431 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			431 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
| 
 | |
| /* @(#)er_lgamma.c 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
| FUNCTION
 | |
|         <<gamma>>, <<gammaf>>, <<lgamma>>, <<lgammaf>>, <<gamma_r>>,
 | |
|         <<gammaf_r>>, <<lgamma_r>>, <<lgammaf_r>>---logarithmic gamma
 | |
|         function
 | |
| INDEX
 | |
| gamma
 | |
| INDEX
 | |
| gammaf
 | |
| INDEX
 | |
| lgamma
 | |
| INDEX
 | |
| lgammaf
 | |
| INDEX
 | |
| gamma_r
 | |
| INDEX
 | |
| gammaf_r
 | |
| INDEX
 | |
| lgamma_r
 | |
| INDEX
 | |
| lgammaf_r
 | |
| 
 | |
| ANSI_SYNOPSIS
 | |
| #include <math.h>
 | |
| double gamma(double <[x]>);
 | |
| float gammaf(float <[x]>);
 | |
| double lgamma(double <[x]>);
 | |
| float lgammaf(float <[x]>);
 | |
| double gamma_r(double <[x]>, int *<[signgamp]>);
 | |
| float gammaf_r(float <[x]>, int *<[signgamp]>);
 | |
| double lgamma_r(double <[x]>, int *<[signgamp]>);
 | |
| float lgammaf_r(float <[x]>, int *<[signgamp]>);
 | |
| 
 | |
| TRAD_SYNOPSIS
 | |
| #include <math.h>
 | |
| double gamma(<[x]>)
 | |
| double <[x]>;
 | |
| float gammaf(<[x]>)
 | |
| float <[x]>;
 | |
| double lgamma(<[x]>)
 | |
| double <[x]>;
 | |
| float lgammaf(<[x]>)
 | |
| float <[x]>;
 | |
| double gamma_r(<[x]>, <[signgamp]>)
 | |
| double <[x]>;
 | |
| int <[signgamp]>;
 | |
| float gammaf_r(<[x]>, <[signgamp]>)
 | |
| float <[x]>;
 | |
| int <[signgamp]>;
 | |
| double lgamma_r(<[x]>, <[signgamp]>)
 | |
| double <[x]>;
 | |
| int <[signgamp]>;
 | |
| float lgammaf_r(<[x]>, <[signgamp]>)
 | |
| float <[x]>;
 | |
| int <[signgamp]>;
 | |
| 
 | |
| DESCRIPTION
 | |
| <<gamma>> calculates
 | |
| @tex
 | |
| $\mit ln\bigl(\Gamma(x)\bigr)$,
 | |
| @end tex
 | |
| the natural logarithm of the gamma function of <[x]>.  The gamma function
 | |
| (<<exp(gamma(<[x]>))>>) is a generalization of factorial, and retains
 | |
| the property that
 | |
| @ifnottex
 | |
| <<exp(gamma(N))>> is equivalent to <<N*exp(gamma(N-1))>>.
 | |
| @end ifnottex
 | |
| @tex
 | |
| $\mit \Gamma(N)\equiv N\times\Gamma(N-1)$.
 | |
| @end tex
 | |
| Accordingly, the results of the gamma function itself grow very
 | |
| quickly.  <<gamma>> is defined as
 | |
| @tex
 | |
| $\mit ln\bigl(\Gamma(x)\bigr)$ rather than simply $\mit \Gamma(x)$
 | |
| @end tex
 | |
| @ifnottex
 | |
| the natural log of the gamma function, rather than the gamma function
 | |
| itself,
 | |
| @end ifnottex
 | |
| to extend the useful range of results representable.
 | |
| 
 | |
| The sign of the result is returned in the global variable <<signgam>>,
 | |
| which is declared in math.h.
 | |
| 
 | |
| <<gammaf>> performs the same calculation as <<gamma>>, but uses and
 | |
| returns <<float>> values.
 | |
| 
 | |
| <<lgamma>> and <<lgammaf>> are alternate names for <<gamma>> and
 | |
| <<gammaf>>.  The use of <<lgamma>> instead of <<gamma>> is a reminder
 | |
| that these functions compute the log of the gamma function, rather
 | |
| than the gamma function itself.
 | |
| 
 | |
| The functions <<gamma_r>>, <<gammaf_r>>, <<lgamma_r>>, and
 | |
| <<lgammaf_r>> are just like <<gamma>>, <<gammaf>>, <<lgamma>>, and
 | |
| <<lgammaf>>, respectively, but take an additional argument.  This
 | |
| additional argument is a pointer to an integer.  This additional
 | |
| argument is used to return the sign of the result, and the global
 | |
| variable <<signgam>> is not used.  These functions may be used for
 | |
| reentrant calls (but they will still set the global variable <<errno>>
 | |
| if an error occurs).
 | |
| 
 | |
| RETURNS
 | |
| Normally, the computed result is returned.
 | |
| 
 | |
| When <[x]> is a nonpositive integer, <<gamma>> returns <<HUGE_VAL>>
 | |
| and <<errno>> is set to <<EDOM>>.  If the result overflows, <<gamma>>
 | |
| returns <<HUGE_VAL>> and <<errno>> is set to <<ERANGE>>.
 | |
| 
 | |
| You can modify this error treatment using <<matherr>>.
 | |
| 
 | |
| PORTABILITY
 | |
| Neither <<gamma>> nor <<gammaf>> is ANSI C.  */
 | |
| 
 | |
| /* lgamma_r(x, signgamp)
 | |
|  * Reentrant version of the logarithm of the Gamma function 
 | |
|  * with user provide pointer for the sign of Gamma(x). 
 | |
|  *
 | |
|  * Method:
 | |
|  *   1. Argument Reduction for 0 < x <= 8
 | |
|  * 	Since gamma(1+s)=s*gamma(s), for x in [0,8], we may 
 | |
|  * 	reduce x to a number in [1.5,2.5] by
 | |
|  * 		lgamma(1+s) = log(s) + lgamma(s)
 | |
|  *	for example,
 | |
|  *		lgamma(7.3) = log(6.3) + lgamma(6.3)
 | |
|  *			    = log(6.3*5.3) + lgamma(5.3)
 | |
|  *			    = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
 | |
|  *   2. Polynomial approximation of lgamma around its
 | |
|  *	minimun ymin=1.461632144968362245 to maintain monotonicity.
 | |
|  *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
 | |
|  *		Let z = x-ymin;
 | |
|  *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
 | |
|  *	where
 | |
|  *		poly(z) is a 14 degree polynomial.
 | |
|  *   2. Rational approximation in the primary interval [2,3]
 | |
|  *	We use the following approximation:
 | |
|  *		s = x-2.0;
 | |
|  *		lgamma(x) = 0.5*s + s*P(s)/Q(s)
 | |
|  *	with accuracy
 | |
|  *		|P/Q - (lgamma(x)-0.5s)| < 2**-61.71
 | |
|  *	Our algorithms are based on the following observation
 | |
|  *
 | |
|  *                             zeta(2)-1    2    zeta(3)-1    3
 | |
|  * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
 | |
|  *                                 2                 3
 | |
|  *
 | |
|  *	where Euler = 0.5771... is the Euler constant, which is very
 | |
|  *	close to 0.5.
 | |
|  *
 | |
|  *   3. For x>=8, we have
 | |
|  *	lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
 | |
|  *	(better formula:
 | |
|  *	   lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
 | |
|  *	Let z = 1/x, then we approximation
 | |
|  *		f(z) = lgamma(x) - (x-0.5)(log(x)-1)
 | |
|  *	by
 | |
|  *	  			    3       5             11
 | |
|  *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
 | |
|  *	where 
 | |
|  *		|w - f(z)| < 2**-58.74
 | |
|  *		
 | |
|  *   4. For negative x, since (G is gamma function)
 | |
|  *		-x*G(-x)*G(x) = pi/sin(pi*x),
 | |
|  * 	we have
 | |
|  * 		G(x) = pi/(sin(pi*x)*(-x)*G(-x))
 | |
|  *	since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
 | |
|  *	Hence, for x<0, signgam = sign(sin(pi*x)) and 
 | |
|  *		lgamma(x) = log(|Gamma(x)|)
 | |
|  *			  = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
 | |
|  *	Note: one should avoid compute pi*(-x) directly in the 
 | |
|  *	      computation of sin(pi*(-x)).
 | |
|  *		
 | |
|  *   5. Special Cases
 | |
|  *		lgamma(2+s) ~ s*(1-Euler) for tiny s
 | |
|  *		lgamma(1)=lgamma(2)=0
 | |
|  *		lgamma(x) ~ -log(x) for tiny x
 | |
|  *		lgamma(0) = lgamma(inf) = inf
 | |
|  *	 	lgamma(-integer) = +-inf
 | |
|  *	
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double 
 | |
| #else
 | |
| static double 
 | |
| #endif
 | |
| two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
 | |
| half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
 | |
| one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
 | |
| pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
 | |
| a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
 | |
| a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
 | |
| a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
 | |
| a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
 | |
| a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
 | |
| a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
 | |
| a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
 | |
| a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
 | |
| a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
 | |
| a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
 | |
| a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
 | |
| a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
 | |
| tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
 | |
| tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
 | |
| /* tt = -(tail of tf) */
 | |
| tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
 | |
| t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
 | |
| t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
 | |
| t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
 | |
| t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
 | |
| t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
 | |
| t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
 | |
| t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
 | |
| t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
 | |
| t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
 | |
| t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
 | |
| t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
 | |
| t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
 | |
| t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
 | |
| t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
 | |
| t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
 | |
| u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
 | |
| u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
 | |
| u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
 | |
| u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
 | |
| u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
 | |
| u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
 | |
| v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
 | |
| v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
 | |
| v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
 | |
| v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
 | |
| v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
 | |
| s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
 | |
| s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
 | |
| s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
 | |
| s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
 | |
| s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
 | |
| s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
 | |
| s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
 | |
| r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
 | |
| r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
 | |
| r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
 | |
| r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
 | |
| r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
 | |
| r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
 | |
| w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
 | |
| w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
 | |
| w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
 | |
| w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
 | |
| w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
 | |
| w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
 | |
| w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double zero=  0.00000000000000000000e+00;
 | |
| #else
 | |
| static double zero=  0.00000000000000000000e+00;
 | |
| #endif
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	static double sin_pi(double x)
 | |
| #else
 | |
| 	static double sin_pi(x)
 | |
| 	double x;
 | |
| #endif
 | |
| {
 | |
| 	double y,z;
 | |
| 	__int32_t n,ix;
 | |
| 
 | |
| 	GET_HIGH_WORD(ix,x);
 | |
| 	ix &= 0x7fffffff;
 | |
| 
 | |
| 	if(ix<0x3fd00000) return sin(pi*x);
 | |
| 	y = -x;		/* x is assume negative */
 | |
| 
 | |
|     /*
 | |
|      * argument reduction, make sure inexact flag not raised if input
 | |
|      * is an integer
 | |
|      */
 | |
| 	z = floor(y);
 | |
| 	if(z!=y) {				/* inexact anyway */
 | |
| 	    y  *= 0.5;
 | |
| 	    y   = 2.0*(y - floor(y));		/* y = |x| mod 2.0 */
 | |
| 	    n   = (__int32_t) (y*4.0);
 | |
| 	} else {
 | |
|             if(ix>=0x43400000) {
 | |
|                 y = zero; n = 0;                 /* y must be even */
 | |
|             } else {
 | |
|                 if(ix<0x43300000) z = y+two52;	/* exact */
 | |
| 		GET_LOW_WORD(n,z);
 | |
| 		n &= 1;
 | |
|                 y  = n;
 | |
|                 n<<= 2;
 | |
|             }
 | |
|         }
 | |
| 	switch (n) {
 | |
| 	    case 0:   y =  sin(pi*y); break;
 | |
| 	    case 1:   
 | |
| 	    case 2:   y =  cos(pi*(0.5-y)); break;
 | |
| 	    case 3:  
 | |
| 	    case 4:   y =  sin(pi*(one-y)); break;
 | |
| 	    case 5:
 | |
| 	    case 6:   y = -cos(pi*(y-1.5)); break;
 | |
| 	    default:  y =  sin(pi*(y-2.0)); break;
 | |
| 	    }
 | |
| 	return -y;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double lgamma_r(double x, int *signgamp)
 | |
| #else
 | |
| 	double lgamma_r(x,signgamp)
 | |
| 	double x; int *signgamp;
 | |
| #endif
 | |
| {
 | |
| 	double t,y,z,nadj,p,p1,p2,p3,q,r,w;
 | |
| 	__int32_t i,hx,lx,ix;
 | |
| 
 | |
|         nadj = 0;
 | |
| 
 | |
| 	EXTRACT_WORDS(hx,lx,x);
 | |
| 
 | |
|     /* purge off +-inf, NaN, +-0, and negative arguments */
 | |
| 	*signgamp = 1;
 | |
| 	ix = hx&0x7fffffff;
 | |
| 	if(ix>=0x7ff00000) return x*x;
 | |
| 	if((ix|lx)==0) return one/zero;
 | |
| 	if(ix<0x3b900000) {	/* |x|<2**-70, return -log(|x|) */
 | |
| 	    if(hx<0) {
 | |
| 	        *signgamp = -1;
 | |
| 	        return -log(-x);
 | |
| 	    } else return -log(x);
 | |
| 	}
 | |
| 	if(hx<0) {
 | |
| 	    if(ix>=0x43300000) 	/* |x|>=2**52, must be -integer */
 | |
| 		return one/zero;
 | |
| 	    t = sin_pi(x);
 | |
| 	    if(t==zero) return one/zero; /* -integer */
 | |
| 	    nadj = log(pi/fabs(t*x));
 | |
| 	    if(t<zero) *signgamp = -1;
 | |
| 	    x = -x;
 | |
| 	}
 | |
| 
 | |
|     /* purge off 1 and 2 */
 | |
| 	if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
 | |
|     /* for x < 2.0 */
 | |
| 	else if(ix<0x40000000) {
 | |
| 	    if(ix<=0x3feccccc) { 	/* lgamma(x) = lgamma(x+1)-log(x) */
 | |
| 		r = -log(x);
 | |
| 		if(ix>=0x3FE76944) {y = one-x; i= 0;}
 | |
| 		else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
 | |
| 	  	else {y = x; i=2;}
 | |
| 	    } else {
 | |
| 	  	r = zero;
 | |
| 	        if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
 | |
| 	        else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
 | |
| 		else {y=x-one;i=2;}
 | |
| 	    }
 | |
| 	    switch(i) {
 | |
| 	      case 0:
 | |
| 		z = y*y;
 | |
| 		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
 | |
| 		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
 | |
| 		p  = y*p1+p2;
 | |
| 		r  += (p-0.5*y); break;
 | |
| 	      case 1:
 | |
| 		z = y*y;
 | |
| 		w = z*y;
 | |
| 		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */
 | |
| 		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
 | |
| 		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
 | |
| 		p  = z*p1-(tt-w*(p2+y*p3));
 | |
| 		r += (tf + p); break;
 | |
| 	      case 2:	
 | |
| 		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
 | |
| 		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
 | |
| 		r += (-0.5*y + p1/p2);
 | |
| 	    }
 | |
| 	}
 | |
| 	else if(ix<0x40200000) { 			/* x < 8.0 */
 | |
| 	    i = (__int32_t)x;
 | |
| 	    t = zero;
 | |
| 	    y = x-(double)i;
 | |
| 	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
 | |
| 	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
 | |
| 	    r = half*y+p/q;
 | |
| 	    z = one;	/* lgamma(1+s) = log(s) + lgamma(s) */
 | |
| 	    switch(i) {
 | |
| 	    case 7: z *= (y+6.0);	/* FALLTHRU */
 | |
| 	    case 6: z *= (y+5.0);	/* FALLTHRU */
 | |
| 	    case 5: z *= (y+4.0);	/* FALLTHRU */
 | |
| 	    case 4: z *= (y+3.0);	/* FALLTHRU */
 | |
| 	    case 3: z *= (y+2.0);	/* FALLTHRU */
 | |
| 		    r += log(z); break;
 | |
| 	    }
 | |
|     /* 8.0 <= x < 2**58 */
 | |
| 	} else if (ix < 0x43900000) {
 | |
| 	    t = log(x);
 | |
| 	    z = one/x;
 | |
| 	    y = z*z;
 | |
| 	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
 | |
| 	    r = (x-half)*(t-one)+w;
 | |
| 	} else 
 | |
|     /* 2**58 <= x <= inf */
 | |
| 	    r =  x*(log(x)-one);
 | |
| 	if(hx<0) r = nadj - r;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| double
 | |
| lgamma(double x)
 | |
| {
 | |
|   return lgamma_r(x, &(_REENT_SIGNGAM(_REENT)));
 | |
| }
 |