205 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
| /* --------------------------------------------------------------  */
 | |
| /* (C)Copyright 2001,2008,                                         */
 | |
| /* International Business Machines Corporation,                    */
 | |
| /* Sony Computer Entertainment, Incorporated,                      */
 | |
| /* Toshiba Corporation,                                            */
 | |
| /*                                                                 */
 | |
| /* All Rights Reserved.                                            */
 | |
| /*                                                                 */
 | |
| /* Redistribution and use in source and binary forms, with or      */
 | |
| /* without modification, are permitted provided that the           */
 | |
| /* following conditions are met:                                   */
 | |
| /*                                                                 */
 | |
| /* - Redistributions of source code must retain the above copyright*/
 | |
| /*   notice, this list of conditions and the following disclaimer. */
 | |
| /*                                                                 */
 | |
| /* - Redistributions in binary form must reproduce the above       */
 | |
| /*   copyright notice, this list of conditions and the following   */
 | |
| /*   disclaimer in the documentation and/or other materials        */
 | |
| /*   provided with the distribution.                               */
 | |
| /*                                                                 */
 | |
| /* - Neither the name of IBM Corporation nor the names of its      */
 | |
| /*   contributors may be used to endorse or promote products       */
 | |
| /*   derived from this software without specific prior written     */
 | |
| /*   permission.                                                   */
 | |
| /*                                                                 */
 | |
| /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
 | |
| /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
 | |
| /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
 | |
| /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
 | |
| /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
 | |
| /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
 | |
| /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
 | |
| /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
 | |
| /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
 | |
| /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
 | |
| /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
 | |
| /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
 | |
| /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
 | |
| /* --------------------------------------------------------------  */
 | |
| /* PROLOG END TAG zYx                                              */
 | |
| #ifdef __SPU__
 | |
| #ifndef _COS_SIN_H_
 | |
| #define _COS_SIN_H_	1
 | |
| 
 | |
| #define M_PI_OVER_4_HI_32 0x3fe921fb
 | |
| 
 | |
| #define M_PI_OVER_4	0.78539816339744827900
 | |
| #define M_FOUR_OVER_PI 	1.27323954478442180616
 | |
| 
 | |
| #define M_PI_OVER_2	1.57079632679489655800
 | |
| #define M_PI_OVER_2_HI 	1.57079632673412561417
 | |
| #define M_PI_OVER_2_LO 	0.0000000000607710050650619224932
 | |
| 
 | |
| #define M_PI_OVER_2F_HI   1.570312500000000000
 | |
| #define M_PI_OVER_2F_LO	  0.000483826794896558
 | |
| 
 | |
| /* The following coefficients correspond to the Taylor series
 | |
|  * coefficients for cos and sin.
 | |
|  */
 | |
| #define COS_14 -0.00000000001138218794258068723867
 | |
| #define COS_12  0.000000002087614008917893178252
 | |
| #define COS_10 -0.0000002755731724204127572108
 | |
| #define COS_08  0.00002480158729870839541888
 | |
| #define COS_06 -0.001388888888888735934799
 | |
| #define COS_04  0.04166666666666666534980
 | |
| #define COS_02 -0.5000000000000000000000
 | |
| #define COS_00  1.0
 | |
| 
 | |
| #define SIN_15 -0.00000000000076471637318198164759
 | |
| #define SIN_13  0.00000000016059043836821614599
 | |
| #define SIN_11 -0.000000025052108385441718775
 | |
| #define SIN_09  0.0000027557319223985890653
 | |
| #define SIN_07 -0.0001984126984126984127
 | |
| #define SIN_05  0.008333333333333333333
 | |
| #define SIN_03 -0.16666666666666666666
 | |
| #define SIN_01  1.0
 | |
| 
 | |
| 
 | |
| /* Compute the following for each floating point element of x. 
 | |
|  * 	x  = fmod(x, PI/4); 
 | |
|  *  	ix = (int)x * PI/4;
 | |
|  * This allows one to compute cos / sin over the limited range
 | |
|  * and select the sign and correct result based upon the octant
 | |
|  * of the original angle (as defined by the ix result).
 | |
|  *
 | |
|  * Expected Inputs Types: 
 | |
|  * 	x  = vec_float4
 | |
|  *	ix = vec_int4
 | |
|  */
 | |
| #define MOD_PI_OVER_FOUR_F(_x, _ix) {					\
 | |
|     vec_float4 fx;							\
 | |
| 									\
 | |
|     _ix = spu_convts(spu_mul(_x, spu_splats((float)M_FOUR_OVER_PI)), 0); \
 | |
|     _ix = spu_add(_ix, spu_add(spu_rlmaska((vec_int4)_x, -31), 1));	\
 | |
| 									\
 | |
|     fx = spu_convtf(spu_rlmaska(_ix, -1), 0);				\
 | |
|     _x  = spu_nmsub(fx, spu_splats((float)M_PI_OVER_2F_HI), _x);	\
 | |
|     _x  = spu_nmsub(fx, spu_splats((float)M_PI_OVER_2F_LO), _x);	\
 | |
|   }
 | |
| 
 | |
| /* Double precision MOD_PI_OVER_FOUR
 | |
|  *
 | |
|  * Expected Inputs Types: 
 | |
|  * 	x  = vec_double2
 | |
|  *	ix = vec_int4
 | |
|  */
 | |
| #define MOD_PI_OVER_FOUR(_x, _ix) {					\
 | |
|     vec_float4 fx;							\
 | |
|     vec_double2 dix;							\
 | |
| 									\
 | |
|     fx = spu_roundtf(spu_mul(_x, spu_splats(M_FOUR_OVER_PI)));	\
 | |
|     _ix = spu_convts(fx, 0);						\
 | |
|     _ix = spu_add(_ix, spu_add(spu_rlmaska((vec_int4)fx, -31), 1));	\
 | |
| 									\
 | |
|     dix = spu_extend(spu_convtf(spu_rlmaska(_ix, -1), 0));		\
 | |
|     _x  = spu_nmsub(spu_splats(M_PI_OVER_2_HI), dix, _x);		\
 | |
|     _x  = spu_nmsub(spu_splats(M_PI_OVER_2_LO), dix, _x);		\
 | |
|   }
 | |
| 
 | |
| 
 | |
| /* Compute the cos(x) and sin(x) for the range reduced angle x.
 | |
|  * In order to compute these trig functions to full single precision
 | |
|  * accuracy, we solve the Taylor series.
 | |
|  *
 | |
|  *   c = cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - x^10/10!
 | |
|  *   s = sin(x) = x - x^3/4! + x^5/5! - x^7/7! + x^9/9! - x^11/11!
 | |
|  *
 | |
|  * Expected Inputs Types: 
 | |
|  * 	x = vec_float4
 | |
|  *	c = vec_float4
 | |
|  *	s = vec_float4
 | |
|  */
 | |
| 
 | |
| #define COMPUTE_COS_SIN_F(_x, _c, _s) {					\
 | |
|     vec_float4 x2, x4, x6;						\
 | |
|     vec_float4 cos_hi, cos_lo;						\
 | |
|     vec_float4 sin_hi, sin_lo;						\
 | |
| 									\
 | |
|     x2 = spu_mul(_x, _x);						\
 | |
|     x4 = spu_mul(x2, x2);						\
 | |
|     x6 = spu_mul(x2, x4);						\
 | |
| 									\
 | |
|     cos_hi = spu_madd(spu_splats((float)COS_10), x2, spu_splats((float)COS_08)); \
 | |
|     cos_lo = spu_madd(spu_splats((float)COS_04), x2, spu_splats((float)COS_02)); \
 | |
|     cos_hi = spu_madd(cos_hi, x2, spu_splats((float)COS_06));		\
 | |
|     cos_lo = spu_madd(cos_lo, x2, spu_splats((float)COS_00));		\
 | |
|     _c     = spu_madd(cos_hi, x6, cos_lo);				\
 | |
| 									\
 | |
|     sin_hi = spu_madd(spu_splats((float)SIN_11), x2, spu_splats((float)SIN_09)); \
 | |
|     sin_lo = spu_madd(spu_splats((float)SIN_05), x2, spu_splats((float)SIN_03)); \
 | |
|     sin_hi = spu_madd(sin_hi, x2, spu_splats((float)SIN_07));		\
 | |
|     sin_lo = spu_madd(sin_lo, x2, spu_splats((float)SIN_01));		\
 | |
|     _s    = spu_madd(sin_hi, x6, sin_lo);				\
 | |
|     _s     = spu_mul(_s, _x);						\
 | |
|   }
 | |
| 
 | |
| 
 | |
| /* Compute the cos(x) and sin(x) for the range reduced angle x.
 | |
|  * This version computes the cosine and sine to double precision 
 | |
|  * accuracy using the Taylor series:
 | |
|  *
 | |
|  *   c = cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - x^10/10! + x^12/12! - x^14/14!
 | |
|  *   s = sin(x) = x - x^3/4! + x^5/5! - x^7/7! + x^9/9! - x^11/11! + x^13/13! - x^15/15!
 | |
|  *
 | |
|  * Expected Inputs Types: 
 | |
|  * 	x = vec_double2
 | |
|  *	c = vec_double2
 | |
|  *	s = vec_double2
 | |
|  */
 | |
| 
 | |
| #define COMPUTE_COS_SIN(_x, _c, _s) {					\
 | |
|     vec_double2 x2, x4, x8;						\
 | |
|     vec_double2 cos_hi, cos_lo;						\
 | |
|     vec_double2 sin_hi, sin_lo;						\
 | |
| 									\
 | |
|     x2 = spu_mul(_x, _x);						\
 | |
|     x4 = spu_mul(x2, x2);						\
 | |
|     x8 = spu_mul(x4, x4);						\
 | |
| 									\
 | |
|     cos_hi = spu_madd(spu_splats(COS_14), x2, spu_splats(COS_12));	\
 | |
|     cos_lo = spu_madd(spu_splats(COS_06), x2, spu_splats(COS_04));	\
 | |
|     cos_hi = spu_madd(cos_hi, x2, spu_splats(COS_10));			\
 | |
|     cos_lo = spu_madd(cos_lo, x2, spu_splats(COS_02));			\
 | |
|     cos_hi = spu_madd(cos_hi, x2, spu_splats(COS_08));			\
 | |
|     cos_lo = spu_madd(cos_lo, x2, spu_splats(COS_00));			\
 | |
|     _c     = spu_madd(cos_hi, x8, cos_lo);				\
 | |
| 									\
 | |
|     sin_hi = spu_madd(spu_splats(SIN_15), x2, spu_splats(SIN_13));	\
 | |
|     sin_lo = spu_madd(spu_splats(SIN_07), x2, spu_splats(SIN_05));	\
 | |
|     sin_hi = spu_madd(sin_hi, x2, spu_splats(SIN_11));			\
 | |
|     sin_lo = spu_madd(sin_lo, x2, spu_splats(SIN_03));			\
 | |
|     sin_hi = spu_madd(sin_hi, x2, spu_splats(SIN_09));			\
 | |
|     sin_lo = spu_madd(sin_lo, x2, spu_splats(SIN_01));			\
 | |
|     _s     = spu_madd(sin_hi, x8, sin_lo);				\
 | |
|     _s     = spu_mul(_s, _x);						\
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif /* _COS_SIN_H_ */
 | |
| #endif /* __SPU__ */
 | |
| 
 | |
| 
 |