179 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			179 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|   (C) Copyright 2001,2006,
 | |
|   International Business Machines Corporation,
 | |
|   Sony Computer Entertainment, Incorporated,
 | |
|   Toshiba Corporation,
 | |
| 
 | |
|   All rights reserved.
 | |
| 
 | |
|   Redistribution and use in source and binary forms, with or without
 | |
|   modification, are permitted provided that the following conditions are met:
 | |
| 
 | |
|     * Redistributions of source code must retain the above copyright notice,
 | |
|   this list of conditions and the following disclaimer.
 | |
|     * Redistributions in binary form must reproduce the above copyright
 | |
|   notice, this list of conditions and the following disclaimer in the
 | |
|   documentation and/or other materials provided with the distribution.
 | |
|     * Neither the names of the copyright holders nor the names of their
 | |
|   contributors may be used to endorse or promote products derived from this
 | |
|   software without specific prior written permission.
 | |
| 
 | |
|   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 | |
|   IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 | |
|   TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 | |
|   PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
 | |
|   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | |
|   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | |
|   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | |
|   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 | |
| #ifndef _REMQUOF_H_
 | |
| #define _REMQUOF_H_	1
 | |
| 
 | |
| #include <spu_intrinsics.h>
 | |
| #include "headers/vec_literal.h"
 | |
| 
 | |
| 
 | |
| static __inline float _remquof(float x, float y, int *quo)
 | |
| {
 | |
|   int n;
 | |
|   vec_int4 quotient;
 | |
|   vec_int4 four = { 4, 4, 4, 4 };
 | |
|   vec_uint4 vx, vy, z, y2, y4;
 | |
|   vec_uint4 abs_x, abs_y, abs_2x, abs_8y;
 | |
|   vec_uint4 exp_x, exp_y;
 | |
|   vec_uint4 zero_x, zero_y;
 | |
|   vec_uint4 logb_x, logb_y;
 | |
|   vec_uint4 mant_x, mant_y;
 | |
|   vec_uint4 not_ge, overflow, quo_pos;
 | |
|   vec_uint4 result, result0, resultx, cnt, sign, bias;
 | |
|   vec_uint4 sign_mask = VEC_SPLAT_U32(0x80000000);
 | |
|   vec_uint4 implied_1 = VEC_SPLAT_U32(0x00800000);
 | |
|   vec_uint4 mant_mask = VEC_SPLAT_U32(0x007FFFFF);
 | |
| 
 | |
|   vx = (vec_uint4)spu_promote(x, 0);
 | |
|   vy = (vec_uint4)spu_promote(y, 0);
 | |
| 
 | |
|   abs_x = spu_andc(vx, sign_mask);
 | |
|   abs_y = spu_andc(vy, sign_mask);
 | |
| 
 | |
|   abs_8y = spu_add(abs_y, VEC_SPLAT_U32(0x01800000)); /* abs_2y = 8 * abs_y */
 | |
| 
 | |
|   sign = spu_and(vx, sign_mask);
 | |
| 
 | |
|   quo_pos = spu_cmpgt((vec_int4)spu_and(spu_xor(vx, vy), sign_mask), -1);
 | |
| 
 | |
|   /* Compute abs_x = fmodf(abs_x, 8*abs_y). If y is greater than 0.125*SMAX
 | |
|    * (SMAX is the maximum representable float), then return abs_x.
 | |
|    */
 | |
|   {
 | |
|     /* Determine ilogb of abs_x and abs_8y and
 | |
|      * extract the mantissas (mant_x, mant_y)
 | |
|      */
 | |
|     exp_x  = spu_rlmask(abs_x, -23);
 | |
|     exp_y  = spu_rlmask(abs_8y, -23);
 | |
| 
 | |
|     resultx = spu_or(spu_cmpgt(abs_8y, abs_x), spu_cmpgt(abs_y, VEC_SPLAT_U32(0x7E7FFFFF)));
 | |
| 
 | |
|     zero_x = spu_cmpeq(exp_x, 0);
 | |
|     zero_y = spu_cmpeq(exp_y, 0);
 | |
| 
 | |
|     logb_x = spu_add(exp_x, -127);
 | |
|     logb_y = spu_add(exp_y, -127);
 | |
| 
 | |
|     mant_x = spu_andc(spu_sel(implied_1, abs_x, mant_mask), zero_x);
 | |
|     mant_y = spu_andc(spu_sel(implied_1, abs_8y, mant_mask), zero_y);
 | |
| 
 | |
|     /* Compute fixed point fmod of mant_x and mant_y. Set the flag,
 | |
|      * result0, to all ones if we detect that the final result is
 | |
|      * ever 0.
 | |
|      */
 | |
|     result0 = spu_or(zero_x, zero_y);
 | |
| 
 | |
|     n = spu_extract(spu_sub(logb_x, logb_y), 0);
 | |
| 
 | |
| 
 | |
|     while (n-- > 0) {
 | |
|       z = spu_sub(mant_x, mant_y);
 | |
| 
 | |
|       result0 = spu_or(spu_cmpeq(z, 0), result0);
 | |
| 
 | |
|       mant_x = spu_sel(spu_add(mant_x, mant_x), spu_add(z, z),
 | |
|                        spu_cmpgt((vec_int4)z, -1));
 | |
|     }
 | |
| 
 | |
|     z = spu_sub(mant_x, mant_y);
 | |
|     mant_x = spu_sel(mant_x, z, spu_cmpgt((vec_int4)z, -1));
 | |
| 
 | |
|     result0 = spu_or(spu_cmpeq(mant_x, 0), result0);
 | |
| 
 | |
|     /* Convert the result back to floating point and restore
 | |
|      * the sign. If we flagged the result to be zero (result0),
 | |
|      * zero it. If we flagged the result to equal its input x,
 | |
|      * (resultx) then return x.
 | |
|      */
 | |
|     cnt = spu_add(spu_cntlz(mant_x), -8);
 | |
| 
 | |
|     mant_x = spu_rl(spu_andc(mant_x, implied_1), (vec_int4)cnt);
 | |
| 
 | |
|     exp_y = spu_sub(exp_y, cnt);
 | |
|     result0 = spu_orc(result0, spu_cmpgt((vec_int4)exp_y, 0)); /* zero denorm results */
 | |
|     exp_y = spu_rl(exp_y, 23);
 | |
| 
 | |
|     result = spu_sel(exp_y, mant_x, mant_mask);
 | |
|     abs_x = spu_sel(spu_andc(result, spu_rlmask(result0, -1)), abs_x, resultx);
 | |
|   }
 | |
| 
 | |
|   /* if (x >= 4*y)
 | |
|    *   x -= 4*y
 | |
|    *   quotient = 4
 | |
|    * else
 | |
|    *   quotient = 0
 | |
|    */
 | |
|   y4 = spu_andc(spu_add(abs_y, VEC_SPLAT_U32(0x01000000)), zero_y);
 | |
| 
 | |
|   overflow = spu_cmpgt(abs_y, VEC_SPLAT_U32(0x7EFFFFFF));
 | |
|   not_ge = spu_or(spu_cmpgt(y4, abs_x), overflow);
 | |
| 
 | |
|   abs_x = spu_sel((vec_uint4)spu_sub((vec_float4)abs_x, (vec_float4)y4), abs_x, not_ge);
 | |
|   quotient = spu_andc (four, (vec_int4)not_ge);
 | |
| 
 | |
|   /* if (x >= 2*y
 | |
|    *   x -= 2*y
 | |
|    *   quotient += 2
 | |
|    */
 | |
|   y2 = spu_andc(spu_add(abs_y, implied_1), zero_y);
 | |
|   not_ge = spu_cmpgt(y2, abs_x);
 | |
| 
 | |
|   abs_x = spu_sel((vec_uint4)spu_sub((vec_float4)abs_x, (vec_float4)y2), abs_x, not_ge);
 | |
|   quotient = spu_sel(spu_add(quotient, 2), quotient, not_ge);
 | |
| 
 | |
|   /* if (2*x > y)
 | |
|    *     x -= y
 | |
|    *     if (2*x >= y) x -= y
 | |
|    */
 | |
|   abs_2x = spu_add(abs_x, implied_1);
 | |
|   bias = spu_cmpgt(abs_2x, abs_y);
 | |
|   abs_x = spu_sel(abs_x, (vec_uint4)spu_sub((vec_float4)abs_x, (vec_float4)abs_y), bias);
 | |
|   quotient = spu_sub(quotient, (vec_int4)bias);
 | |
| 
 | |
|   bias = spu_andc(bias, spu_rlmaska((vec_uint4)spu_msub((vec_float4)abs_x, VEC_SPLAT_F32(2.0f), (vec_float4)abs_y), -31));
 | |
|   abs_x = spu_sel(abs_x, (vec_uint4)spu_sub((vec_float4)abs_x, (vec_float4)abs_y), bias);
 | |
|   quotient = spu_sub(quotient, (vec_int4)bias);
 | |
| 
 | |
|   /* Generate a correct final sign
 | |
|    */
 | |
|   result = spu_xor(abs_x, sign);
 | |
| 
 | |
|   quotient = spu_and(quotient, 7);
 | |
|   quotient = spu_sel(spu_sub(0, quotient), quotient, quo_pos);
 | |
| 
 | |
|   *quo = spu_extract(quotient, 0);
 | |
| 
 | |
|   return (spu_extract((vec_float4)result, 0));
 | |
| }
 | |
| #endif /* _REMQUOF_H_ */
 |