     within that chunk that meets the alignment request, and then
 | ||
|     possibly frees the leading and trailing space.
 | ||
| 
 | ||
|     The alignment argument must be a power of two. This property is not
 | ||
|     checked by memalign, so misuse may result in random runtime errors.
 | ||
| 
 | ||
|     8-byte alignment is guaranteed by normal malloc calls, so don't
 | ||
|     bother calling memalign with an argument of 8 or less.
 | ||
| 
 | ||
|     Overreliance on memalign is a sure way to fragment space.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #if __STD_C
 | ||
| Void_t* mEMALIGn(size_t alignment, size_t bytes)
 | ||
| #else
 | ||
| Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
 | ||
| #endif
 | ||
| {
 | ||
|   arena *ar_ptr;
 | ||
|   INTERNAL_SIZE_T    nb;      /* padded  request size */
 | ||
|   mchunkptr p;
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
 | ||
|                                         __const __malloc_ptr_t)) =
 | ||
|     __memalign_hook;
 | ||
|   if (hook != NULL) {
 | ||
|     Void_t* result;
 | ||
| 
 | ||
| #if defined __GNUC__ && __GNUC__ >= 2
 | ||
|     result = (*hook)(alignment, bytes, RETURN_ADDRESS (0));
 | ||
| #else
 | ||
|     result = (*hook)(alignment, bytes, NULL);
 | ||
| #endif
 | ||
|     return result;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   /* If need less alignment than we give anyway, just relay to malloc */
 | ||
| 
 | ||
|   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
 | ||
| 
 | ||
|   /* Otherwise, ensure that it is at least a minimum chunk size */
 | ||
| 
 | ||
|   if (alignment <  MINSIZE) alignment = MINSIZE;
 | ||
| 
 | ||
|   if(request2size(bytes, nb))
 | ||
|     return 0;
 | ||
|   arena_get(ar_ptr, nb + alignment + MINSIZE);
 | ||
|   if(!ar_ptr)
 | ||
|     return 0;
 | ||
|   p = chunk_align(ar_ptr, nb, alignment);
 | ||
|   (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|   if(!p) {
 | ||
|     /* Maybe the failure is due to running out of mmapped areas. */
 | ||
|     if(ar_ptr != &main_arena) {
 | ||
|       (void)mutex_lock(&main_arena.mutex);
 | ||
|       p = chunk_align(&main_arena, nb, alignment);
 | ||
|       (void)mutex_unlock(&main_arena.mutex);
 | ||
|     } else {
 | ||
| #if USE_ARENAS
 | ||
|       /* ... or sbrk() has failed and there is still a chance to mmap() */
 | ||
|       ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, nb);
 | ||
|       if(ar_ptr) {
 | ||
|         p = chunk_align(ar_ptr, nb, alignment);
 | ||
|         (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|       }
 | ||
| #endif
 | ||
|     }
 | ||
|     if(!p) return 0;
 | ||
|   }
 | ||
|   return BOUNDED_N(chunk2mem(p), bytes);
 | ||
| }
 | ||
| 
 | ||
| static mchunkptr
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| chunk_align(arena* ar_ptr, INTERNAL_SIZE_T nb, size_t alignment)
 | ||
| #else
 | ||
| chunk_align(ar_ptr, nb, alignment)
 | ||
| arena* ar_ptr; INTERNAL_SIZE_T nb; size_t alignment;
 | ||
| #endif
 | ||
| {
 | ||
|   unsigned long m;            /* memory returned by malloc call */
 | ||
|   mchunkptr p;                /* corresponding chunk */
 | ||
|   char*     brk;              /* alignment point within p */
 | ||
|   mchunkptr newp;             /* chunk to return */
 | ||
|   INTERNAL_SIZE_T  newsize;   /* its size */
 | ||
|   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
 | ||
|   mchunkptr remainder;        /* spare room at end to split off */
 | ||
|   long      remainder_size;   /* its size */
 | ||
| 
 | ||
|   /* Call chunk_alloc with worst case padding to hit alignment. */
 | ||
|   p = chunk_alloc(ar_ptr, nb + alignment + MINSIZE);
 | ||
|   if (p == 0)
 | ||
|     return 0; /* propagate failure */
 | ||
| 
 | ||
|   m = (unsigned long)chunk2mem(p);
 | ||
| 
 | ||
|   if ((m % alignment) == 0) /* aligned */
 | ||
|   {
 | ||
| #if HAVE_MMAP
 | ||
|     if(chunk_is_mmapped(p)) {
 | ||
|       return p; /* nothing more to do */
 | ||
|     }
 | ||
| #endif
 | ||
|   }
 | ||
|   else /* misaligned */
 | ||
|   {
 | ||
|     /*
 | ||
|       Find an aligned spot inside chunk.
 | ||
|       Since we need to give back leading space in a chunk of at
 | ||
|       least MINSIZE, if the first calculation places us at
 | ||
|       a spot with less than MINSIZE leader, we can move to the
 | ||
|       next aligned spot -- we've allocated enough total room so that
 | ||
|       this is always possible.
 | ||
|     */
 | ||
| 
 | ||
|     brk = (char*)mem2chunk(((m + alignment - 1)) & -(long)alignment);
 | ||
|     if ((long)(brk - (char*)(p)) < (long)MINSIZE) brk += alignment;
 | ||
| 
 | ||
|     newp = chunk_at_offset(brk, 0);
 | ||
|     leadsize = brk - (char*)(p);
 | ||
|     newsize = chunksize(p) - leadsize;
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
|     if(chunk_is_mmapped(p))
 | ||
|     {
 | ||
|       newp->prev_size = p->prev_size + leadsize;
 | ||
|       set_head(newp, newsize|IS_MMAPPED);
 | ||
|       return newp;
 | ||
|     }
 | ||
| #endif
 | ||
| 
 | ||
|     /* give back leader, use the rest */
 | ||
| 
 | ||
|     set_head(newp, newsize | PREV_INUSE);
 | ||
|     set_inuse_bit_at_offset(newp, newsize);
 | ||
|     set_head_size(p, leadsize);
 | ||
|     chunk_free(ar_ptr, p);
 | ||
|     p = newp;
 | ||
| 
 | ||
|     assert (newsize>=nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
 | ||
|   }
 | ||
| 
 | ||
|   /* Also give back spare room at the end */
 | ||
| 
 | ||
|   remainder_size = chunksize(p) - nb;
 | ||
| 
 | ||
|   if (remainder_size >= (long)MINSIZE)
 | ||
|   {
 | ||
|     remainder = chunk_at_offset(p, nb);
 | ||
|     set_head(remainder, remainder_size | PREV_INUSE);
 | ||
|     set_head_size(p, nb);
 | ||
|     chunk_free(ar_ptr, remainder);
 | ||
|   }
 | ||
| 
 | ||
|   check_inuse_chunk(ar_ptr, p);
 | ||
|   return p;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|     valloc just invokes memalign with alignment argument equal
 | ||
|     to the page size of the system (or as near to this as can
 | ||
|     be figured out from all the includes/defines above.)
 | ||
| */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| Void_t* vALLOc(size_t bytes)
 | ||
| #else
 | ||
| Void_t* vALLOc(bytes) size_t bytes;
 | ||
| #endif
 | ||
| {
 | ||
|   if(__malloc_initialized < 0)
 | ||
|     ptmalloc_init ();
 | ||
|   return mEMALIGn (malloc_getpagesize, bytes);
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|   pvalloc just invokes valloc for the nearest pagesize
 | ||
|   that will accommodate request
 | ||
| */
 | ||
| 
 | ||
| 
 | ||
| #if __STD_C
 | ||
| Void_t* pvALLOc(size_t bytes)
 | ||
| #else
 | ||
| Void_t* pvALLOc(bytes) size_t bytes;
 | ||
| #endif
 | ||
| {
 | ||
|   size_t pagesize;
 | ||
|   if(__malloc_initialized < 0)
 | ||
|     ptmalloc_init ();
 | ||
|   pagesize = malloc_getpagesize;
 | ||
|   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|   calloc calls chunk_alloc, then zeroes out the allocated chunk.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| Void_t* cALLOc(size_t n, size_t elem_size)
 | ||
| #else
 | ||
| Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
 | ||
| #endif
 | ||
| {
 | ||
|   arena *ar_ptr;
 | ||
|   mchunkptr p, oldtop;
 | ||
|   INTERNAL_SIZE_T sz, csz, oldtopsize;
 | ||
|   Void_t* mem;
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, __const __malloc_ptr_t)) =
 | ||
|     __malloc_hook;
 | ||
|   if (hook != NULL) {
 | ||
|     sz = n * elem_size;
 | ||
| #if defined __GNUC__ && __GNUC__ >= 2
 | ||
|     mem = (*hook)(sz, RETURN_ADDRESS (0));
 | ||
| #else
 | ||
|     mem = (*hook)(sz, NULL);
 | ||
| #endif
 | ||
|     if(mem == 0)
 | ||
|       return 0;
 | ||
| #ifdef HAVE_MEMSET
 | ||
|     return memset(mem, 0, sz);
 | ||
| #else
 | ||
|     while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
 | ||
|     return mem;
 | ||
| #endif
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   if(request2size(n * elem_size, sz))
 | ||
|     return 0;
 | ||
|   arena_get(ar_ptr, sz);
 | ||
|   if(!ar_ptr)
 | ||
|     return 0;
 | ||
| 
 | ||
|   /* Check if expand_top called, in which case there may be
 | ||
|      no need to clear. */
 | ||
| #if MORECORE_CLEARS
 | ||
|   oldtop = top(ar_ptr);
 | ||
|   oldtopsize = chunksize(top(ar_ptr));
 | ||
| #if MORECORE_CLEARS < 2
 | ||
|   /* Only newly allocated memory is guaranteed to be cleared.  */
 | ||
|   if (ar_ptr == &main_arena &&
 | ||
|       oldtopsize < sbrk_base + max_sbrked_mem - (char *)oldtop)
 | ||
|     oldtopsize = (sbrk_base + max_sbrked_mem - (char *)oldtop);
 | ||
| #endif
 | ||
| #endif
 | ||
|   p = chunk_alloc (ar_ptr, sz);
 | ||
| 
 | ||
|   /* Only clearing follows, so we can unlock early. */
 | ||
|   (void)mutex_unlock(&ar_ptr->mutex);
 | ||
| 
 | ||
|   if (p == 0) {
 | ||
|     /* Maybe the failure is due to running out of mmapped areas. */
 | ||
|     if(ar_ptr != &main_arena) {
 | ||
|       (void)mutex_lock(&main_arena.mutex);
 | ||
|       p = chunk_alloc(&main_arena, sz);
 | ||
|       (void)mutex_unlock(&main_arena.mutex);
 | ||
|     } else {
 | ||
| #if USE_ARENAS
 | ||
|       /* ... or sbrk() has failed and there is still a chance to mmap() */
 | ||
|       (void)mutex_lock(&main_arena.mutex);
 | ||
|       ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, sz);
 | ||
|       (void)mutex_unlock(&main_arena.mutex);
 | ||
|       if(ar_ptr) {
 | ||
|         p = chunk_alloc(ar_ptr, sz);
 | ||
|         (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|       }
 | ||
| #endif
 | ||
|     }
 | ||
|     if (p == 0) return 0;
 | ||
|   }
 | ||
|   mem = BOUNDED_N(chunk2mem(p), n * elem_size);
 | ||
| 
 | ||
|   /* Two optional cases in which clearing not necessary */
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
|   if (chunk_is_mmapped(p)) return mem;
 | ||
| #endif
 | ||
| 
 | ||
|   csz = chunksize(p);
 | ||
| 
 | ||
| #if MORECORE_CLEARS
 | ||
|   if (p == oldtop && csz > oldtopsize) {
 | ||
|     /* clear only the bytes from non-freshly-sbrked memory */
 | ||
|     csz = oldtopsize;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   csz -= SIZE_SZ;
 | ||
|   MALLOC_ZERO(BOUNDED_N(chunk2mem(p), csz), csz);
 | ||
|   return mem;
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|   cfree just calls free. It is needed/defined on some systems
 | ||
|   that pair it with calloc, presumably for odd historical reasons.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #if !defined(_LIBC)
 | ||
| #if __STD_C
 | ||
| void cfree(Void_t *mem)
 | ||
| #else
 | ||
| void cfree(mem) Void_t *mem;
 | ||
| #endif
 | ||
| {
 | ||
|   fREe(mem);
 | ||
| }
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|     Malloc_trim gives memory back to the system (via negative
 | ||
|     arguments to sbrk) if there is unused memory at the `high' end of
 | ||
|     the malloc pool. You can call this after freeing large blocks of
 | ||
|     memory to potentially reduce the system-level memory requirements
 | ||
|     of a program. However, it cannot guarantee to reduce memory. Under
 | ||
|     some allocation patterns, some large free blocks of memory will be
 | ||
|     locked between two used chunks, so they cannot be given back to
 | ||
|     the system.
 | ||
| 
 | ||
|     The `pad' argument to malloc_trim represents the amount of free
 | ||
|     trailing space to leave untrimmed. If this argument is zero,
 | ||
|     only the minimum amount of memory to maintain internal data
 | ||
|     structures will be left (one page or less). Non-zero arguments
 | ||
|     can be supplied to maintain enough trailing space to service
 | ||
|     future expected allocations without having to re-obtain memory
 | ||
|     from the system.
 | ||
| 
 | ||
|     Malloc_trim returns 1 if it actually released any memory, else 0.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| int mALLOC_TRIm(size_t pad)
 | ||
| #else
 | ||
| int mALLOC_TRIm(pad) size_t pad;
 | ||
| #endif
 | ||
| {
 | ||
|   int res;
 | ||
| 
 | ||
|   (void)mutex_lock(&main_arena.mutex);
 | ||
|   res = main_trim(pad);
 | ||
|   (void)mutex_unlock(&main_arena.mutex);
 | ||
|   return res;
 | ||
| }
 | ||
| 
 | ||
| /* Trim the main arena. */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| main_trim(size_t pad)
 | ||
| #else
 | ||
| main_trim(pad) size_t pad;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr top_chunk;   /* The current top chunk */
 | ||
|   long  top_size;        /* Amount of top-most memory */
 | ||
|   long  extra;           /* Amount to release */
 | ||
|   char* current_brk;     /* address returned by pre-check sbrk call */
 | ||
|   char* new_brk;         /* address returned by negative sbrk call */
 | ||
| 
 | ||
|   unsigned long pagesz = malloc_getpagesize;
 | ||
| 
 | ||
|   top_chunk = top(&main_arena);
 | ||
|   top_size = chunksize(top_chunk);
 | ||
|   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
 | ||
| 
 | ||
|   if (extra < (long)pagesz) /* Not enough memory to release */
 | ||
|     return 0;
 | ||
| 
 | ||
|   /* Test to make sure no one else called sbrk */
 | ||
|   current_brk = (char*)(MORECORE (0));
 | ||
|   if (current_brk != (char*)(top_chunk) + top_size)
 | ||
|     return 0;     /* Apparently we don't own memory; must fail */
 | ||
| 
 | ||
|   new_brk = (char*)(MORECORE (-extra));
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   /* Call the `morecore' hook if necessary.  */
 | ||
|   if (__after_morecore_hook)
 | ||
|     (*__after_morecore_hook) ();
 | ||
| #endif
 | ||
| 
 | ||
|   if (new_brk == (char*)(MORECORE_FAILURE)) { /* sbrk failed? */
 | ||
|     /* Try to figure out what we have */
 | ||
|     current_brk = (char*)(MORECORE (0));
 | ||
|     top_size = current_brk - (char*)top_chunk;
 | ||
|     if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
 | ||
|     {
 | ||
|       sbrked_mem = current_brk - sbrk_base;
 | ||
|       set_head(top_chunk, top_size | PREV_INUSE);
 | ||
|     }
 | ||
|     check_chunk(&main_arena, top_chunk);
 | ||
|     return 0;
 | ||
|   }
 | ||
|   sbrked_mem -= extra;
 | ||
| 
 | ||
|   /* Success. Adjust top accordingly. */
 | ||
|   set_head(top_chunk, (top_size - extra) | PREV_INUSE);
 | ||
|   check_chunk(&main_arena, top_chunk);
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| #if USE_ARENAS
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| heap_trim(heap_info *heap, size_t pad)
 | ||
| #else
 | ||
| heap_trim(heap, pad) heap_info *heap; size_t pad;
 | ||
| #endif
 | ||
| {
 | ||
|   unsigned long pagesz = malloc_getpagesize;
 | ||
|   arena *ar_ptr = heap->ar_ptr;
 | ||
|   mchunkptr top_chunk = top(ar_ptr), p, bck, fwd;
 | ||
|   heap_info *prev_heap;
 | ||
|   long new_size, top_size, extra;
 | ||
| 
 | ||
|   /* Can this heap go away completely ? */
 | ||
|   while(top_chunk == chunk_at_offset(heap, sizeof(*heap))) {
 | ||
|     prev_heap = heap->prev;
 | ||
|     p = chunk_at_offset(prev_heap, prev_heap->size - (MINSIZE-2*SIZE_SZ));
 | ||
|     assert(p->size == (0|PREV_INUSE)); /* must be fencepost */
 | ||
|     p = prev_chunk(p);
 | ||
|     new_size = chunksize(p) + (MINSIZE-2*SIZE_SZ);
 | ||
|     assert(new_size>0 && new_size<(long)(2*MINSIZE));
 | ||
|     if(!prev_inuse(p))
 | ||
|       new_size += p->prev_size;
 | ||
|     assert(new_size>0 && new_size<HEAP_MAX_SIZE);
 | ||
|     if(new_size + (HEAP_MAX_SIZE - prev_heap->size) < pad + MINSIZE + pagesz)
 | ||
|       break;
 | ||
|     ar_ptr->size -= heap->size;
 | ||
|     arena_mem -= heap->size;
 | ||
|     delete_heap(heap);
 | ||
|     heap = prev_heap;
 | ||
|     if(!prev_inuse(p)) { /* consolidate backward */
 | ||
|       p = prev_chunk(p);
 | ||
|       unlink(p, bck, fwd);
 | ||
|     }
 | ||
|     assert(((unsigned long)((char*)p + new_size) & (pagesz-1)) == 0);
 | ||
|     assert( ((char*)p + new_size) == ((char*)heap + heap->size) );
 | ||
|     top(ar_ptr) = top_chunk = p;
 | ||
|     set_head(top_chunk, new_size | PREV_INUSE);
 | ||
|     check_chunk(ar_ptr, top_chunk);
 | ||
|   }
 | ||
|   top_size = chunksize(top_chunk);
 | ||
|   extra = ((top_size - pad - MINSIZE + (pagesz-1))/pagesz - 1) * pagesz;
 | ||
|   if(extra < (long)pagesz)
 | ||
|     return 0;
 | ||
|   /* Try to shrink. */
 | ||
|   if(grow_heap(heap, -extra) != 0)
 | ||
|     return 0;
 | ||
|   ar_ptr->size -= extra;
 | ||
|   arena_mem -= extra;
 | ||
| 
 | ||
|   /* Success. Adjust top accordingly. */
 | ||
|   set_head(top_chunk, (top_size - extra) | PREV_INUSE);
 | ||
|   check_chunk(ar_ptr, top_chunk);
 | ||
|   return 1;
 | ||
| }
 | ||
| 
 | ||
| #endif /* USE_ARENAS */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   malloc_usable_size:
 | ||
| 
 | ||
|     This routine tells you how many bytes you can actually use in an
 | ||
|     allocated chunk, which may be more than you requested (although
 | ||
|     often not). You can use this many bytes without worrying about
 | ||
|     overwriting other allocated objects. Not a particularly great
 | ||
|     programming practice, but still sometimes useful.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| size_t mALLOC_USABLE_SIZe(Void_t* mem)
 | ||
| #else
 | ||
| size_t mALLOC_USABLE_SIZe(mem) Void_t* mem;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr p;
 | ||
| 
 | ||
|   if (mem == 0)
 | ||
|     return 0;
 | ||
|   else
 | ||
|   {
 | ||
|     p = mem2chunk(mem);
 | ||
|     if(!chunk_is_mmapped(p))
 | ||
|     {
 | ||
|       if (!inuse(p)) return 0;
 | ||
|       check_inuse_chunk(arena_for_ptr(mem), p);
 | ||
|       return chunksize(p) - SIZE_SZ;
 | ||
|     }
 | ||
|     return chunksize(p) - 2*SIZE_SZ;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Utility to update mallinfo for malloc_stats() and mallinfo() */
 | ||
| 
 | ||
| static void
 | ||
| #if __STD_C
 | ||
| malloc_update_mallinfo(arena *ar_ptr, struct mallinfo *mi)
 | ||
| #else
 | ||
| malloc_update_mallinfo(ar_ptr, mi) arena *ar_ptr; struct mallinfo *mi;
 | ||
| #endif
 | ||
| {
 | ||
|   int i, navail;
 | ||
|   mbinptr b;
 | ||
|   mchunkptr p;
 | ||
| #if MALLOC_DEBUG
 | ||
|   mchunkptr q;
 | ||
| #endif
 | ||
|   INTERNAL_SIZE_T avail;
 | ||
| 
 | ||
|   (void)mutex_lock(&ar_ptr->mutex);
 | ||
|   avail = chunksize(top(ar_ptr));
 | ||
|   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
 | ||
| 
 | ||
|   for (i = 1; i < NAV; ++i)
 | ||
|   {
 | ||
|     b = bin_at(ar_ptr, i);
 | ||
|     for (p = last(b); p != b; p = p->bk)
 | ||
|     {
 | ||
| #if MALLOC_DEBUG
 | ||
|       check_free_chunk(ar_ptr, p);
 | ||
|       for (q = next_chunk(p);
 | ||
|            q != top(ar_ptr) && inuse(q) && (long)chunksize(q) > 0;
 | ||
|            q = next_chunk(q))
 | ||
|         check_inuse_chunk(ar_ptr, q);
 | ||
| #endif
 | ||
|       avail += chunksize(p);
 | ||
|       navail++;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   mi->arena = ar_ptr->size;
 | ||
|   mi->ordblks = navail;
 | ||
|   mi->smblks = mi->usmblks = mi->fsmblks = 0; /* clear unused fields */
 | ||
|   mi->uordblks = ar_ptr->size - avail;
 | ||
|   mi->fordblks = avail;
 | ||
|   mi->hblks = n_mmaps;
 | ||
|   mi->hblkhd = mmapped_mem;
 | ||
|   mi->keepcost = chunksize(top(ar_ptr));
 | ||
| 
 | ||
|   (void)mutex_unlock(&ar_ptr->mutex);
 | ||
| }
 | ||
| 
 | ||
| #if USE_ARENAS && MALLOC_DEBUG > 1
 | ||
| 
 | ||
| /* Print the complete contents of a single heap to stderr. */
 | ||
| 
 | ||
| static void
 | ||
| #if __STD_C
 | ||
| dump_heap(heap_info *heap)
 | ||
| #else
 | ||
| dump_heap(heap) heap_info *heap;
 | ||
| #endif
 | ||
| {
 | ||
|   char *ptr;
 | ||
|   mchunkptr p;
 | ||
| 
 | ||
|   fprintf(stderr, "Heap %p, size %10lx:\n", heap, (long)heap->size);
 | ||
|   ptr = (heap->ar_ptr != (arena*)(heap+1)) ?
 | ||
|     (char*)(heap + 1) : (char*)(heap + 1) + sizeof(arena);
 | ||
|   p = (mchunkptr)(((unsigned long)ptr + MALLOC_ALIGN_MASK) &
 | ||
|                   ~MALLOC_ALIGN_MASK);
 | ||
|   for(;;) {
 | ||
|     fprintf(stderr, "chunk %p size %10lx", p, (long)p->size);
 | ||
|     if(p == top(heap->ar_ptr)) {
 | ||
|       fprintf(stderr, " (top)\n");
 | ||
|       break;
 | ||
|     } else if(p->size == (0|PREV_INUSE)) {
 | ||
|       fprintf(stderr, " (fence)\n");
 | ||
|       break;
 | ||
|     }
 | ||
|     fprintf(stderr, "\n");
 | ||
|     p = next_chunk(p);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
|   malloc_stats:
 | ||
| 
 | ||
|     For all arenas separately and in total, prints on stderr the
 | ||
|     amount of space obtained from the system, and the current number
 | ||
|     of bytes allocated via malloc (or realloc, etc) but not yet
 | ||
|     freed. (Note that this is the number of bytes allocated, not the
 | ||
|     number requested. It will be larger than the number requested
 | ||
|     because of alignment and bookkeeping overhead.)  When not compiled
 | ||
|     for multiple threads, the maximum amount of allocated memory
 | ||
|     (which may be more than current if malloc_trim and/or munmap got
 | ||
|     called) is also reported.  When using mmap(), prints the maximum
 | ||
|     number of simultaneous mmap regions used, too.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| void mALLOC_STATs()
 | ||
| {
 | ||
|   int i;
 | ||
|   arena *ar_ptr;
 | ||
|   struct mallinfo mi;
 | ||
|   unsigned int in_use_b = mmapped_mem, system_b = in_use_b;
 | ||
| #if THREAD_STATS
 | ||
|   long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
 | ||
| #endif
 | ||
| 
 | ||
|   for(i=0, ar_ptr = &main_arena;; i++) {
 | ||
|     malloc_update_mallinfo(ar_ptr, &mi);
 | ||
|     fprintf(stderr, "Arena %d:\n", i);
 | ||
|     fprintf(stderr, "system bytes     = %10u\n", (unsigned int)mi.arena);
 | ||
|     fprintf(stderr, "in use bytes     = %10u\n", (unsigned int)mi.uordblks);
 | ||
|     system_b += mi.arena;
 | ||
|     in_use_b += mi.uordblks;
 | ||
| #if THREAD_STATS
 | ||
|     stat_lock_direct += ar_ptr->stat_lock_direct;
 | ||
|     stat_lock_loop += ar_ptr->stat_lock_loop;
 | ||
|     stat_lock_wait += ar_ptr->stat_lock_wait;
 | ||
| #endif
 | ||
| #if USE_ARENAS && MALLOC_DEBUG > 1
 | ||
|     if(ar_ptr != &main_arena) {
 | ||
|       heap_info *heap;
 | ||
|       (void)mutex_lock(&ar_ptr->mutex);
 | ||
|       heap = heap_for_ptr(top(ar_ptr));
 | ||
|       while(heap) { dump_heap(heap); heap = heap->prev; }
 | ||
|       (void)mutex_unlock(&ar_ptr->mutex);
 | ||
|     }
 | ||
| #endif
 | ||
|     ar_ptr = ar_ptr->next;
 | ||
|     if(ar_ptr == &main_arena) break;
 | ||
|   }
 | ||
| #if HAVE_MMAP
 | ||
|   fprintf(stderr, "Total (incl. mmap):\n");
 | ||
| #else
 | ||
|   fprintf(stderr, "Total:\n");
 | ||
| #endif
 | ||
|   fprintf(stderr, "system bytes     = %10u\n", system_b);
 | ||
|   fprintf(stderr, "in use bytes     = %10u\n", in_use_b);
 | ||
| #ifdef NO_THREADS
 | ||
|   fprintf(stderr, "max system bytes = %10u\n", (unsigned int)max_total_mem);
 | ||
| #endif
 | ||
| #if HAVE_MMAP
 | ||
|   fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)max_n_mmaps);
 | ||
|   fprintf(stderr, "max mmap bytes   = %10lu\n", max_mmapped_mem);
 | ||
| #endif
 | ||
| #if THREAD_STATS
 | ||
|   fprintf(stderr, "heaps created    = %10d\n",  stat_n_heaps);
 | ||
|   fprintf(stderr, "locked directly  = %10ld\n", stat_lock_direct);
 | ||
|   fprintf(stderr, "locked in loop   = %10ld\n", stat_lock_loop);
 | ||
|   fprintf(stderr, "locked waiting   = %10ld\n", stat_lock_wait);
 | ||
|   fprintf(stderr, "locked total     = %10ld\n",
 | ||
|           stat_lock_direct + stat_lock_loop + stat_lock_wait);
 | ||
| #endif
 | ||
| }
 | ||
| 
 | ||
| /*
 | ||
|   mallinfo returns a copy of updated current mallinfo.
 | ||
|   The information reported is for the arena last used by the thread.
 | ||
| */
 | ||
| 
 | ||
| struct mallinfo mALLINFo()
 | ||
| {
 | ||
|   struct mallinfo mi;
 | ||
|   Void_t *vptr = NULL;
 | ||
| 
 | ||
| #ifndef NO_THREADS
 | ||
|   tsd_getspecific(arena_key, vptr);
 | ||
|   if(vptr == ATFORK_ARENA_PTR)
 | ||
|     vptr = (Void_t*)&main_arena;
 | ||
| #endif
 | ||
|   malloc_update_mallinfo((vptr ? (arena*)vptr : &main_arena), &mi);
 | ||
|   return mi;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /*
 | ||
|   mallopt:
 | ||
| 
 | ||
|     mallopt is the general SVID/XPG interface to tunable parameters.
 | ||
|     The format is to provide a (parameter-number, parameter-value) pair.
 | ||
|     mallopt then sets the corresponding parameter to the argument
 | ||
|     value if it can (i.e., so long as the value is meaningful),
 | ||
|     and returns 1 if successful else 0.
 | ||
| 
 | ||
|     See descriptions of tunable parameters above.
 | ||
| 
 | ||
| */
 | ||
| 
 | ||
| #if __STD_C
 | ||
| int mALLOPt(int param_number, int value)
 | ||
| #else
 | ||
| int mALLOPt(param_number, value) int param_number; int value;
 | ||
| #endif
 | ||
| {
 | ||
|   switch(param_number)
 | ||
|   {
 | ||
|     case M_TRIM_THRESHOLD:
 | ||
|       trim_threshold = value; return 1;
 | ||
|     case M_TOP_PAD:
 | ||
|       top_pad = value; return 1;
 | ||
|     case M_MMAP_THRESHOLD:
 | ||
| #if USE_ARENAS
 | ||
|       /* Forbid setting the threshold too high. */
 | ||
|       if((unsigned long)value > HEAP_MAX_SIZE/2) return 0;
 | ||
| #endif
 | ||
|       mmap_threshold = value; return 1;
 | ||
|     case M_MMAP_MAX:
 | ||
| #if HAVE_MMAP
 | ||
|       n_mmaps_max = value; return 1;
 | ||
| #else
 | ||
|       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
 | ||
| #endif
 | ||
|     case M_CHECK_ACTION:
 | ||
|       check_action = value; return 1;
 | ||
| 
 | ||
|     default:
 | ||
|       return 0;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| /* Get/set state: malloc_get_state() records the current state of all
 | ||
|    malloc variables (_except_ for the actual heap contents and `hook'
 | ||
|    function pointers) in a system dependent, opaque data structure.
 | ||
|    This data structure is dynamically allocated and can be free()d
 | ||
|    after use.  malloc_set_state() restores the state of all malloc
 | ||
|    variables to the previously obtained state.  This is especially
 | ||
|    useful when using this malloc as part of a shared library, and when
 | ||
|    the heap contents are saved/restored via some other method.  The
 | ||
|    primary example for this is GNU Emacs with its `dumping' procedure.
 | ||
|    `Hook' function pointers are never saved or restored by these
 | ||
|    functions, with two exceptions: If malloc checking was in use when
 | ||
|    malloc_get_state() was called, then malloc_set_state() calls
 | ||
|    __malloc_check_init() if possible; if malloc checking was not in
 | ||
|    use in the recorded state but the user requested malloc checking,
 | ||
|    then the hooks are reset to 0.  */
 | ||
| 
 | ||
| #define MALLOC_STATE_MAGIC   0x444c4541l
 | ||
| #define MALLOC_STATE_VERSION (0*0x100l + 1l) /* major*0x100 + minor */
 | ||
| 
 | ||
| struct malloc_state {
 | ||
|   long          magic;
 | ||
|   long          version;
 | ||
|   mbinptr       av[NAV * 2 + 2];
 | ||
|   char*         sbrk_base;
 | ||
|   int           sbrked_mem_bytes;
 | ||
|   unsigned long trim_threshold;
 | ||
|   unsigned long top_pad;
 | ||
|   unsigned int  n_mmaps_max;
 | ||
|   unsigned long mmap_threshold;
 | ||
|   int           check_action;
 | ||
|   unsigned long max_sbrked_mem;
 | ||
|   unsigned long max_total_mem;
 | ||
|   unsigned int  n_mmaps;
 | ||
|   unsigned int  max_n_mmaps;
 | ||
|   unsigned long mmapped_mem;
 | ||
|   unsigned long max_mmapped_mem;
 | ||
|   int           using_malloc_checking;
 | ||
| };
 | ||
| 
 | ||
| Void_t*
 | ||
| mALLOC_GET_STATe()
 | ||
| {
 | ||
|   struct malloc_state* ms;
 | ||
|   int i;
 | ||
|   mbinptr b;
 | ||
| 
 | ||
|   ms = (struct malloc_state*)mALLOc(sizeof(*ms));
 | ||
|   if (!ms)
 | ||
|     return 0;
 | ||
|   (void)mutex_lock(&main_arena.mutex);
 | ||
|   ms->magic = MALLOC_STATE_MAGIC;
 | ||
|   ms->version = MALLOC_STATE_VERSION;
 | ||
|   ms->av[0] = main_arena.av[0];
 | ||
|   ms->av[1] = main_arena.av[1];
 | ||
|   for(i=0; i<NAV; i++) {
 | ||
|     b = bin_at(&main_arena, i);
 | ||
|     if(first(b) == b)
 | ||
|       ms->av[2*i+2] = ms->av[2*i+3] = 0; /* empty bin (or initial top) */
 | ||
|     else {
 | ||
|       ms->av[2*i+2] = first(b);
 | ||
|       ms->av[2*i+3] = last(b);
 | ||
|     }
 | ||
|   }
 | ||
|   ms->sbrk_base = sbrk_base;
 | ||
|   ms->sbrked_mem_bytes = sbrked_mem;
 | ||
|   ms->trim_threshold = trim_threshold;
 | ||
|   ms->top_pad = top_pad;
 | ||
|   ms->n_mmaps_max = n_mmaps_max;
 | ||
|   ms->mmap_threshold = mmap_threshold;
 | ||
|   ms->check_action = check_action;
 | ||
|   ms->max_sbrked_mem = max_sbrked_mem;
 | ||
| #ifdef NO_THREADS
 | ||
|   ms->max_total_mem = max_total_mem;
 | ||
| #else
 | ||
|   ms->max_total_mem = 0;
 | ||
| #endif
 | ||
|   ms->n_mmaps = n_mmaps;
 | ||
|   ms->max_n_mmaps = max_n_mmaps;
 | ||
|   ms->mmapped_mem = mmapped_mem;
 | ||
|   ms->max_mmapped_mem = max_mmapped_mem;
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   ms->using_malloc_checking = using_malloc_checking;
 | ||
| #else
 | ||
|   ms->using_malloc_checking = 0;
 | ||
| #endif
 | ||
|   (void)mutex_unlock(&main_arena.mutex);
 | ||
|   return (Void_t*)ms;
 | ||
| }
 | ||
| 
 | ||
| int
 | ||
| #if __STD_C
 | ||
| mALLOC_SET_STATe(Void_t* msptr)
 | ||
| #else
 | ||
| mALLOC_SET_STATe(msptr) Void_t* msptr;
 | ||
| #endif
 | ||
| {
 | ||
|   struct malloc_state* ms = (struct malloc_state*)msptr;
 | ||
|   int i;
 | ||
|   mbinptr b;
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|   disallow_malloc_check = 1;
 | ||
| #endif
 | ||
|   ptmalloc_init();
 | ||
|   if(ms->magic != MALLOC_STATE_MAGIC) return -1;
 | ||
|   /* Must fail if the major version is too high. */
 | ||
|   if((ms->version & ~0xffl) > (MALLOC_STATE_VERSION & ~0xffl)) return -2;
 | ||
|   (void)mutex_lock(&main_arena.mutex);
 | ||
|   main_arena.av[0] = ms->av[0];
 | ||
|   main_arena.av[1] = ms->av[1];
 | ||
|   for(i=0; i<NAV; i++) {
 | ||
|     b = bin_at(&main_arena, i);
 | ||
|     if(ms->av[2*i+2] == 0)
 | ||
|       first(b) = last(b) = b;
 | ||
|     else {
 | ||
|       first(b) = ms->av[2*i+2];
 | ||
|       last(b) = ms->av[2*i+3];
 | ||
|       if(i > 0) {
 | ||
|         /* Make sure the links to the `av'-bins in the heap are correct. */
 | ||
|         first(b)->bk = b;
 | ||
|         last(b)->fd = b;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
|   sbrk_base = ms->sbrk_base;
 | ||
|   sbrked_mem = ms->sbrked_mem_bytes;
 | ||
|   trim_threshold = ms->trim_threshold;
 | ||
|   top_pad = ms->top_pad;
 | ||
|   n_mmaps_max = ms->n_mmaps_max;
 | ||
|   mmap_threshold = ms->mmap_threshold;
 | ||
|   check_action = ms->check_action;
 | ||
|   max_sbrked_mem = ms->max_sbrked_mem;
 | ||
| #ifdef NO_THREADS
 | ||
|   max_total_mem = ms->max_total_mem;
 | ||
| #endif
 | ||
|   n_mmaps = ms->n_mmaps;
 | ||
|   max_n_mmaps = ms->max_n_mmaps;
 | ||
|   mmapped_mem = ms->mmapped_mem;
 | ||
|   max_mmapped_mem = ms->max_mmapped_mem;
 | ||
|   /* add version-dependent code here */
 | ||
|   if (ms->version >= 1) {
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
|     /* Check whether it is safe to enable malloc checking, or whether
 | ||
|        it is necessary to disable it.  */
 | ||
|     if (ms->using_malloc_checking && !using_malloc_checking &&
 | ||
|         !disallow_malloc_check)
 | ||
|       __malloc_check_init ();
 | ||
|     else if (!ms->using_malloc_checking && using_malloc_checking) {
 | ||
|       __malloc_hook = 0;
 | ||
|       __free_hook = 0;
 | ||
|       __realloc_hook = 0;
 | ||
|       __memalign_hook = 0;
 | ||
|       using_malloc_checking = 0;
 | ||
|     }
 | ||
| #endif
 | ||
|   }
 | ||
| 
 | ||
|   (void)mutex_unlock(&main_arena.mutex);
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| #if defined _LIBC || defined MALLOC_HOOKS
 | ||
| 
 | ||
| /* A simple, standard set of debugging hooks.  Overhead is `only' one
 | ||
|    byte per chunk; still this will catch most cases of double frees or
 | ||
|    overruns.  The goal here is to avoid obscure crashes due to invalid
 | ||
|    usage, unlike in the MALLOC_DEBUG code. */
 | ||
| 
 | ||
| #define MAGICBYTE(p) ( ( ((size_t)p >> 3) ^ ((size_t)p >> 11)) & 0xFF )
 | ||
| 
 | ||
| /* Instrument a chunk with overrun detector byte(s) and convert it
 | ||
|    into a user pointer with requested size sz. */
 | ||
| 
 | ||
| static Void_t*
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| chunk2mem_check(mchunkptr p, size_t sz)
 | ||
| #else
 | ||
| chunk2mem_check(p, sz) mchunkptr p; size_t sz;
 | ||
| #endif
 | ||
| {
 | ||
|   unsigned char* m_ptr = (unsigned char*)BOUNDED_N(chunk2mem(p), sz);
 | ||
|   size_t i;
 | ||
| 
 | ||
|   for(i = chunksize(p) - (chunk_is_mmapped(p) ? 2*SIZE_SZ+1 : SIZE_SZ+1);
 | ||
|       i > sz;
 | ||
|       i -= 0xFF) {
 | ||
|     if(i-sz < 0x100) {
 | ||
|       m_ptr[i] = (unsigned char)(i-sz);
 | ||
|       break;
 | ||
|     }
 | ||
|     m_ptr[i] = 0xFF;
 | ||
|   }
 | ||
|   m_ptr[sz] = MAGICBYTE(p);
 | ||
|   return (Void_t*)m_ptr;
 | ||
| }
 | ||
| 
 | ||
| /* Convert a pointer to be free()d or realloc()ed to a valid chunk
 | ||
|    pointer.  If the provided pointer is not valid, return NULL. */
 | ||
| 
 | ||
| static mchunkptr
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| mem2chunk_check(Void_t* mem)
 | ||
| #else
 | ||
| mem2chunk_check(mem) Void_t* mem;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr p;
 | ||
|   INTERNAL_SIZE_T sz, c;
 | ||
|   unsigned char magic;
 | ||
| 
 | ||
|   p = mem2chunk(mem);
 | ||
|   if(!aligned_OK(p)) return NULL;
 | ||
|   if( (char*)p>=sbrk_base && (char*)p<(sbrk_base+sbrked_mem) ) {
 | ||
|     /* Must be a chunk in conventional heap memory. */
 | ||
|     if(chunk_is_mmapped(p) ||
 | ||
|        ( (sz = chunksize(p)), ((char*)p + sz)>=(sbrk_base+sbrked_mem) ) ||
 | ||
|        sz<MINSIZE || sz&MALLOC_ALIGN_MASK || !inuse(p) ||
 | ||
|        ( !prev_inuse(p) && (p->prev_size&MALLOC_ALIGN_MASK ||
 | ||
|                             (long)prev_chunk(p)<(long)sbrk_base ||
 | ||
|                             next_chunk(prev_chunk(p))!=p) ))
 | ||
|       return NULL;
 | ||
|     magic = MAGICBYTE(p);
 | ||
|     for(sz += SIZE_SZ-1; (c = ((unsigned char*)p)[sz]) != magic; sz -= c) {
 | ||
|       if(c<=0 || sz<(c+2*SIZE_SZ)) return NULL;
 | ||
|     }
 | ||
|     ((unsigned char*)p)[sz] ^= 0xFF;
 | ||
|   } else {
 | ||
|     unsigned long offset, page_mask = malloc_getpagesize-1;
 | ||
| 
 | ||
|     /* mmap()ed chunks have MALLOC_ALIGNMENT or higher power-of-two
 | ||
|        alignment relative to the beginning of a page.  Check this
 | ||
|        first. */
 | ||
|     offset = (unsigned long)mem & page_mask;
 | ||
|     if((offset!=MALLOC_ALIGNMENT && offset!=0 && offset!=0x10 &&
 | ||
|         offset!=0x20 && offset!=0x40 && offset!=0x80 && offset!=0x100 &&
 | ||
|         offset!=0x200 && offset!=0x400 && offset!=0x800 && offset!=0x1000 &&
 | ||
|         offset<0x2000) ||
 | ||
|        !chunk_is_mmapped(p) || (p->size & PREV_INUSE) ||
 | ||
|        ( (((unsigned long)p - p->prev_size) & page_mask) != 0 ) ||
 | ||
|        ( (sz = chunksize(p)), ((p->prev_size + sz) & page_mask) != 0 ) )
 | ||
|       return NULL;
 | ||
|     magic = MAGICBYTE(p);
 | ||
|     for(sz -= 1; (c = ((unsigned char*)p)[sz]) != magic; sz -= c) {
 | ||
|       if(c<=0 || sz<(c+2*SIZE_SZ)) return NULL;
 | ||
|     }
 | ||
|     ((unsigned char*)p)[sz] ^= 0xFF;
 | ||
|   }
 | ||
|   return p;
 | ||
| }
 | ||
| 
 | ||
| /* Check for corruption of the top chunk, and try to recover if
 | ||
|    necessary. */
 | ||
| 
 | ||
| static int
 | ||
| internal_function
 | ||
| #if __STD_C
 | ||
| top_check(void)
 | ||
| #else
 | ||
| top_check()
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr t = top(&main_arena);
 | ||
|   char* brk, * new_brk;
 | ||
|   INTERNAL_SIZE_T front_misalign, sbrk_size;
 | ||
|   unsigned long pagesz = malloc_getpagesize;
 | ||
| 
 | ||
|   if((char*)t + chunksize(t) == sbrk_base + sbrked_mem ||
 | ||
|      t == initial_top(&main_arena)) return 0;
 | ||
| 
 | ||
|   if(check_action & 1)
 | ||
|     fprintf(stderr, "malloc: top chunk is corrupt\n");
 | ||
|   if(check_action & 2)
 | ||
|     abort();
 | ||
| 
 | ||
|   /* Try to set up a new top chunk. */
 | ||
|   brk = MORECORE(0);
 | ||
|   front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
 | ||
|   if (front_misalign > 0)
 | ||
|     front_misalign = MALLOC_ALIGNMENT - front_misalign;
 | ||
|   sbrk_size = front_misalign + top_pad + MINSIZE;
 | ||
|   sbrk_size += pagesz - ((unsigned long)(brk + sbrk_size) & (pagesz - 1));
 | ||
|   new_brk = (char*)(MORECORE (sbrk_size));
 | ||
|   if (new_brk == (char*)(MORECORE_FAILURE)) return -1;
 | ||
|   sbrked_mem = (new_brk - sbrk_base) + sbrk_size;
 | ||
| 
 | ||
|   top(&main_arena) = (mchunkptr)(brk + front_misalign);
 | ||
|   set_head(top(&main_arena), (sbrk_size - front_misalign) | PREV_INUSE);
 | ||
| 
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| static Void_t*
 | ||
| #if __STD_C
 | ||
| malloc_check(size_t sz, const Void_t *caller)
 | ||
| #else
 | ||
| malloc_check(sz, caller) size_t sz; const Void_t *caller;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr victim;
 | ||
|   INTERNAL_SIZE_T nb;
 | ||
| 
 | ||
|   if(request2size(sz+1, nb))
 | ||
|     return 0;
 | ||
|   (void)mutex_lock(&main_arena.mutex);
 | ||
|   victim = (top_check() >= 0) ? chunk_alloc(&main_arena, nb) : NULL;
 | ||
|   (void)mutex_unlock(&main_arena.mutex);
 | ||
|   if(!victim) return NULL;
 | ||
|   return chunk2mem_check(victim, sz);
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| #if __STD_C
 | ||
| free_check(Void_t* mem, const Void_t *caller)
 | ||
| #else
 | ||
| free_check(mem, caller) Void_t* mem; const Void_t *caller;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr p;
 | ||
| 
 | ||
|   if(!mem) return;
 | ||
|   (void)mutex_lock(&main_arena.mutex);
 | ||
|   p = mem2chunk_check(mem);
 | ||
|   if(!p) {
 | ||
|     (void)mutex_unlock(&main_arena.mutex);
 | ||
|     if(check_action & 1)
 | ||
|       fprintf(stderr, "free(): invalid pointer %p!\n", mem);
 | ||
|     if(check_action & 2)
 | ||
|       abort();
 | ||
|     return;
 | ||
|   }
 | ||
| #if HAVE_MMAP
 | ||
|   if (chunk_is_mmapped(p)) {
 | ||
|     (void)mutex_unlock(&main_arena.mutex);
 | ||
|     munmap_chunk(p);
 | ||
|     return;
 | ||
|   }
 | ||
| #endif
 | ||
| #if 0 /* Erase freed memory. */
 | ||
|   memset(mem, 0, chunksize(p) - (SIZE_SZ+1));
 | ||
| #endif
 | ||
|   chunk_free(&main_arena, p);
 | ||
|   (void)mutex_unlock(&main_arena.mutex);
 | ||
| }
 | ||
| 
 | ||
| static Void_t*
 | ||
| #if __STD_C
 | ||
| realloc_check(Void_t* oldmem, size_t bytes, const Void_t *caller)
 | ||
| #else
 | ||
| realloc_check(oldmem, bytes, caller)
 | ||
|      Void_t* oldmem; size_t bytes; const Void_t *caller;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr oldp, newp;
 | ||
|   INTERNAL_SIZE_T nb, oldsize;
 | ||
| 
 | ||
|   if (oldmem == 0) return malloc_check(bytes, NULL);
 | ||
|   (void)mutex_lock(&main_arena.mutex);
 | ||
|   oldp = mem2chunk_check(oldmem);
 | ||
|   if(!oldp) {
 | ||
|     (void)mutex_unlock(&main_arena.mutex);
 | ||
|     if(check_action & 1)
 | ||
|       fprintf(stderr, "realloc(): invalid pointer %p!\n", oldmem);
 | ||
|     if(check_action & 2)
 | ||
|       abort();
 | ||
|     return malloc_check(bytes, NULL);
 | ||
|   }
 | ||
|   oldsize = chunksize(oldp);
 | ||
| 
 | ||
|   if(request2size(bytes+1, nb)) {
 | ||
|     (void)mutex_unlock(&main_arena.mutex);
 | ||
|     return 0;
 | ||
|   }
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
|   if (chunk_is_mmapped(oldp)) {
 | ||
| #if HAVE_MREMAP
 | ||
|     newp = mremap_chunk(oldp, nb);
 | ||
|     if(!newp) {
 | ||
| #endif
 | ||
|       /* Note the extra SIZE_SZ overhead. */
 | ||
|       if(oldsize - SIZE_SZ >= nb) newp = oldp; /* do nothing */
 | ||
|       else {
 | ||
|         /* Must alloc, copy, free. */
 | ||
|         newp = (top_check() >= 0) ? chunk_alloc(&main_arena, nb) : NULL;
 | ||
|         if (newp) {
 | ||
|           MALLOC_COPY(BOUNDED_N(chunk2mem(newp), nb),
 | ||
| 		      oldmem, oldsize - 2*SIZE_SZ, 0);
 | ||
|           munmap_chunk(oldp);
 | ||
|         }
 | ||
|       }
 | ||
| #if HAVE_MREMAP
 | ||
|     }
 | ||
| #endif
 | ||
|   } else {
 | ||
| #endif /* HAVE_MMAP */
 | ||
|     newp = (top_check() >= 0) ?
 | ||
|       chunk_realloc(&main_arena, oldp, oldsize, nb) : NULL;
 | ||
| #if 0 /* Erase freed memory. */
 | ||
|     nb = chunksize(newp);
 | ||
|     if(oldp<newp || oldp>=chunk_at_offset(newp, nb)) {
 | ||
|       memset((char*)oldmem + 2*sizeof(mbinptr), 0,
 | ||
|              oldsize - (2*sizeof(mbinptr)+2*SIZE_SZ+1));
 | ||
|     } else if(nb > oldsize+SIZE_SZ) {
 | ||
|       memset((char*)BOUNDED_N(chunk2mem(newp), bytes) + oldsize,
 | ||
| 	     0, nb - (oldsize+SIZE_SZ));
 | ||
|     }
 | ||
| #endif
 | ||
| #if HAVE_MMAP
 | ||
|   }
 | ||
| #endif
 | ||
|   (void)mutex_unlock(&main_arena.mutex);
 | ||
| 
 | ||
|   if(!newp) return NULL;
 | ||
|   return chunk2mem_check(newp, bytes);
 | ||
| }
 | ||
| 
 | ||
| static Void_t*
 | ||
| #if __STD_C
 | ||
| memalign_check(size_t alignment, size_t bytes, const Void_t *caller)
 | ||
| #else
 | ||
| memalign_check(alignment, bytes, caller)
 | ||
|      size_t alignment; size_t bytes; const Void_t *caller;
 | ||
| #endif
 | ||
| {
 | ||
|   INTERNAL_SIZE_T nb;
 | ||
|   mchunkptr p;
 | ||
| 
 | ||
|   if (alignment <= MALLOC_ALIGNMENT) return malloc_check(bytes, NULL);
 | ||
|   if (alignment <  MINSIZE) alignment = MINSIZE;
 | ||
| 
 | ||
|   if(request2size(bytes+1, nb))
 | ||
|     return 0;
 | ||
|   (void)mutex_lock(&main_arena.mutex);
 | ||
|   p = (top_check() >= 0) ? chunk_align(&main_arena, nb, alignment) : NULL;
 | ||
|   (void)mutex_unlock(&main_arena.mutex);
 | ||
|   if(!p) return NULL;
 | ||
|   return chunk2mem_check(p, bytes);
 | ||
| }
 | ||
| 
 | ||
| #ifndef NO_THREADS
 | ||
| 
 | ||
| /* The following hooks are used when the global initialization in
 | ||
|    ptmalloc_init() hasn't completed yet. */
 | ||
| 
 | ||
| static Void_t*
 | ||
| #if __STD_C
 | ||
| malloc_starter(size_t sz, const Void_t *caller)
 | ||
| #else
 | ||
| malloc_starter(sz, caller) size_t sz; const Void_t *caller;
 | ||
| #endif
 | ||
| {
 | ||
|   INTERNAL_SIZE_T nb;
 | ||
|   mchunkptr victim;
 | ||
| 
 | ||
|   if(request2size(sz, nb))
 | ||
|     return 0;
 | ||
|   victim = chunk_alloc(&main_arena, nb);
 | ||
| 
 | ||
|   return victim ? BOUNDED_N(chunk2mem(victim), sz) : 0;
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| #if __STD_C
 | ||
| free_starter(Void_t* mem, const Void_t *caller)
 | ||
| #else
 | ||
| free_starter(mem, caller) Void_t* mem; const Void_t *caller;
 | ||
| #endif
 | ||
| {
 | ||
|   mchunkptr p;
 | ||
| 
 | ||
|   if(!mem) return;
 | ||
|   p = mem2chunk(mem);
 | ||
| #if HAVE_MMAP
 | ||
|   if (chunk_is_mmapped(p)) {
 | ||
|     munmap_chunk(p);
 | ||
|     return;
 | ||
|   }
 | ||
| #endif
 | ||
|   chunk_free(&main_arena, p);
 | ||
| }
 | ||
| 
 | ||
| /* The following hooks are used while the `atfork' handling mechanism
 | ||
|    is active. */
 | ||
| 
 | ||
| static Void_t*
 | ||
| #if __STD_C
 | ||
| malloc_atfork (size_t sz, const Void_t *caller)
 | ||
| #else
 | ||
| malloc_atfork(sz, caller) size_t sz; const Void_t *caller;
 | ||
| #endif
 | ||
| {
 | ||
|   Void_t *vptr = NULL;
 | ||
|   INTERNAL_SIZE_T nb;
 | ||
|   mchunkptr victim;
 | ||
| 
 | ||
|   tsd_getspecific(arena_key, vptr);
 | ||
|   if(vptr == ATFORK_ARENA_PTR) {
 | ||
|     /* We are the only thread that may allocate at all.  */
 | ||
|     if(save_malloc_hook != malloc_check) {
 | ||
|       if(request2size(sz, nb))
 | ||
|         return 0;
 | ||
|       victim = chunk_alloc(&main_arena, nb);
 | ||
|       return victim ? BOUNDED_N(chunk2mem(victim), sz) : 0;
 | ||
|     } else {
 | ||
|       if(top_check()<0 || request2size(sz+1, nb))
 | ||
|         return 0;
 | ||
|       victim = chunk_alloc(&main_arena, nb);
 | ||
|       return victim ? chunk2mem_check(victim, sz) : 0;
 | ||
|     }
 | ||
|   } else {
 | ||
|     /* Suspend the thread until the `atfork' handlers have completed.
 | ||
|        By that time, the hooks will have been reset as well, so that
 | ||
|        mALLOc() can be used again. */
 | ||
|     (void)mutex_lock(&list_lock);
 | ||
|     (void)mutex_unlock(&list_lock);
 | ||
|     return mALLOc(sz);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| static void
 | ||
| #if __STD_C
 | ||
| free_atfork(Void_t* mem, const Void_t *caller)
 | ||
| #else
 | ||
| free_atfork(mem, caller) Void_t* mem; const Void_t *caller;
 | ||
| #endif
 | ||
| {
 | ||
|   Void_t *vptr = NULL;
 | ||
|   arena *ar_ptr;
 | ||
|   mchunkptr p;                          /* chunk corresponding to mem */
 | ||
| 
 | ||
|   if (mem == 0)                              /* free(0) has no effect */
 | ||
|     return;
 | ||
| 
 | ||
|   p = mem2chunk(mem);         /* do not bother to replicate free_check here */
 | ||
| 
 | ||
| #if HAVE_MMAP
 | ||
|   if (chunk_is_mmapped(p))                       /* release mmapped memory. */
 | ||
|   {
 | ||
|     munmap_chunk(p);
 | ||
|     return;
 | ||
|   }
 | ||
| #endif
 | ||
| 
 | ||
|   ar_ptr = arena_for_ptr(p);
 | ||
|   tsd_getspecific(arena_key, vptr);
 | ||
|   if(vptr != ATFORK_ARENA_PTR)
 | ||
|     (void)mutex_lock(&ar_ptr->mutex);
 | ||
|   chunk_free(ar_ptr, p);
 | ||
|   if(vptr != ATFORK_ARENA_PTR)
 | ||
|     (void)mutex_unlock(&ar_ptr->mutex);
 | ||
| }
 | ||
| 
 | ||
| #endif /* !defined NO_THREADS */
 | ||
| 
 | ||
| #endif /* defined _LIBC || defined MALLOC_HOOKS */
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| #ifdef _LIBC
 | ||
| 
 | ||
| /* default method of getting more storage */
 | ||
| __malloc_ptr_t
 | ||
| __default_morecore (int inc)
 | ||
| {
 | ||
|   __malloc_ptr_t result = (__malloc_ptr_t)sbrk (inc);
 | ||
|   if (result == (__malloc_ptr_t)-1)
 | ||
|     return NULL;
 | ||
|   return result;
 | ||
| }
 | ||
|  
 | ||
| /* We need a wrapper function for one of the additions of POSIX.  */
 | ||
| int
 | ||
| __posix_memalign (void **memptr, size_t alignment, size_t size)
 | ||
| {
 | ||
|   void *mem;
 | ||
| 
 | ||
|   /* Test whether the ALIGNMENT argument is valid.  It must be a power
 | ||
|      of two multiple of sizeof (void *).  */
 | ||
|   if (alignment % sizeof (void *) != 0 || (alignment & (alignment - 1)) != 0)
 | ||
|     return EINVAL;
 | ||
| 
 | ||
|   mem = __libc_memalign (alignment, size);
 | ||
| 
 | ||
|   if (mem != NULL)
 | ||
|     {
 | ||
|       *memptr = mem;
 | ||
|       return 0;
 | ||
|     }
 | ||
| 
 | ||
|   return ENOMEM;
 | ||
| }
 | ||
| weak_alias (__posix_memalign, posix_memalign)
 | ||
| 
 | ||
| weak_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
 | ||
| weak_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
 | ||
| weak_alias (__libc_free, __free) weak_alias (__libc_free, free)
 | ||
| weak_alias (__libc_malloc, __malloc) weak_alias (__libc_malloc, malloc)
 | ||
| weak_alias (__libc_memalign, __memalign) weak_alias (__libc_memalign, memalign)
 | ||
| weak_alias (__libc_realloc, __realloc) weak_alias (__libc_realloc, realloc)
 | ||
| weak_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
 | ||
| weak_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
 | ||
| weak_alias (__libc_mallinfo, __mallinfo) weak_alias (__libc_mallinfo, mallinfo)
 | ||
| weak_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
 | ||
| 
 | ||
| weak_alias (__malloc_stats, malloc_stats)
 | ||
| weak_alias (__malloc_usable_size, malloc_usable_size)
 | ||
| weak_alias (__malloc_trim, malloc_trim)
 | ||
| weak_alias (__malloc_get_state, malloc_get_state)
 | ||
| weak_alias (__malloc_set_state, malloc_set_state)
 | ||
| #endif
 | ||
| 
 | ||
| /*
 | ||
| 
 | ||
| History:
 | ||
| 
 | ||
|     V2.6.4-pt3 Thu Feb 20 1997 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
 | ||
|       * Added malloc_get/set_state() (mainly for use in GNU emacs),
 | ||
|         using interface from Marcus Daniels
 | ||
|       * All parameters are now adjustable via environment variables
 | ||
| 
 | ||
|     V2.6.4-pt2 Sat Dec 14 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
 | ||
|       * Added debugging hooks
 | ||
|       * Fixed possible deadlock in realloc() when out of memory
 | ||
|       * Don't pollute namespace in glibc: use __getpagesize, __mmap, etc.
 | ||
| 
 | ||
|     V2.6.4-pt Wed Dec  4 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
 | ||
|       * Very minor updates from the released 2.6.4 version.
 | ||
|       * Trimmed include file down to exported data structures.
 | ||
|       * Changes from H.J. Lu for glibc-2.0.
 | ||
| 
 | ||
|     V2.6.3i-pt Sep 16 1996  Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
 | ||
|       * Many changes for multiple threads
 | ||
|       * Introduced arenas and heaps
 | ||
| 
 | ||
|     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
 | ||
|       * Added pvalloc, as recommended by H.J. Liu
 | ||
|       * Added 64bit pointer support mainly from Wolfram Gloger
 | ||
|       * Added anonymously donated WIN32 sbrk emulation
 | ||
|       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
 | ||
|       * malloc_extend_top: fix mask error that caused wastage after
 | ||
|         foreign sbrks
 | ||
|       * Add linux mremap support code from HJ Liu
 | ||
| 
 | ||
|     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
 | ||
|       * Integrated most documentation with the code.
 | ||
|       * Add support for mmap, with help from
 | ||
|         Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
 | ||
|       * Use last_remainder in more cases.
 | ||
|       * Pack bins using idea from  colin@nyx10.cs.du.edu
 | ||
|       * Use ordered bins instead of best-fit threshold
 | ||
|       * Eliminate block-local decls to simplify tracing and debugging.
 | ||
|       * Support another case of realloc via move into top
 | ||
|       * Fix error occurring when initial sbrk_base not word-aligned.
 | ||
|       * Rely on page size for units instead of SBRK_UNIT to
 | ||
|         avoid surprises about sbrk alignment conventions.
 | ||
|       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
 | ||
|         (raymond@es.ele.tue.nl) for the suggestion.
 | ||
|       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
 | ||
|       * More precautions for cases where other routines call sbrk,
 | ||
|         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
 | ||
|       * Added macros etc., allowing use in linux libc from
 | ||
|         H.J. Lu (hjl@gnu.ai.mit.edu)
 | ||
|       * Inverted this history list
 | ||
| 
 | ||
|     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
 | ||
|       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
 | ||
|       * Removed all preallocation code since under current scheme
 | ||
|         the work required to undo bad preallocations exceeds
 | ||
|         the work saved in good cases for most test programs.
 | ||
|       * No longer use return list or unconsolidated bins since
 | ||
|         no scheme using them consistently outperforms those that don't
 | ||
|         given above changes.
 | ||
|       * Use best fit for very large chunks to prevent some worst-cases.
 | ||
|       * Added some support for debugging
 | ||
| 
 | ||
|     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
 | ||
|       * Removed footers when chunks are in use. Thanks to
 | ||
|         Paul Wilson (wilson@cs.texas.edu) for the suggestion.
 | ||
| 
 | ||
|     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
 | ||
|       * Added malloc_trim, with help from Wolfram Gloger
 | ||
|         (wmglo@Dent.MED.Uni-Muenchen.DE).
 | ||
| 
 | ||
|     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
 | ||
| 
 | ||
|     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
 | ||
|       * realloc: try to expand in both directions
 | ||
|       * malloc: swap order of clean-bin strategy;
 | ||
|       * realloc: only conditionally expand backwards
 | ||
|       * Try not to scavenge used bins
 | ||
|       * Use bin counts as a guide to preallocation
 | ||
|       * Occasionally bin return list chunks in first scan
 | ||
|       * Add a few optimizations from colin@nyx10.cs.du.edu
 | ||
| 
 | ||
|     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
 | ||
|       * faster bin computation & slightly different binning
 | ||
|       * merged all consolidations to one part of malloc proper
 | ||
|          (eliminating old malloc_find_space & malloc_clean_bin)
 | ||
|       * Scan 2 returns chunks (not just 1)
 | ||
|       * Propagate failure in realloc if malloc returns 0
 | ||
|       * Add stuff to allow compilation on non-ANSI compilers
 | ||
|           from kpv@research.att.com
 | ||
| 
 | ||
|     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
 | ||
|       * removed potential for odd address access in prev_chunk
 | ||
|       * removed dependency on getpagesize.h
 | ||
|       * misc cosmetics and a bit more internal documentation
 | ||
|       * anticosmetics: mangled names in macros to evade debugger strangeness
 | ||
|       * tested on sparc, hp-700, dec-mips, rs6000
 | ||
|           with gcc & native cc (hp, dec only) allowing
 | ||
|           Detlefs & Zorn comparison study (in SIGPLAN Notices.)
 | ||
| 
 | ||
|     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
 | ||
|       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
 | ||
|          structure of old version,  but most details differ.)
 | ||
| 
 | ||
| */
 |