188 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
| 
 | |
| /* @(#)z_fmod.c 1.0 98/08/13 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
| FUNCTION
 | |
| <<fmod>>, <<fmodf>>---floating-point remainder (modulo)
 | |
| 
 | |
| INDEX
 | |
| fmod
 | |
| INDEX
 | |
| fmodf
 | |
| 
 | |
| ANSI_SYNOPSIS
 | |
| #include <math.h>
 | |
| double fmod(double <[x]>, double <[y]>);
 | |
| float fmodf(float <[x]>, float <[y]>);
 | |
| 
 | |
| TRAD_SYNOPSIS
 | |
| #include <math.h>
 | |
| double fmod(<[x]>, <[y]>);
 | |
| double (<[x]>, <[y]>);
 | |
| 
 | |
| float fmodf(<[x]>, <[y]>);
 | |
| float (<[x]>, <[y]>);
 | |
| 
 | |
| DESCRIPTION
 | |
| The <<fmod>> and <<fmodf>> functions compute the floating-point
 | |
| remainder of <[x]>/<[y]> (<[x]> modulo <[y]>).
 | |
| 
 | |
| RETURNS
 | |
| The <<fmod>> function returns the value
 | |
| @ifnottex
 | |
| <[x]>-<[i]>*<[y]>,
 | |
| @end ifnottex
 | |
| @tex
 | |
| $x-i\times y$,
 | |
| @end tex
 | |
| for the largest integer <[i]> such that, if <[y]> is nonzero, the
 | |
| result has the same sign as <[x]> and magnitude less than the
 | |
| magnitude of <[y]>.
 | |
| 
 | |
| <<fmod(<[x]>,0)>> returns NaN, and sets <<errno>> to <<EDOM>>.
 | |
| 
 | |
| You can modify error treatment for these functions using <<matherr>>.
 | |
| 
 | |
| PORTABILITY
 | |
| <<fmod>> is ANSI C. <<fmodf>> is an extension.
 | |
| */
 | |
| 
 | |
| /* 
 | |
|  * fmod(x,y)
 | |
|  * Return x mod y in exact arithmetic
 | |
|  * Method: shift and subtract
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| #include "zmath.h"
 | |
| 
 | |
| #ifndef _DOUBLE_IS_32BITS
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double one = 1.0, Zero[] = {0.0, -0.0,};
 | |
| #else
 | |
| static double one = 1.0, Zero[] = {0.0, -0.0,};
 | |
| #endif
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double fmod(double x, double y)
 | |
| #else
 | |
| 	double fmod(x,y)
 | |
| 	double x,y ;
 | |
| #endif
 | |
| {
 | |
| 	__int32_t n,hx,hy,hz,ix,iy,sx,i;
 | |
| 	__uint32_t lx,ly,lz;
 | |
| 
 | |
| 	EXTRACT_WORDS(hx,lx,x);
 | |
| 	EXTRACT_WORDS(hy,ly,y);
 | |
| 	sx = hx&0x80000000;		/* sign of x */
 | |
| 	hx ^=sx;		/* |x| */
 | |
| 	hy &= 0x7fffffff;	/* |y| */
 | |
| 
 | |
|     /* purge off exception values */
 | |
| 	if((hy|ly)==0||(hx>=0x7ff00000)||	/* y=0,or x not finite */
 | |
| 	  ((hy|((ly|-ly)>>31))>0x7ff00000))	/* or y is NaN */
 | |
| 	    return (x*y)/(x*y);
 | |
| 	if(hx<=hy) {
 | |
| 	    if((hx<hy)||(lx<ly)) return x;	/* |x|<|y| return x */
 | |
| 	    if(lx==ly) 
 | |
| 		return Zero[(__uint32_t)sx>>31];	/* |x|=|y| return x*0*/
 | |
| 	}
 | |
| 
 | |
|     /* determine ix = ilogb(x) */
 | |
| 	if(hx<0x00100000) {	/* subnormal x */
 | |
| 	    if(hx==0) {
 | |
| 		for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
 | |
| 	    } else {
 | |
| 		for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
 | |
| 	    }
 | |
| 	} else ix = (hx>>20)-1023;
 | |
| 
 | |
|     /* determine iy = ilogb(y) */
 | |
| 	if(hy<0x00100000) {	/* subnormal y */
 | |
| 	    if(hy==0) {
 | |
| 		for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
 | |
| 	    } else {
 | |
| 		for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
 | |
| 	    }
 | |
| 	} else iy = (hy>>20)-1023;
 | |
| 
 | |
|     /* set up {hx,lx}, {hy,ly} and align y to x */
 | |
| 	if(ix >= -1022) 
 | |
| 	    hx = 0x00100000|(0x000fffff&hx);
 | |
| 	else {		/* subnormal x, shift x to normal */
 | |
| 	    n = -1022-ix;
 | |
| 	    if(n<=31) {
 | |
| 	        hx = (hx<<n)|(lx>>(32-n));
 | |
| 	        lx <<= n;
 | |
| 	    } else {
 | |
| 		hx = lx<<(n-32);
 | |
| 		lx = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	if(iy >= -1022) 
 | |
| 	    hy = 0x00100000|(0x000fffff&hy);
 | |
| 	else {		/* subnormal y, shift y to normal */
 | |
| 	    n = -1022-iy;
 | |
| 	    if(n<=31) {
 | |
| 	        hy = (hy<<n)|(ly>>(32-n));
 | |
| 	        ly <<= n;
 | |
| 	    } else {
 | |
| 		hy = ly<<(n-32);
 | |
| 		ly = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     /* fix point fmod */
 | |
| 	n = ix - iy;
 | |
| 	while(n--) {
 | |
| 	    hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
 | |
| 	    if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
 | |
| 	    else {
 | |
| 	    	if((hz|lz)==0) 		/* return sign(x)*0 */
 | |
| 		    return Zero[(__uint32_t)sx>>31];
 | |
| 	    	hx = hz+hz+(lz>>31); lx = lz+lz;
 | |
| 	    }
 | |
| 	}
 | |
| 	hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
 | |
| 	if(hz>=0) {hx=hz;lx=lz;}
 | |
| 
 | |
|     /* convert back to floating value and restore the sign */
 | |
| 	if((hx|lx)==0) 			/* return sign(x)*0 */
 | |
| 	    return Zero[(__uint32_t)sx>>31];	
 | |
| 	while(hx<0x00100000) {		/* normalize x */
 | |
| 	    hx = hx+hx+(lx>>31); lx = lx+lx;
 | |
| 	    iy -= 1;
 | |
| 	}
 | |
| 	if(iy>= -1022) {	/* normalize output */
 | |
| 	    hx = ((hx-0x00100000)|((iy+1023)<<20));
 | |
| 	    INSERT_WORDS(x,hx|sx,lx);
 | |
| 	} else {		/* subnormal output */
 | |
| 	    n = -1022 - iy;
 | |
| 	    if(n<=20) {
 | |
| 		lx = (lx>>n)|((__uint32_t)hx<<(32-n));
 | |
| 		hx >>= n;
 | |
| 	    } else if (n<=31) {
 | |
| 		lx = (hx<<(32-n))|(lx>>n); hx = sx;
 | |
| 	    } else {
 | |
| 		lx = hx>>(n-32); hx = sx;
 | |
| 	    }
 | |
| 	    INSERT_WORDS(x,hx|sx,lx);
 | |
| 	    x *= one;		/* create necessary signal */
 | |
| 	}
 | |
| 	return x;		/* exact output */
 | |
| }
 | |
| 
 | |
| #endif /* defined(_DOUBLE_IS_32BITS) */
 |