108 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C
		
	
	
	
| 
 | |
| /* @(#)s_asinh.c 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice 
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| /*
 | |
| FUNCTION
 | |
| 	<<asinh>>, <<asinhf>>---inverse hyperbolic sine 
 | |
| 
 | |
| INDEX
 | |
| 	asinh
 | |
| INDEX
 | |
| 	asinhf
 | |
| 
 | |
| ANSI_SYNOPSIS
 | |
| 	#include <math.h>
 | |
| 	double asinh(double <[x]>);
 | |
| 	float asinhf(float <[x]>);
 | |
| 
 | |
| TRAD_SYNOPSIS
 | |
| 	#include <math.h>
 | |
| 	double asinh(<[x]>)
 | |
| 	double <[x]>;
 | |
| 
 | |
| 	float asinhf(<[x]>)
 | |
| 	float <[x]>;
 | |
| 
 | |
| DESCRIPTION
 | |
| <<asinh>> calculates the inverse hyperbolic sine of <[x]>.
 | |
| <<asinh>> is defined as 
 | |
| @ifnottex
 | |
| . sgn(<[x]>) * log(abs(<[x]>) + sqrt(1+<[x]>*<[x]>))
 | |
| @end ifnottex
 | |
| @tex
 | |
| $$sign(x) \times ln\Bigl(|x| + \sqrt{1+x^2}\Bigr)$$
 | |
| @end tex
 | |
| 
 | |
| <<asinhf>> is identical, other than taking and returning floats.
 | |
| 
 | |
| RETURNS
 | |
| <<asinh>> and <<asinhf>> return the calculated value.
 | |
| 
 | |
| PORTABILITY
 | |
| Neither <<asinh>> nor <<asinhf>> are ANSI C.
 | |
| 
 | |
| */
 | |
| 
 | |
| /* asinh(x)
 | |
|  * Method :
 | |
|  *	Based on 
 | |
|  *		asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 | |
|  *	we have
 | |
|  *	asinh(x) := x  if  1+x*x=1,
 | |
|  *		 := sign(x)*(log(x)+ln2)) for large |x|, else
 | |
|  *		 := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
 | |
|  *		 := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))  
 | |
|  */
 | |
| 
 | |
| #include "fdlibm.h"
 | |
| 
 | |
| #ifndef _DOUBLE_IS_32BITS
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double 
 | |
| #else
 | |
| static double 
 | |
| #endif
 | |
| one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
 | |
| ln2 =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
 | |
| huge=  1.00000000000000000000e+300; 
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double asinh(double x)
 | |
| #else
 | |
| 	double asinh(x)
 | |
| 	double x;
 | |
| #endif
 | |
| {	
 | |
| 	double t,w;
 | |
| 	__int32_t hx,ix;
 | |
| 	GET_HIGH_WORD(hx,x);
 | |
| 	ix = hx&0x7fffffff;
 | |
| 	if(ix>=0x7ff00000) return x+x;	/* x is inf or NaN */
 | |
| 	if(ix< 0x3e300000) {	/* |x|<2**-28 */
 | |
| 	    if(huge+x>one) return x;	/* return x inexact except 0 */
 | |
| 	} 
 | |
| 	if(ix>0x41b00000) {	/* |x| > 2**28 */
 | |
| 	    w = log(fabs(x))+ln2;
 | |
| 	} else if (ix>0x40000000) {	/* 2**28 > |x| > 2.0 */
 | |
| 	    t = fabs(x);
 | |
| 	    w = log(2.0*t+one/(sqrt(x*x+one)+t));
 | |
| 	} else {		/* 2.0 > |x| > 2**-28 */
 | |
| 	    t = x*x;
 | |
| 	    w =log1p(fabs(x)+t/(one+sqrt(one+t)));
 | |
| 	}
 | |
| 	if(hx>0) return w; else return -w;
 | |
| }
 | |
| 
 | |
| #endif /* _DOUBLE_IS_32BITS */
 |