130 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
| 
 | |
| /* @(#)z_sqrt.c 1.0 98/08/13 */
 | |
| /*****************************************************************
 | |
|  * The following routines are coded directly from the algorithms
 | |
|  * and coefficients given in "Software Manual for the Elementary
 | |
|  * Functions" by William J. Cody, Jr. and William Waite, Prentice
 | |
|  * Hall, 1980.
 | |
|  *****************************************************************/
 | |
| 
 | |
| /*
 | |
| FUNCTION
 | |
|         <<sqrt>>, <<sqrtf>>---positive square root
 | |
| 
 | |
| INDEX
 | |
|         sqrt
 | |
| INDEX
 | |
|         sqrtf
 | |
| 
 | |
| ANSI_SYNOPSIS
 | |
|         #include <math.h>
 | |
|         double sqrt(double <[x]>);
 | |
|         float  sqrtf(float <[x]>);
 | |
| 
 | |
| TRAD_SYNOPSIS
 | |
|         #include <math.h>
 | |
|         double sqrt(<[x]>);
 | |
|         float  sqrtf(<[x]>);
 | |
| 
 | |
| DESCRIPTION
 | |
|         <<sqrt>> computes the positive square root of the argument.
 | |
| 
 | |
| RETURNS
 | |
|         On success, the square root is returned. If <[x]> is real and
 | |
|         positive, then the result is positive.  If <[x]> is real and
 | |
|         negative, the global value <<errno>> is set to <<EDOM>> (domain error).
 | |
| 
 | |
| 
 | |
| PORTABILITY
 | |
|         <<sqrt>> is ANSI C.  <<sqrtf>> is an extension.
 | |
| */
 | |
| 
 | |
| /******************************************************************
 | |
|  * Square Root
 | |
|  *
 | |
|  * Input:
 | |
|  *   x - floating point value
 | |
|  *
 | |
|  * Output:
 | |
|  *   square-root of x
 | |
|  *
 | |
|  * Description:
 | |
|  *   This routine performs floating point square root.
 | |
|  *
 | |
|  *   The initial approximation is computed as
 | |
|  *     y0 = 0.41731 + 0.59016 * f
 | |
|  *   where f is a fraction such that x = f * 2^exp.
 | |
|  *
 | |
|  *   Three Newton iterations in the form of Heron's formula
 | |
|  *   are then performed to obtain the final value:
 | |
|  *     y[i] = (y[i-1] + f / y[i-1]) / 2, i = 1, 2, 3.
 | |
|  *
 | |
|  *****************************************************************/
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| #include "zmath.h"
 | |
| 
 | |
| #ifndef _DOUBLE_IS_32BITS
 | |
| 
 | |
| double
 | |
| _DEFUN (sqrt, (double),
 | |
|         double x)
 | |
| {
 | |
|   double f, y;
 | |
|   int exp, i, odd;
 | |
| 
 | |
|   /* Check for special values. */
 | |
|   switch (numtest (x))
 | |
|     {
 | |
|       case NAN:
 | |
|         errno = EDOM;
 | |
|         return (x);
 | |
|       case INF:
 | |
|         if (ispos (x))
 | |
|           {
 | |
|             errno = EDOM;
 | |
|             return (z_notanum.d);
 | |
|           }
 | |
|         else
 | |
|           {
 | |
|             errno = ERANGE;
 | |
|             return (z_infinity.d);
 | |
|           }
 | |
|     }
 | |
| 
 | |
|   /* Initial checks are performed here. */
 | |
|   if (x == 0.0)
 | |
|     return (0.0);
 | |
|   if (x < 0)
 | |
|     {
 | |
|       errno = EDOM;
 | |
|       return (z_notanum.d);
 | |
|     }
 | |
| 
 | |
|   /* Find the exponent and mantissa for the form x = f * 2^exp. */
 | |
|   f = frexp (x, &exp);
 | |
| 
 | |
|   odd = exp & 1;
 | |
| 
 | |
|   /* Get the initial approximation. */
 | |
|   y = 0.41731 + 0.59016 * f;
 | |
| 
 | |
|   f /= 2.0;
 | |
|   /* Calculate the remaining iterations. */
 | |
|   for (i = 0; i < 3; ++i)
 | |
|     y = y / 2.0 + f / y;
 | |
| 
 | |
|   /* Calculate the final value. */
 | |
|   if (odd)
 | |
|     {
 | |
|       y *= __SQRT_HALF;
 | |
|       exp++;
 | |
|     }
 | |
|   exp >>= 1;
 | |
|   y = ldexp (y, exp);
 | |
| 
 | |
|   return (y);
 | |
| }
 | |
| 
 | |
| #endif /* _DOUBLE_IS_32BITS */
 |