209 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			209 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Adapted for Newlib, 2009.  (Allow for int < 32 bits; return *quo=0 during
 | |
|  * errors to make test scripts easier.)  */
 | |
| /* @(#)e_fmod.c 1.3 95/01/18 */
 | |
| /*-
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunSoft, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| /*
 | |
| FUNCTION
 | |
| <<remquo>>, <<remquof>>--remainder and part of quotient
 | |
| INDEX
 | |
| 	remquo
 | |
| INDEX
 | |
| 	remquof
 | |
| 
 | |
| ANSI_SYNOPSIS
 | |
| 	#include <math.h>
 | |
| 	double remquo(double <[x]>, double <[y]>, int *<[quo]>);
 | |
| 	float remquof(float <[x]>, float <[y]>, int *<[quo]>);
 | |
| 
 | |
| DESCRIPTION
 | |
| The <<remquo>> functions compute the same remainder as the <<remainder>>
 | |
| functions; this value is in the range -<[y]>/2 ... +<[y]>/2.  In the object
 | |
| pointed to by <<quo>> they store a value whose sign is the sign of <<x>>/<<y>>
 | |
| and whose magnitude is congruent modulo 2**n to the magnitude of the integral
 | |
| quotient of <<x>>/<<y>>.  (That is, <<quo>> is given the n lsbs of the
 | |
| quotient, not counting the sign.)  This implementation uses n=31 if int is 32
 | |
| bits or more, otherwise, n is 1 less than the width of int.
 | |
| 
 | |
| For example:
 | |
| .	remquo(-29.0, 3.0, &<[quo]>)
 | |
| returns -1.0 and sets <[quo]>=10, and
 | |
| .	remquo(-98307.0, 3.0, &<[quo]>)
 | |
| returns -0.0 and sets <[quo]>=-32769, although for 16-bit int, <[quo]>=-1.  In
 | |
| the latter case, the actual quotient of -(32769=0x8001) is reduced to -1
 | |
| because of the 15-bit limitation for the quotient.
 | |
| 
 | |
| RETURNS
 | |
| When either argument is NaN, NaN is returned.  If <[y]> is 0 or <[x]> is
 | |
| infinite (and neither is NaN), a domain error occurs (i.e. the "invalid"
 | |
| floating point exception is raised or errno is set to EDOM), and NaN is
 | |
| returned.
 | |
| Otherwise, the <<remquo>> functions return <[x]> REM <[y]>.
 | |
| 
 | |
| BUGS
 | |
| IEEE754-2008 calls for <<remquo>>(subnormal, inf) to cause the "underflow"
 | |
| floating-point exception.  This implementation does not.
 | |
| 
 | |
| PORTABILITY
 | |
| C99, POSIX.
 | |
| 
 | |
| */
 | |
| 
 | |
| #include <limits.h>
 | |
| #include <math.h>
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| /* For quotient, return either all 31 bits that can from calculation (using
 | |
|  * int32_t), or as many as can fit into an int that is smaller than 32 bits.  */
 | |
| #if INT_MAX > 0x7FFFFFFFL
 | |
|   #define QUO_MASK 0x7FFFFFFF
 | |
| # else
 | |
|   #define QUO_MASK INT_MAX
 | |
| #endif
 | |
| 
 | |
| static const double Zero[] = {0.0, -0.0,};
 | |
| 
 | |
| /*
 | |
|  * Return the IEEE remainder and set *quo to the last n bits of the
 | |
|  * quotient, rounded to the nearest integer.  We choose n=31--if that many fit--
 | |
|  * because we wind up computing all the integer bits of the quotient anyway as
 | |
|  * a side-effect of computing the remainder by the shift and subtract
 | |
|  * method.  In practice, this is far more bits than are needed to use
 | |
|  * remquo in reduction algorithms.
 | |
|  */
 | |
| double
 | |
| remquo(double x, double y, int *quo)
 | |
| {
 | |
| 	__int32_t n,hx,hy,hz,ix,iy,sx,i;
 | |
| 	__uint32_t lx,ly,lz,q,sxy;
 | |
| 
 | |
| 	EXTRACT_WORDS(hx,lx,x);
 | |
| 	EXTRACT_WORDS(hy,ly,y);
 | |
| 	sxy = (hx ^ hy) & 0x80000000;
 | |
| 	sx = hx&0x80000000;		/* sign of x */
 | |
| 	hx ^=sx;		/* |x| */
 | |
| 	hy &= 0x7fffffff;	/* |y| */
 | |
| 
 | |
|     /* purge off exception values */
 | |
| 	if((hy|ly)==0||(hx>=0x7ff00000)||	/* y=0,or x not finite */
 | |
| 	  ((hy|((ly|-ly)>>31))>0x7ff00000))  {	/* or y is NaN */
 | |
| 	    *quo = 0;	/* Not necessary, but return consistent value */
 | |
| 	    return (x*y)/(x*y);
 | |
| 	}
 | |
| 	if(hx<=hy) {
 | |
| 	    if((hx<hy)||(lx<ly)) {
 | |
| 		q = 0;
 | |
| 		goto fixup;	/* |x|<|y| return x or x-y */
 | |
| 	    }
 | |
| 	    if(lx==ly) {
 | |
| 		*quo = (sxy ? -1 : 1);
 | |
| 		return Zero[(__uint32_t)sx>>31];	/* |x|=|y| return x*0 */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     /* determine ix = ilogb(x) */
 | |
| 	if(hx<0x00100000) {	/* subnormal x */
 | |
| 	    if(hx==0) {
 | |
| 		for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
 | |
| 	    } else {
 | |
| 		for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
 | |
| 	    }
 | |
| 	} else ix = (hx>>20)-1023;
 | |
| 
 | |
|     /* determine iy = ilogb(y) */
 | |
| 	if(hy<0x00100000) {	/* subnormal y */
 | |
| 	    if(hy==0) {
 | |
| 		for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
 | |
| 	    } else {
 | |
| 		for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
 | |
| 	    }
 | |
| 	} else iy = (hy>>20)-1023;
 | |
| 
 | |
|     /* set up {hx,lx}, {hy,ly} and align y to x */
 | |
| 	if(ix >= -1022) 
 | |
| 	    hx = 0x00100000|(0x000fffff&hx);
 | |
| 	else {		/* subnormal x, shift x to normal */
 | |
| 	    n = -1022-ix;
 | |
| 	    if(n<=31) {
 | |
| 	        hx = (hx<<n)|(lx>>(32-n));
 | |
| 	        lx <<= n;
 | |
| 	    } else {
 | |
| 		hx = lx<<(n-32);
 | |
| 		lx = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	if(iy >= -1022) 
 | |
| 	    hy = 0x00100000|(0x000fffff&hy);
 | |
| 	else {		/* subnormal y, shift y to normal */
 | |
| 	    n = -1022-iy;
 | |
| 	    if(n<=31) {
 | |
| 	        hy = (hy<<n)|(ly>>(32-n));
 | |
| 	        ly <<= n;
 | |
| 	    } else {
 | |
| 		hy = ly<<(n-32);
 | |
| 		ly = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     /* fix point fmod */
 | |
| 	n = ix - iy;
 | |
| 	q = 0;
 | |
| 	while(n--) {
 | |
| 	    hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
 | |
| 	    if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
 | |
| 	    else {hx = hz+hz+(lz>>31); lx = lz+lz; q++;}
 | |
| 	    q <<= 1;
 | |
| 	}
 | |
| 	hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
 | |
| 	if(hz>=0) {hx=hz;lx=lz;q++;}
 | |
| 
 | |
|     /* convert back to floating value and restore the sign */
 | |
| 	if((hx|lx)==0) {			/* return sign(x)*0 */
 | |
| 	    q &= QUO_MASK;
 | |
| 	    *quo = (sxy ? -q : q);
 | |
| 	    return Zero[(__uint32_t)sx>>31];
 | |
| 	}
 | |
| 	while(hx<0x00100000) {		/* normalize x */
 | |
| 	    hx = hx+hx+(lx>>31); lx = lx+lx;
 | |
| 	    iy -= 1;
 | |
| 	}
 | |
| 	if(iy>= -1022) {	/* normalize output */
 | |
| 	    hx = ((hx-0x00100000)|((iy+1023)<<20));
 | |
| 	} else {		/* subnormal output */
 | |
| 	    n = -1022 - iy;
 | |
| 	    if(n<=20) {
 | |
| 		lx = (lx>>n)|((__uint32_t)hx<<(32-n));
 | |
| 		hx >>= n;
 | |
| 	    } else if (n<=31) {
 | |
| 		lx = (hx<<(32-n))|(lx>>n); hx = sx;
 | |
| 	    } else {
 | |
| 		lx = hx>>(n-32); hx = sx;
 | |
| 	    }
 | |
| 	}
 | |
| fixup:
 | |
| 	INSERT_WORDS(x,hx,lx);
 | |
| 	y = fabs(y);
 | |
| 	if (y < 0x1p-1021) {
 | |
| 	    if (x+x>y || (x+x==y && (q & 1))) {
 | |
| 		q++;
 | |
| 		x-=y;
 | |
| 	    }
 | |
| 	} else if (x>0.5*y || (x==0.5*y && (q & 1))) {
 | |
| 	    q++;
 | |
| 	    x-=y;
 | |
| 	}
 | |
| 	GET_HIGH_WORD(hx,x);
 | |
| 	SET_HIGH_WORD(x,hx^sx);
 | |
| 	q &= QUO_MASK;
 | |
| 	*quo = (sxy ? -q : q);
 | |
| 	return x;
 | |
| }
 |