859 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			859 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
| /****************************************************************
 | |
|  *
 | |
|  * The author of this software is David M. Gay.
 | |
|  *
 | |
|  * Copyright (c) 1991 by AT&T.
 | |
|  *
 | |
|  * Permission to use, copy, modify, and distribute this software for any
 | |
|  * purpose without fee is hereby granted, provided that this entire notice
 | |
|  * is included in all copies of any software which is or includes a copy
 | |
|  * or modification of this software and in all copies of the supporting
 | |
|  * documentation for such software.
 | |
|  *
 | |
|  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 | |
|  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
 | |
|  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 | |
|  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 | |
|  *
 | |
|  ***************************************************************/
 | |
| 
 | |
| /* Please send bug reports to
 | |
| 	David M. Gay
 | |
| 	AT&T Bell Laboratories, Room 2C-463
 | |
| 	600 Mountain Avenue
 | |
| 	Murray Hill, NJ 07974-2070
 | |
| 	U.S.A.
 | |
| 	dmg@research.att.com or research!dmg
 | |
|  */
 | |
| 
 | |
| #include <_ansi.h>
 | |
| #include <stdlib.h>
 | |
| #include <reent.h>
 | |
| #include <string.h>
 | |
| #include "mprec.h"
 | |
| 
 | |
| static int
 | |
| quorem (_Bigint * b, _Bigint * S)
 | |
| {
 | |
|   int n;
 | |
|   __Long borrow, y;
 | |
|   __ULong carry, q, ys;
 | |
|   __ULong *bx, *bxe, *sx, *sxe;
 | |
| #ifdef Pack_32
 | |
|   __Long z;
 | |
|   __ULong si, zs;
 | |
| #endif
 | |
| 
 | |
|   n = S->_wds;
 | |
| #ifdef DEBUG
 | |
|   /*debug*/ if (b->_wds > n)
 | |
|     /*debug*/ Bug ("oversize b in quorem");
 | |
| #endif
 | |
|   if (b->_wds < n)
 | |
|     return 0;
 | |
|   sx = S->_x;
 | |
|   sxe = sx + --n;
 | |
|   bx = b->_x;
 | |
|   bxe = bx + n;
 | |
|   q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
 | |
| #ifdef DEBUG
 | |
|   /*debug*/ if (q > 9)
 | |
|     /*debug*/ Bug ("oversized quotient in quorem");
 | |
| #endif
 | |
|   if (q)
 | |
|     {
 | |
|       borrow = 0;
 | |
|       carry = 0;
 | |
|       do
 | |
| 	{
 | |
| #ifdef Pack_32
 | |
| 	  si = *sx++;
 | |
| 	  ys = (si & 0xffff) * q + carry;
 | |
| 	  zs = (si >> 16) * q + (ys >> 16);
 | |
| 	  carry = zs >> 16;
 | |
| 	  y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
 | |
| 	  borrow = y >> 16;
 | |
| 	  Sign_Extend (borrow, y);
 | |
| 	  z = (*bx >> 16) - (zs & 0xffff) + borrow;
 | |
| 	  borrow = z >> 16;
 | |
| 	  Sign_Extend (borrow, z);
 | |
| 	  Storeinc (bx, z, y);
 | |
| #else
 | |
| 	  ys = *sx++ * q + carry;
 | |
| 	  carry = ys >> 16;
 | |
| 	  y = *bx - (ys & 0xffff) + borrow;
 | |
| 	  borrow = y >> 16;
 | |
| 	  Sign_Extend (borrow, y);
 | |
| 	  *bx++ = y & 0xffff;
 | |
| #endif
 | |
| 	}
 | |
|       while (sx <= sxe);
 | |
|       if (!*bxe)
 | |
| 	{
 | |
| 	  bx = b->_x;
 | |
| 	  while (--bxe > bx && !*bxe)
 | |
| 	    --n;
 | |
| 	  b->_wds = n;
 | |
| 	}
 | |
|     }
 | |
|   if (cmp (b, S) >= 0)
 | |
|     {
 | |
|       q++;
 | |
|       borrow = 0;
 | |
|       carry = 0;
 | |
|       bx = b->_x;
 | |
|       sx = S->_x;
 | |
|       do
 | |
| 	{
 | |
| #ifdef Pack_32
 | |
| 	  si = *sx++;
 | |
| 	  ys = (si & 0xffff) + carry;
 | |
| 	  zs = (si >> 16) + (ys >> 16);
 | |
| 	  carry = zs >> 16;
 | |
| 	  y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
 | |
| 	  borrow = y >> 16;
 | |
| 	  Sign_Extend (borrow, y);
 | |
| 	  z = (*bx >> 16) - (zs & 0xffff) + borrow;
 | |
| 	  borrow = z >> 16;
 | |
| 	  Sign_Extend (borrow, z);
 | |
| 	  Storeinc (bx, z, y);
 | |
| #else
 | |
| 	  ys = *sx++ + carry;
 | |
| 	  carry = ys >> 16;
 | |
| 	  y = *bx - (ys & 0xffff) + borrow;
 | |
| 	  borrow = y >> 16;
 | |
| 	  Sign_Extend (borrow, y);
 | |
| 	  *bx++ = y & 0xffff;
 | |
| #endif
 | |
| 	}
 | |
|       while (sx <= sxe);
 | |
|       bx = b->_x;
 | |
|       bxe = bx + n;
 | |
|       if (!*bxe)
 | |
| 	{
 | |
| 	  while (--bxe > bx && !*bxe)
 | |
| 	    --n;
 | |
| 	  b->_wds = n;
 | |
| 	}
 | |
|     }
 | |
|   return q;
 | |
| }
 | |
| 
 | |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | |
|  *
 | |
|  * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | |
|  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *	1. Rather than iterating, we use a simple numeric overestimate
 | |
|  *	   to determine k = floor(log10(d)).  We scale relevant
 | |
|  *	   quantities using O(log2(k)) rather than O(k) multiplications.
 | |
|  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | |
|  *	   try to generate digits strictly left to right.  Instead, we
 | |
|  *	   compute with fewer bits and propagate the carry if necessary
 | |
|  *	   when rounding the final digit up.  This is often faster.
 | |
|  *	3. Under the assumption that input will be rounded nearest,
 | |
|  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | |
|  *	   That is, we allow equality in stopping tests when the
 | |
|  *	   round-nearest rule will give the same floating-point value
 | |
|  *	   as would satisfaction of the stopping test with strict
 | |
|  *	   inequality.
 | |
|  *	4. We remove common factors of powers of 2 from relevant
 | |
|  *	   quantities.
 | |
|  *	5. When converting floating-point integers less than 1e16,
 | |
|  *	   we use floating-point arithmetic rather than resorting
 | |
|  *	   to multiple-precision integers.
 | |
|  *	6. When asked to produce fewer than 15 digits, we first try
 | |
|  *	   to get by with floating-point arithmetic; we resort to
 | |
|  *	   multiple-precision integer arithmetic only if we cannot
 | |
|  *	   guarantee that the floating-point calculation has given
 | |
|  *	   the correctly rounded result.  For k requested digits and
 | |
|  *	   "uniformly" distributed input, the probability is
 | |
|  *	   something like 10^(k-15) that we must resort to the long
 | |
|  *	   calculation.
 | |
|  */
 | |
| 
 | |
| 
 | |
| char *
 | |
| _dtoa_r (struct _reent *ptr,
 | |
| 	double _d,
 | |
| 	int mode,
 | |
| 	int ndigits,
 | |
| 	int *decpt,
 | |
| 	int *sign,
 | |
| 	char **rve)
 | |
| {
 | |
|   /*	Arguments ndigits, decpt, sign are similar to those
 | |
| 	of ecvt and fcvt; trailing zeros are suppressed from
 | |
| 	the returned string.  If not null, *rve is set to point
 | |
| 	to the end of the return value.  If d is +-Infinity or NaN,
 | |
| 	then *decpt is set to 9999.
 | |
| 
 | |
| 	mode:
 | |
| 		0 ==> shortest string that yields d when read in
 | |
| 			and rounded to nearest.
 | |
| 		1 ==> like 0, but with Steele & White stopping rule;
 | |
| 			e.g. with IEEE P754 arithmetic , mode 0 gives
 | |
| 			1e23 whereas mode 1 gives 9.999999999999999e22.
 | |
| 		2 ==> max(1,ndigits) significant digits.  This gives a
 | |
| 			return value similar to that of ecvt, except
 | |
| 			that trailing zeros are suppressed.
 | |
| 		3 ==> through ndigits past the decimal point.  This
 | |
| 			gives a return value similar to that from fcvt,
 | |
| 			except that trailing zeros are suppressed, and
 | |
| 			ndigits can be negative.
 | |
| 		4-9 should give the same return values as 2-3, i.e.,
 | |
| 			4 <= mode <= 9 ==> same return as mode
 | |
| 			2 + (mode & 1).  These modes are mainly for
 | |
| 			debugging; often they run slower but sometimes
 | |
| 			faster than modes 2-3.
 | |
| 		4,5,8,9 ==> left-to-right digit generation.
 | |
| 		6-9 ==> don't try fast floating-point estimate
 | |
| 			(if applicable).
 | |
| 
 | |
| 		Values of mode other than 0-9 are treated as mode 0.
 | |
| 
 | |
| 		Sufficient space is allocated to the return value
 | |
| 		to hold the suppressed trailing zeros.
 | |
| 	*/
 | |
| 
 | |
|   int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0,
 | |
|     k_check, leftright, m2, m5, s2, s5, spec_case, try_quick;
 | |
|   union double_union d, d2, eps;
 | |
|   __Long L;
 | |
| #ifndef Sudden_Underflow
 | |
|   int denorm;
 | |
|   __ULong x;
 | |
| #endif
 | |
|   _Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S;
 | |
|   double ds;
 | |
|   char *s, *s0;
 | |
| 
 | |
|   d.d = _d;
 | |
| 
 | |
|   _REENT_CHECK_MP(ptr);
 | |
|   if (_REENT_MP_RESULT(ptr))
 | |
|     {
 | |
|       _REENT_MP_RESULT(ptr)->_k = _REENT_MP_RESULT_K(ptr);
 | |
|       _REENT_MP_RESULT(ptr)->_maxwds = 1 << _REENT_MP_RESULT_K(ptr);
 | |
|       Bfree (ptr, _REENT_MP_RESULT(ptr));
 | |
|       _REENT_MP_RESULT(ptr) = 0;
 | |
|     }
 | |
| 
 | |
|   if (word0 (d) & Sign_bit)
 | |
|     {
 | |
|       /* set sign for everything, including 0's and NaNs */
 | |
|       *sign = 1;
 | |
|       word0 (d) &= ~Sign_bit;	/* clear sign bit */
 | |
|     }
 | |
|   else
 | |
|     *sign = 0;
 | |
| 
 | |
| #if defined(IEEE_Arith) + defined(VAX)
 | |
| #ifdef IEEE_Arith
 | |
|   if ((word0 (d) & Exp_mask) == Exp_mask)
 | |
| #else
 | |
|   if (word0 (d) == 0x8000)
 | |
| #endif
 | |
|     {
 | |
|       /* Infinity or NaN */
 | |
|       *decpt = 9999;
 | |
|       s =
 | |
| #ifdef IEEE_Arith
 | |
| 	!word1 (d) && !(word0 (d) & 0xfffff) ? "Infinity" :
 | |
| #endif
 | |
| 	"NaN";
 | |
|       if (rve)
 | |
| 	*rve =
 | |
| #ifdef IEEE_Arith
 | |
| 	  s[3] ? s + 8 :
 | |
| #endif
 | |
| 	  s + 3;
 | |
|       return s;
 | |
|     }
 | |
| #endif
 | |
| #ifdef IBM
 | |
|   d.d += 0;			/* normalize */
 | |
| #endif
 | |
|   if (!d.d)
 | |
|     {
 | |
|       *decpt = 1;
 | |
|       s = "0";
 | |
|       if (rve)
 | |
| 	*rve = s + 1;
 | |
|       return s;
 | |
|     }
 | |
| 
 | |
|   b = d2b (ptr, d.d, &be, &bbits);
 | |
| #ifdef Sudden_Underflow
 | |
|   i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));
 | |
| #else
 | |
|   if ((i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1))) != 0)
 | |
|     {
 | |
| #endif
 | |
|       d2.d = d.d;
 | |
|       word0 (d2) &= Frac_mask1;
 | |
|       word0 (d2) |= Exp_11;
 | |
| #ifdef IBM
 | |
|       if (j = 11 - hi0bits (word0 (d2) & Frac_mask))
 | |
| 	d2.d /= 1 << j;
 | |
| #endif
 | |
| 
 | |
|       /* log(x)	~=~ log(1.5) + (x-1.5)/1.5
 | |
| 		 * log10(x)	 =  log(x) / log(10)
 | |
| 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | |
| 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | |
| 		 *
 | |
| 		 * This suggests computing an approximation k to log10(d) by
 | |
| 		 *
 | |
| 		 * k = (i - Bias)*0.301029995663981
 | |
| 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | |
| 		 *
 | |
| 		 * We want k to be too large rather than too small.
 | |
| 		 * The error in the first-order Taylor series approximation
 | |
| 		 * is in our favor, so we just round up the constant enough
 | |
| 		 * to compensate for any error in the multiplication of
 | |
| 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | |
| 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | |
| 		 * adding 1e-13 to the constant term more than suffices.
 | |
| 		 * Hence we adjust the constant term to 0.1760912590558.
 | |
| 		 * (We could get a more accurate k by invoking log10,
 | |
| 		 *  but this is probably not worthwhile.)
 | |
| 		 */
 | |
| 
 | |
|       i -= Bias;
 | |
| #ifdef IBM
 | |
|       i <<= 2;
 | |
|       i += j;
 | |
| #endif
 | |
| #ifndef Sudden_Underflow
 | |
|       denorm = 0;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       /* d is denormalized */
 | |
| 
 | |
|       i = bbits + be + (Bias + (P - 1) - 1);
 | |
| #if defined (_DOUBLE_IS_32BITS)
 | |
|       x = word0 (d) << (32 - i);
 | |
| #else
 | |
|       x = (i > 32) ? (word0 (d) << (64 - i)) | (word1 (d) >> (i - 32))
 | |
|        : (word1 (d) << (32 - i));
 | |
| #endif
 | |
|       d2.d = x;
 | |
|       word0 (d2) -= 31 * Exp_msk1;	/* adjust exponent */
 | |
|       i -= (Bias + (P - 1) - 1) + 1;
 | |
|       denorm = 1;
 | |
|     }
 | |
| #endif
 | |
| #if defined (_DOUBLE_IS_32BITS)
 | |
|   ds = (d2.d - 1.5) * 0.289529651 + 0.176091269 + i * 0.30103001;
 | |
| #else
 | |
|   ds = (d2.d - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;
 | |
| #endif
 | |
|   k = (int) ds;
 | |
|   if (ds < 0. && ds != k)
 | |
|     k--;			/* want k = floor(ds) */
 | |
|   k_check = 1;
 | |
|   if (k >= 0 && k <= Ten_pmax)
 | |
|     {
 | |
|       if (d.d < tens[k])
 | |
| 	k--;
 | |
|       k_check = 0;
 | |
|     }
 | |
|   j = bbits - i - 1;
 | |
|   if (j >= 0)
 | |
|     {
 | |
|       b2 = 0;
 | |
|       s2 = j;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       b2 = -j;
 | |
|       s2 = 0;
 | |
|     }
 | |
|   if (k >= 0)
 | |
|     {
 | |
|       b5 = 0;
 | |
|       s5 = k;
 | |
|       s2 += k;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       b2 -= k;
 | |
|       b5 = -k;
 | |
|       s5 = 0;
 | |
|     }
 | |
|   if (mode < 0 || mode > 9)
 | |
|     mode = 0;
 | |
|   try_quick = 1;
 | |
|   if (mode > 5)
 | |
|     {
 | |
|       mode -= 4;
 | |
|       try_quick = 0;
 | |
|     }
 | |
|   leftright = 1;
 | |
|   ilim = ilim1 = -1;
 | |
|   switch (mode)
 | |
|     {
 | |
|     case 0:
 | |
|     case 1:
 | |
|       i = 18;
 | |
|       ndigits = 0;
 | |
|       break;
 | |
|     case 2:
 | |
|       leftright = 0;
 | |
|       /* no break */
 | |
|     case 4:
 | |
|       if (ndigits <= 0)
 | |
| 	ndigits = 1;
 | |
|       ilim = ilim1 = i = ndigits;
 | |
|       break;
 | |
|     case 3:
 | |
|       leftright = 0;
 | |
|       /* no break */
 | |
|     case 5:
 | |
|       i = ndigits + k + 1;
 | |
|       ilim = i;
 | |
|       ilim1 = i - 1;
 | |
|       if (i <= 0)
 | |
| 	i = 1;
 | |
|     }
 | |
|   j = sizeof (__ULong);
 | |
|   for (_REENT_MP_RESULT_K(ptr) = 0; sizeof (_Bigint) - sizeof (__ULong) + j <= i;
 | |
|        j <<= 1)
 | |
|     _REENT_MP_RESULT_K(ptr)++;
 | |
|   _REENT_MP_RESULT(ptr) = Balloc (ptr, _REENT_MP_RESULT_K(ptr));
 | |
|   s = s0 = (char *) _REENT_MP_RESULT(ptr);
 | |
| 
 | |
|   if (ilim >= 0 && ilim <= Quick_max && try_quick)
 | |
|     {
 | |
|       /* Try to get by with floating-point arithmetic. */
 | |
| 
 | |
|       i = 0;
 | |
|       d2.d = d.d;
 | |
|       k0 = k;
 | |
|       ilim0 = ilim;
 | |
|       ieps = 2;			/* conservative */
 | |
|       if (k > 0)
 | |
| 	{
 | |
| 	  ds = tens[k & 0xf];
 | |
| 	  j = k >> 4;
 | |
| 	  if (j & Bletch)
 | |
| 	    {
 | |
| 	      /* prevent overflows */
 | |
| 	      j &= Bletch - 1;
 | |
| 	      d.d /= bigtens[n_bigtens - 1];
 | |
| 	      ieps++;
 | |
| 	    }
 | |
| 	  for (; j; j >>= 1, i++)
 | |
| 	    if (j & 1)
 | |
| 	      {
 | |
| 		ieps++;
 | |
| 		ds *= bigtens[i];
 | |
| 	      }
 | |
| 	  d.d /= ds;
 | |
| 	}
 | |
|       else if ((j1 = -k) != 0)
 | |
| 	{
 | |
| 	  d.d *= tens[j1 & 0xf];
 | |
| 	  for (j = j1 >> 4; j; j >>= 1, i++)
 | |
| 	    if (j & 1)
 | |
| 	      {
 | |
| 		ieps++;
 | |
| 		d.d *= bigtens[i];
 | |
| 	      }
 | |
| 	}
 | |
|       if (k_check && d.d < 1. && ilim > 0)
 | |
| 	{
 | |
| 	  if (ilim1 <= 0)
 | |
| 	    goto fast_failed;
 | |
| 	  ilim = ilim1;
 | |
| 	  k--;
 | |
| 	  d.d *= 10.;
 | |
| 	  ieps++;
 | |
| 	}
 | |
|       eps.d = ieps * d.d + 7.;
 | |
|       word0 (eps) -= (P - 1) * Exp_msk1;
 | |
|       if (ilim == 0)
 | |
| 	{
 | |
| 	  S = mhi = 0;
 | |
| 	  d.d -= 5.;
 | |
| 	  if (d.d > eps.d)
 | |
| 	    goto one_digit;
 | |
| 	  if (d.d < -eps.d)
 | |
| 	    goto no_digits;
 | |
| 	  goto fast_failed;
 | |
| 	}
 | |
| #ifndef No_leftright
 | |
|       if (leftright)
 | |
| 	{
 | |
| 	  /* Use Steele & White method of only
 | |
| 	   * generating digits needed.
 | |
| 	   */
 | |
| 	  eps.d = 0.5 / tens[ilim - 1] - eps.d;
 | |
| 	  for (i = 0;;)
 | |
| 	    {
 | |
| 	      L = d.d;
 | |
| 	      d.d -= L;
 | |
| 	      *s++ = '0' + (int) L;
 | |
| 	      if (d.d < eps.d)
 | |
| 		goto ret1;
 | |
| 	      if (1. - d.d < eps.d)
 | |
| 		goto bump_up;
 | |
| 	      if (++i >= ilim)
 | |
| 		break;
 | |
| 	      eps.d *= 10.;
 | |
| 	      d.d *= 10.;
 | |
| 	    }
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| #endif
 | |
| 	  /* Generate ilim digits, then fix them up. */
 | |
| 	  eps.d *= tens[ilim - 1];
 | |
| 	  for (i = 1;; i++, d.d *= 10.)
 | |
| 	    {
 | |
| 	      L = d.d;
 | |
| 	      d.d -= L;
 | |
| 	      *s++ = '0' + (int) L;
 | |
| 	      if (i == ilim)
 | |
| 		{
 | |
| 		  if (d.d > 0.5 + eps.d)
 | |
| 		    goto bump_up;
 | |
| 		  else if (d.d < 0.5 - eps.d)
 | |
| 		    {
 | |
| 		      while (*--s == '0');
 | |
| 		      s++;
 | |
| 		      goto ret1;
 | |
| 		    }
 | |
| 		  break;
 | |
| 		}
 | |
| 	    }
 | |
| #ifndef No_leftright
 | |
| 	}
 | |
| #endif
 | |
|     fast_failed:
 | |
|       s = s0;
 | |
|       d.d = d2.d;
 | |
|       k = k0;
 | |
|       ilim = ilim0;
 | |
|     }
 | |
| 
 | |
|   /* Do we have a "small" integer? */
 | |
| 
 | |
|   if (be >= 0 && k <= Int_max)
 | |
|     {
 | |
|       /* Yes. */
 | |
|       ds = tens[k];
 | |
|       if (ndigits < 0 && ilim <= 0)
 | |
| 	{
 | |
| 	  S = mhi = 0;
 | |
| 	  if (ilim < 0 || d.d <= 5 * ds)
 | |
| 	    goto no_digits;
 | |
| 	  goto one_digit;
 | |
| 	}
 | |
|       for (i = 1;; i++)
 | |
| 	{
 | |
| 	  L = d.d / ds;
 | |
| 	  d.d -= L * ds;
 | |
| #ifdef Check_FLT_ROUNDS
 | |
| 	  /* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | |
| 	  if (d.d < 0)
 | |
| 	    {
 | |
| 	      L--;
 | |
| 	      d.d += ds;
 | |
| 	    }
 | |
| #endif
 | |
| 	  *s++ = '0' + (int) L;
 | |
| 	  if (i == ilim)
 | |
| 	    {
 | |
| 	      d.d += d.d;
 | |
|              if ((d.d > ds) || ((d.d == ds) && (L & 1)))
 | |
| 		{
 | |
| 		bump_up:
 | |
| 		  while (*--s == '9')
 | |
| 		    if (s == s0)
 | |
| 		      {
 | |
| 			k++;
 | |
| 			*s = '0';
 | |
| 			break;
 | |
| 		      }
 | |
| 		  ++*s++;
 | |
| 		}
 | |
| 	      break;
 | |
| 	    }
 | |
| 	  if (!(d.d *= 10.))
 | |
| 	    break;
 | |
| 	}
 | |
|       goto ret1;
 | |
|     }
 | |
| 
 | |
|   m2 = b2;
 | |
|   m5 = b5;
 | |
|   mhi = mlo = 0;
 | |
|   if (leftright)
 | |
|     {
 | |
|       if (mode < 2)
 | |
| 	{
 | |
| 	  i =
 | |
| #ifndef Sudden_Underflow
 | |
| 	    denorm ? be + (Bias + (P - 1) - 1 + 1) :
 | |
| #endif
 | |
| #ifdef IBM
 | |
| 	    1 + 4 * P - 3 - bbits + ((bbits + be - 1) & 3);
 | |
| #else
 | |
| 	    1 + P - bbits;
 | |
| #endif
 | |
| 	}
 | |
|       else
 | |
| 	{
 | |
| 	  j = ilim - 1;
 | |
| 	  if (m5 >= j)
 | |
| 	    m5 -= j;
 | |
| 	  else
 | |
| 	    {
 | |
| 	      s5 += j -= m5;
 | |
| 	      b5 += j;
 | |
| 	      m5 = 0;
 | |
| 	    }
 | |
| 	  if ((i = ilim) < 0)
 | |
| 	    {
 | |
| 	      m2 -= i;
 | |
| 	      i = 0;
 | |
| 	    }
 | |
| 	}
 | |
|       b2 += i;
 | |
|       s2 += i;
 | |
|       mhi = i2b (ptr, 1);
 | |
|     }
 | |
|   if (m2 > 0 && s2 > 0)
 | |
|     {
 | |
|       i = m2 < s2 ? m2 : s2;
 | |
|       b2 -= i;
 | |
|       m2 -= i;
 | |
|       s2 -= i;
 | |
|     }
 | |
|   if (b5 > 0)
 | |
|     {
 | |
|       if (leftright)
 | |
| 	{
 | |
| 	  if (m5 > 0)
 | |
| 	    {
 | |
| 	      mhi = pow5mult (ptr, mhi, m5);
 | |
| 	      b1 = mult (ptr, mhi, b);
 | |
| 	      Bfree (ptr, b);
 | |
| 	      b = b1;
 | |
| 	    }
 | |
|          if ((j = b5 - m5) != 0)
 | |
| 	    b = pow5mult (ptr, b, j);
 | |
| 	}
 | |
|       else
 | |
| 	b = pow5mult (ptr, b, b5);
 | |
|     }
 | |
|   S = i2b (ptr, 1);
 | |
|   if (s5 > 0)
 | |
|     S = pow5mult (ptr, S, s5);
 | |
| 
 | |
|   /* Check for special case that d is a normalized power of 2. */
 | |
| 
 | |
|   spec_case = 0;
 | |
|   if (mode < 2)
 | |
|     {
 | |
|       if (!word1 (d) && !(word0 (d) & Bndry_mask)
 | |
| #ifndef Sudden_Underflow
 | |
| 	  && word0 (d) & Exp_mask
 | |
| #endif
 | |
| 	)
 | |
| 	{
 | |
| 	  /* The special case */
 | |
| 	  b2 += Log2P;
 | |
| 	  s2 += Log2P;
 | |
| 	  spec_case = 1;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|   /* Arrange for convenient computation of quotients:
 | |
|    * shift left if necessary so divisor has 4 leading 0 bits.
 | |
|    *
 | |
|    * Perhaps we should just compute leading 28 bits of S once
 | |
|    * and for all and pass them and a shift to quorem, so it
 | |
|    * can do shifts and ors to compute the numerator for q.
 | |
|    */
 | |
| 
 | |
| #ifdef Pack_32
 | |
|   if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0x1f) != 0)
 | |
|     i = 32 - i;
 | |
| #else
 | |
|   if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0xf) != 0)
 | |
|     i = 16 - i;
 | |
| #endif
 | |
|   if (i > 4)
 | |
|     {
 | |
|       i -= 4;
 | |
|       b2 += i;
 | |
|       m2 += i;
 | |
|       s2 += i;
 | |
|     }
 | |
|   else if (i < 4)
 | |
|     {
 | |
|       i += 28;
 | |
|       b2 += i;
 | |
|       m2 += i;
 | |
|       s2 += i;
 | |
|     }
 | |
|   if (b2 > 0)
 | |
|     b = lshift (ptr, b, b2);
 | |
|   if (s2 > 0)
 | |
|     S = lshift (ptr, S, s2);
 | |
|   if (k_check)
 | |
|     {
 | |
|       if (cmp (b, S) < 0)
 | |
| 	{
 | |
| 	  k--;
 | |
| 	  b = multadd (ptr, b, 10, 0);	/* we botched the k estimate */
 | |
| 	  if (leftright)
 | |
| 	    mhi = multadd (ptr, mhi, 10, 0);
 | |
| 	  ilim = ilim1;
 | |
| 	}
 | |
|     }
 | |
|   if (ilim <= 0 && mode > 2)
 | |
|     {
 | |
|       if (ilim < 0 || cmp (b, S = multadd (ptr, S, 5, 0)) <= 0)
 | |
| 	{
 | |
| 	  /* no digits, fcvt style */
 | |
| 	no_digits:
 | |
| 	  k = -1 - ndigits;
 | |
| 	  goto ret;
 | |
| 	}
 | |
|     one_digit:
 | |
|       *s++ = '1';
 | |
|       k++;
 | |
|       goto ret;
 | |
|     }
 | |
|   if (leftright)
 | |
|     {
 | |
|       if (m2 > 0)
 | |
| 	mhi = lshift (ptr, mhi, m2);
 | |
| 
 | |
|       /* Compute mlo -- check for special case
 | |
|        * that d is a normalized power of 2.
 | |
|        */
 | |
| 
 | |
|       mlo = mhi;
 | |
|       if (spec_case)
 | |
| 	{
 | |
| 	  mhi = Balloc (ptr, mhi->_k);
 | |
| 	  Bcopy (mhi, mlo);
 | |
| 	  mhi = lshift (ptr, mhi, Log2P);
 | |
| 	}
 | |
| 
 | |
|       for (i = 1;; i++)
 | |
| 	{
 | |
| 	  dig = quorem (b, S) + '0';
 | |
| 	  /* Do we yet have the shortest decimal string
 | |
| 	   * that will round to d?
 | |
| 	   */
 | |
| 	  j = cmp (b, mlo);
 | |
| 	  delta = diff (ptr, S, mhi);
 | |
| 	  j1 = delta->_sign ? 1 : cmp (b, delta);
 | |
| 	  Bfree (ptr, delta);
 | |
| #ifndef ROUND_BIASED
 | |
| 	  if (j1 == 0 && !mode && !(word1 (d) & 1))
 | |
| 	    {
 | |
| 	      if (dig == '9')
 | |
| 		goto round_9_up;
 | |
| 	      if (j > 0)
 | |
| 		dig++;
 | |
| 	      *s++ = dig;
 | |
| 	      goto ret;
 | |
| 	    }
 | |
| #endif
 | |
|          if ((j < 0) || ((j == 0) && !mode
 | |
| #ifndef ROUND_BIASED
 | |
| 	      && !(word1 (d) & 1)
 | |
| #endif
 | |
|            ))
 | |
| 	    {
 | |
| 	      if (j1 > 0)
 | |
| 		{
 | |
| 		  b = lshift (ptr, b, 1);
 | |
| 		  j1 = cmp (b, S);
 | |
|                  if (((j1 > 0) || ((j1 == 0) && (dig & 1)))
 | |
| 		      && dig++ == '9')
 | |
| 		    goto round_9_up;
 | |
| 		}
 | |
| 	      *s++ = dig;
 | |
| 	      goto ret;
 | |
| 	    }
 | |
| 	  if (j1 > 0)
 | |
| 	    {
 | |
| 	      if (dig == '9')
 | |
| 		{		/* possible if i == 1 */
 | |
| 		round_9_up:
 | |
| 		  *s++ = '9';
 | |
| 		  goto roundoff;
 | |
| 		}
 | |
| 	      *s++ = dig + 1;
 | |
| 	      goto ret;
 | |
| 	    }
 | |
| 	  *s++ = dig;
 | |
| 	  if (i == ilim)
 | |
| 	    break;
 | |
| 	  b = multadd (ptr, b, 10, 0);
 | |
| 	  if (mlo == mhi)
 | |
| 	    mlo = mhi = multadd (ptr, mhi, 10, 0);
 | |
| 	  else
 | |
| 	    {
 | |
| 	      mlo = multadd (ptr, mlo, 10, 0);
 | |
| 	      mhi = multadd (ptr, mhi, 10, 0);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|   else
 | |
|     for (i = 1;; i++)
 | |
|       {
 | |
| 	*s++ = dig = quorem (b, S) + '0';
 | |
| 	if (i >= ilim)
 | |
| 	  break;
 | |
| 	b = multadd (ptr, b, 10, 0);
 | |
|       }
 | |
| 
 | |
|   /* Round off last digit */
 | |
| 
 | |
|   b = lshift (ptr, b, 1);
 | |
|   j = cmp (b, S);
 | |
|   if ((j > 0) || ((j == 0) && (dig & 1)))
 | |
|     {
 | |
|     roundoff:
 | |
|       while (*--s == '9')
 | |
| 	if (s == s0)
 | |
| 	  {
 | |
| 	    k++;
 | |
| 	    *s++ = '1';
 | |
| 	    goto ret;
 | |
| 	  }
 | |
|       ++*s++;
 | |
|     }
 | |
|   else
 | |
|     {
 | |
|       while (*--s == '0');
 | |
|       s++;
 | |
|     }
 | |
| ret:
 | |
|   Bfree (ptr, S);
 | |
|   if (mhi)
 | |
|     {
 | |
|       if (mlo && mlo != mhi)
 | |
| 	Bfree (ptr, mlo);
 | |
|       Bfree (ptr, mhi);
 | |
|     }
 | |
| ret1:
 | |
|   Bfree (ptr, b);
 | |
|   *s = 0;
 | |
|   *decpt = k + 1;
 | |
|   if (rve)
 | |
|     *rve = s;
 | |
|   return s0;
 | |
| }
 |