acadia-newlib/winsup/mingw/mingwex/math/cephes_mconf.h

135 lines
2.6 KiB
C

#include <math.h>
#include <errno.h>
/* constants used by cephes functions */
#define MAXNUML 1.189731495357231765021263853E4932L
#define MAXLOGL 1.1356523406294143949492E4L
#define MINLOGL -1.13994985314888605586758E4L
#define LOGE2L 6.9314718055994530941723E-1L
#define LOG2EL 1.4426950408889634073599E0L
#define PIL 3.1415926535897932384626L
#define PIO2L 1.5707963267948966192313L
#define PIO4L 7.8539816339744830961566E-1L
#define isfinitel isfinite
#define isinfl isinf
#define isnanl isnan
#define signbitl signbit
#define IBMPC 1
#define ANSIPROT 1
#define MINUSZERO 1
#define INFINITIES 1
#define NANS 1
#define DENORMAL 1
#define NEGZEROL (-0.0L)
extern long double __INFL;
#define INFINITYL (__INFL)
extern long double __QNANL;
#define NANL (__QNANL)
#define VOLATILE
#define mtherr(fname, code)
#define XPD 0,
#ifdef _CEPHES_USE_ERRNO
#define _SET_ERRNO(x) errno = (x)
#else
#define _SET_ERRNO(x)
#endif
/*
Cephes Math Library Release 2.2: July, 1992
Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* polevll.c
* p1evll.c
*
* Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* long double x, y, coef[N+1], polevl[];
*
* y = polevll( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
* 2 N
* y = C + C x + C x +...+ C x
* 0 1 2 N
*
* Coefficients are stored in reverse order:
*
* coef[0] = C , ..., coef[N] = C .
* N 0
*
* The function p1evll() assumes that coef[N] = 1.0 and is
* omitted from the array. Its calling arguments are
* otherwise the same as polevll().
*
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic. This routine is used by most of
* the functions in the library. Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
/* Polynomial evaluator:
* P[0] x^n + P[1] x^(n-1) + ... + P[n]
*/
static __inline__ long double polevll( x, p, n )
long double x;
const void *p;
int n;
{
register long double y;
register long double *P = (long double *)p;
y = *P++;
do
{
y = y * x + *P++;
}
while( --n );
return(y);
}
/* Polynomial evaluator:
* x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n]
*/
static __inline__ long double p1evll( x, p, n )
long double x;
const void *p;
int n;
{
register long double y;
register long double *P = (long double *)p;
n -= 1;
y = x + *P++;
do
{
y = y * x + *P++;
}
while( --n );
return( y );
}