Further parse AHCI information.

Send an IDENTIFY command to each drive and set up a hook to handle
interrupts.
This commit is contained in:
Drew Galbraith 2023-06-12 19:20:51 -07:00
parent 4e1888bd24
commit 0f0e39d1e9
25 changed files with 721 additions and 90 deletions

View File

@ -1,4 +1,5 @@
add_executable(denali
ahci/ahci_device.cpp
ahci/ahci_driver.cpp
denali.cpp)

157
sys/denali/ahci/ahci.h Normal file
View File

@ -0,0 +1,157 @@
#pragma once
#include <stdint.h>
struct PciDeviceHeader {
uint16_t vendor_id;
uint16_t device_id;
uint16_t command_reg;
uint16_t status_reg;
uint8_t revision;
uint8_t prog_interface;
uint8_t subclass;
uint8_t class_code;
uint8_t cache_line_size;
uint8_t latency_timer;
uint8_t header_type;
uint8_t bist;
uint32_t bars[5];
uint32_t abar;
uint32_t reserved0;
uint32_t subsystem_id;
uint32_t expansion_rom;
uint8_t cap_ptr;
uint8_t reserved1[7];
uint8_t interrupt_line;
uint8_t interrupt_pin;
uint8_t min_grant;
uint8_t max_latency;
} __attribute__((packed));
struct PciMsiCap {
uint8_t cap_id;
uint8_t next_offset;
uint8_t message_control;
uint8_t reserved;
uint64_t message_address;
uint16_t message_data;
};
struct AhciHba {
uint32_t capabilities;
uint32_t global_host_control;
uint32_t interrupt_status;
uint32_t port_implemented;
uint32_t version;
uint32_t ccc_ctl; // 0x14, Command completion coalescing control
uint32_t ccc_pts; // 0x18, Command completion coalescing ports
uint32_t em_loc; // 0x1C, Enclosure management location
uint32_t em_ctl; // 0x20, Enclosure management control
uint32_t capabilities_ext;
uint32_t bohc; // 0x28, BIOS/OS handoff control and status
} __attribute__((packed));
struct AhciPort {
uint64_t command_list_base;
uint64_t fis_base;
uint32_t interrupt_status;
uint32_t interrupt_enable;
uint32_t command;
uint32_t reserved;
uint32_t task_file_data;
uint32_t signature;
uint32_t sata_status;
uint32_t sata_control;
uint32_t sata_error;
uint32_t sata_active;
uint32_t command_issue;
uint32_t sata_notification;
uint32_t fis_based_switching_ctl;
uint32_t device_sleep;
} __attribute__((packed));
struct CommandHeader {
uint16_t command;
uint16_t prd_table_length;
uint32_t prd_byte_count;
uint64_t command_table_base_addr;
uint64_t reserved1;
uint64_t reserved2;
} __attribute__((packed));
struct CommandList {
CommandHeader command_headers[32];
} __attribute__((packed));
struct PhysicalRegionDescriptor {
uint64_t region_address;
uint32_t reserved;
// bit 0 must be one.
// 21:0 is byte count
// 31 is Interrupt on Completion
uint32_t byte_count;
};
struct CommandTable {
uint8_t command_fis[64];
uint8_t atapi_command[16];
uint8_t reserved[48];
PhysicalRegionDescriptor prds[65535];
} __attribute__((packed));
typedef enum {
FIS_TYPE_REG_H2D = 0x27, // Register FIS - host to device
FIS_TYPE_REG_D2H = 0x34, // Register FIS - device to host
FIS_TYPE_DMA_ACT = 0x39, // DMA activate FIS - device to host
FIS_TYPE_DMA_SETUP = 0x41, // DMA setup FIS - bidirectional
FIS_TYPE_DATA = 0x46, // Data FIS - bidirectional
FIS_TYPE_BIST = 0x58, // BIST activate FIS - bidirectional
FIS_TYPE_PIO_SETUP = 0x5F, // PIO setup FIS - device to host
FIS_TYPE_DEV_BITS = 0xA1, // Set device bits FIS - device to host
} FIS_TYPE;
struct DmaFis {};
struct PioSetupFis {};
struct HostToDeviceRegisterFis {
uint8_t fis_type; // FIS_TYPE_REG_H2D
uint8_t pmp_and_c;
uint8_t command; // Command register
uint8_t featurel; // Feature register, 7:0
// DWORD 1
uint8_t lba0; // LBA low register, 7:0
uint8_t lba1; // LBA mid register, 15:8
uint8_t lba2; // LBA high register, 23:16
uint8_t device; // Device register
// DWORD 2
uint8_t lba3; // LBA register, 31:24
uint8_t lba4; // LBA register, 39:32
uint8_t lba5; // LBA register, 47:40
uint8_t featureh; // Feature register, 15:8
// DWORD 3
uint16_t count;
uint8_t icc; // Isochronous command completion
uint8_t control; // Control register
// DWORD 4
uint32_t reserved; // Reserved
};
struct DeviceToHostRegisterFis {};
struct SetDeviceBitsFis {};
struct ReceivedFis {
DmaFis dma_fis;
uint32_t reserved0;
PioSetupFis pio_set_fis;
uint32_t reserved1[3];
DeviceToHostRegisterFis device_to_host_register_fis;
uint32_t reserved2;
SetDeviceBitsFis set_device_bits_fis;
uint8_t unknown_fis[64];
} __attribute__((packed));

View File

@ -0,0 +1,108 @@
#include "ahci/ahci_device.h"
#include <mammoth/debug.h>
#include <string.h>
#include <zcall.h>
AhciDevice::AhciDevice(AhciPort* port) : port_struct_(port) {
if ((port_struct_->sata_status & 0x103) != 0x103) {
return;
}
uint64_t cl_page = port_struct_->command_list_base & (~0xFFF);
uint64_t fis_page = port_struct_->fis_base & (~0xFFF);
if (cl_page != fis_page) {
crash("Non adjacent cl & fis", Z_ERR_UNIMPLEMENTED);
}
check(ZMemoryObjectCreatePhysical(cl_page, 0x1000, &vmmo_cap_));
uint64_t vaddr;
check(ZAddressSpaceMap(Z_INIT_VMAS_SELF, 0, vmmo_cap_, &vaddr));
uint64_t cl_off = port_struct_->command_list_base & 0xFFF;
command_list_ = reinterpret_cast<CommandList*>(vaddr + cl_off);
uint64_t fis_off = port_struct_->fis_base & 0xFFF;
received_fis_ = reinterpret_cast<ReceivedFis*>(vaddr + fis_off);
// FIXME: Hacky
uint64_t ct_off =
command_list_->command_headers[0].command_table_base_addr & 0xFFF;
command_table_ = reinterpret_cast<CommandTable*>(vaddr + ct_off);
port_struct_->interrupt_enable = 0xFFFFFFFF;
}
z_err_t AhciDevice::SendIdentify(uint16_t** result) {
HostToDeviceRegisterFis fis{
.fis_type = FIS_TYPE_REG_H2D,
.pmp_and_c = 0x80,
.command = 0xEC,
.featurel = 0,
.lba0 = 0,
.lba1 = 0,
.lba2 = 0,
.device = 0,
.lba3 = 0,
.lba4 = 0,
.lba5 = 0,
.featureh = 0,
.count = 0,
.icc = 0,
.control = 0,
.reserved = 0,
};
command_list_->command_headers[0].command = (sizeof(fis) / 2) & 0x1F;
command_list_->command_headers[0].prd_table_length = 1;
memcpy(command_table_->command_fis, &fis, sizeof(fis));
port_struct_->command_issue |= 1;
uint64_t vmmo_cap, paddr;
RET_ERR(ZMemoryObjectCreateContiguous(512, &vmmo_cap, &paddr));
command_table_->prds[0].region_address = paddr;
command_table_->prds[0].byte_count = 512;
uint64_t vaddr;
RET_ERR(ZAddressSpaceMap(Z_INIT_VMAS_SELF, 0, vmmo_cap, &vaddr));
*result = reinterpret_cast<uint16_t*>(vaddr);
return Z_OK;
}
void AhciDevice::DumpInfo() {
dbgln("Comlist: %lx", port_struct_->command_list_base);
dbgln("FIS: %lx", port_struct_->fis_base);
dbgln("Command: %x", port_struct_->command);
dbgln("Signature: %x", port_struct_->signature);
dbgln("SATA status: %x", port_struct_->sata_status);
dbgln("Int status: %x", port_struct_->interrupt_status);
dbgln("Int enable: %x", port_struct_->interrupt_enable);
dbgln("Int enable: %x", port_struct_->interrupt_enable);
// Just dump one command info for now.
for (uint64_t i = 0; i < 1; i++) {
dbgln("Command Header: %u", i);
dbgln("Command %x", command_list_->command_headers[i].command);
dbgln("PRD Len: %x", command_list_->command_headers[i].prd_table_length);
dbgln("Command Table %lx",
command_list_->command_headers[i].command_table_base_addr);
}
}
void AhciDevice::HandleIrq() {
uint64_t int_status = port_struct_->interrupt_status;
// FIXME: Probably only clear the interrupts we know how to handle.
port_struct_->interrupt_status = int_status;
dbgln("int receieved: %x", int_status);
}

View File

@ -0,0 +1,29 @@
#pragma once
#include <zerrors.h>
#include "ahci/ahci.h"
class AhciDevice {
public:
AhciDevice() {}
// Caller retains ownership of the pointer.
AhciDevice(AhciPort* port_struct);
void DumpInfo();
bool IsInit() { return port_struct_ != nullptr && vmmo_cap_ != 0; }
// Result will point to a 512 byte (256 word array).
z_err_t SendIdentify(uint16_t** result);
void HandleIrq();
private:
AhciPort* port_struct_ = nullptr;
uint64_t vmmo_cap_ = 0;
CommandList* command_list_ = nullptr;
ReceivedFis* received_fis_ = nullptr;
CommandTable* command_table_ = nullptr;
};

View File

@ -9,13 +9,30 @@ namespace {
const uint64_t kSataPciPhys = 0xB00FA000;
const uint64_t kPciSize = 0x1000;
const uint64_t kGhc_InteruptEnable = 0x2;
void interrupt_thread(void* void_driver) {
AhciDriver* driver = static_cast<AhciDriver*>(void_driver);
dbgln("this %lx", driver);
driver->InterruptLoop();
crash("Driver returned from interrupt loop", Z_ERR_UNIMPLEMENTED);
}
} // namespace
z_err_t AhciDriver::Init() {
RET_ERR(LoadPciDeviceHeader());
RET_ERR(LoadCapabilities());
dbgln("ABAR: %x", pci_device_header_->abar);
dbgln("Interrupt line: %x", pci_device_header_->interrupt_line);
dbgln("Interrupt pin: %x", pci_device_header_->interrupt_pin);
RET_ERR(RegisterIrq());
RET_ERR(LoadHbaRegisters());
dbgln("Version: %x", ahci_hba_->version);
ahci_hba_->global_host_control |= kGhc_InteruptEnable;
RET_ERR(LoadDevices());
DumpCapabilities();
DumpPorts();
return Z_OK;
@ -26,7 +43,7 @@ void AhciDriver::DumpCapabilities() {
uint32_t caps = ahci_hba_->capabilities;
dbgln("Num Ports: %u", (caps & 0x1F) + 1);
dbgln("Num Command Slots: %u", (caps & 0x1F00) >> 8);
dbgln("Num Command Slots: %u", ((caps & 0x1F00) >> 8) + 1);
if (caps & 0x20) {
dbgln("External SATA");
}
@ -97,33 +114,33 @@ void AhciDriver::DumpCapabilities() {
if (caps & 0x10) {
dbgln("Aggressive device sleep management");
}
dbgln("Control %x", ahci_hba_->global_host_control);
}
void AhciDriver::DumpPorts() {
dbgln("Ports implemented %x", ahci_hba_->port_implemented);
uint64_t port_index = 0;
uint32_t ports_implemented = ahci_hba_->port_implemented;
while (ports_implemented) {
if (!(ports_implemented & 0x1)) {
ports_implemented >>= 1;
port_index++;
for (uint64_t i = 0; i < 6; i++) {
AhciDevice& dev = devices_[i];
if (!dev.IsInit()) {
continue;
}
uint64_t port_addr =
reinterpret_cast<uint64_t>(ahci_hba_) + 0x100 + (0x80 * port_index);
AhciPort* port = reinterpret_cast<AhciPort*>(port_addr);
dbgln("");
dbgln("Port %u:", port_index);
dbgln("Comlist: %lx", port->command_list_base);
dbgln("FIS: %lx", port->fis_base);
dbgln("Command: %x", port->command);
dbgln("Signature: %x", port->signature);
dbgln("SATA status: %x", port->sata_status);
dbgln("Port %u:", i);
dev.DumpInfo();
}
}
ports_implemented >>= 1;
port_index++;
void AhciDriver::InterruptLoop() {
dbgln("this %lx", this);
while (true) {
uint64_t type, bytes, caps;
check(ZPortRecv(irq_port_cap_, 0, 0, 0, 0, &type, &bytes, &caps));
for (uint64_t i = 0; i < 6; i++) {
if (devices_[i].IsInit()) {
devices_[i].HandleIrq();
}
}
}
}
@ -137,6 +154,46 @@ z_err_t AhciDriver::LoadPciDeviceHeader() {
return Z_OK;
}
z_err_t AhciDriver::LoadCapabilities() {
if (!(pci_device_header_->status_reg & 0x10)) {
dbgln("No caps!");
return Z_ERR_INVALID;
}
uint8_t* base = reinterpret_cast<uint8_t*>(pci_device_header_);
uint16_t offset = pci_device_header_->cap_ptr;
do {
uint16_t* cap = reinterpret_cast<uint16_t*>(base + offset);
switch (*cap & 0xFF) {
case 0x01:
dbgln("Power Management");
break;
case 0x05:
dbgln("MSI");
break;
case 0x12:
dbgln("SATA");
break;
default:
dbgln("Unrecognized cap");
break;
}
offset = (*cap & 0xFF00) >> 8;
} while (offset);
return Z_OK;
}
z_err_t AhciDriver::RegisterIrq() {
if (pci_device_header_->interrupt_pin == 0) {
crash("Can't register IRQ without a pin num", Z_INVALID);
}
uint64_t irq_num = Z_IRQ_PCI_BASE + pci_device_header_->interrupt_pin - 1;
RET_ERR(ZIrqRegister(irq_num, &irq_port_cap_));
dbgln("this %lx", this);
irq_thread_ = Thread(interrupt_thread, this);
return Z_OK;
}
z_err_t AhciDriver::LoadHbaRegisters() {
uint64_t vmmo_cap;
RET_ERR(
@ -147,3 +204,22 @@ z_err_t AhciDriver::LoadHbaRegisters() {
ahci_hba_ = reinterpret_cast<AhciHba*>(vaddr);
return Z_OK;
}
z_err_t AhciDriver::LoadDevices() {
// FIXME: Don't set this up so we hardcode 6 devices.
for (uint8_t i = 0; i < 6; i++) {
if (!(ahci_hba_->port_implemented & (1 << i))) {
continue;
}
uint64_t port_addr =
reinterpret_cast<uint64_t>(ahci_hba_) + 0x100 + (0x80 * i);
devices_[i] = AhciDevice(reinterpret_cast<AhciPort*>(port_addr));
if (!devices_[i].IsInit()) {
continue;
}
dbgln("Identify %u", i);
uint16_t* identify;
devices_[i].SendIdentify(&identify);
}
return Z_OK;
}

View File

@ -1,69 +1,17 @@
#pragma once
#include <mammoth/thread.h>
#include <zerrors.h>
struct PciDeviceHeader {
uint16_t vendor_id;
uint16_t device_id;
uint16_t command_reg;
uint16_t status_reg;
uint8_t revision;
uint8_t prog_interface;
uint8_t subclass;
uint8_t class_code;
uint8_t cache_line_size;
uint8_t latency_timer;
uint8_t header_type;
uint8_t bist;
uint32_t bars[5];
uint32_t abar;
uint32_t subsystem_id;
uint32_t expansion_rom;
uint8_t cap_ptr;
uint8_t reserved[7];
uint8_t interrupt_line;
uint8_t interrupt_pin;
uint8_t min_grant;
uint8_t max_latency;
} __attribute__((packed));
struct AhciHba {
uint32_t capabilities;
uint32_t global_host_control;
uint32_t interrupt_status;
uint32_t port_implemented;
uint32_t version;
uint32_t ccc_ctl; // 0x14, Command completion coalescing control
uint32_t ccc_pts; // 0x18, Command completion coalescing ports
uint32_t em_loc; // 0x1C, Enclosure management location
uint32_t em_ctl; // 0x20, Enclosure management control
uint32_t capabilities_ext;
uint32_t bohc; // 0x28, BIOS/OS handoff control and status
};
struct AhciPort {
uint64_t command_list_base;
uint64_t fis_base;
uint32_t interrupt_status;
uint32_t interrupt_enable;
uint32_t command;
uint32_t reserved;
uint32_t task_file_data;
uint32_t signature;
uint32_t sata_status;
uint32_t sata_control;
uint32_t sata_error;
uint32_t sata_active;
uint32_t command_issue;
uint32_t sata_notification;
uint32_t fis_based_switching_ctl;
uint32_t device_sleep;
};
#include "ahci/ahci.h"
#include "ahci/ahci_device.h"
class AhciDriver {
public:
z_err_t Init();
void InterruptLoop();
void DumpCapabilities();
void DumpPorts();
@ -71,6 +19,14 @@ class AhciDriver {
PciDeviceHeader* pci_device_header_ = nullptr;
AhciHba* ahci_hba_ = nullptr;
AhciDevice devices_[6];
Thread irq_thread_;
uint64_t irq_port_cap_ = 0;
z_err_t LoadPciDeviceHeader();
z_err_t LoadCapabilities();
z_err_t RegisterIrq();
z_err_t LoadHbaRegisters();
z_err_t LoadDevices();
};

View File

@ -1,8 +1,13 @@
#include <mammoth/debug.h>
#include <stdint.h>
#include "ahci/ahci_driver.h"
int main(uint64_t bootstrap_cap) {
AhciDriver driver;
return driver.Init();
RET_ERR(driver.Init());
while (1) {
};
return 0;
}

View File

@ -19,6 +19,7 @@ add_executable(zion
object/address_space.cpp
object/channel.cpp
object/memory_object.cpp
object/port.cpp
object/process.cpp
object/thread.cpp
scheduler/context_switch.s

View File

@ -42,3 +42,11 @@ RefPtr<Channel> Capability::obj<Channel>() {
}
return StaticCastRefPtr<Channel>(obj_);
}
template <>
RefPtr<Port> Capability::obj<Port>() {
if (type_ != PORT) {
panic("Accessing %u cap as object.", type_);
}
return StaticCastRefPtr<Port>(obj_);
}

View File

@ -17,6 +17,7 @@ class Capability : public RefCounted<Capability> {
ADDRESS_SPACE,
MEMORY_OBJECT,
CHANNEL,
PORT,
};
Capability(const RefPtr<KernelObject>& obj, Type type, uint64_t id,
uint64_t permissions)

View File

@ -43,6 +43,14 @@
#define Z_CHANNEL_RECV 0x42
#define Z_CHANNEL_SENDRECV 0x43
#define Z_PORT_CREATE 0x50
#define Z_PORT_SEND 0x51
#define Z_PORT_RECV 0x52
#define Z_IRQ_REGISTER 0x58
#define Z_IRQ_PCI_BASE 0x30
// Debugging Calls.
#define Z_DEBUG_PRINT 0x10000000
@ -70,6 +78,10 @@ void ZThreadExit();
[[nodiscard]] z_err_t ZMemoryObjectCreate(uint64_t size, uint64_t* vmmo_cap);
[[nodiscard]] z_err_t ZMemoryObjectCreatePhysical(uint64_t paddr, uint64_t size,
uint64_t* vmmo_cap);
[[nodiscard]] z_err_t ZMemoryObjectCreateContiguous(uint64_t size,
uint64_t* vmmo_cap,
uint64_t* paddr);
[[nodiscard]] z_err_t ZTempPcieConfigObjectCreate(uint64_t* vmmo_cap,
uint64_t* vmmo_size);
@ -83,4 +95,10 @@ void ZThreadExit();
uint64_t* actual_bytes,
uint64_t* actual_caps);
[[nodiscard]] z_err_t ZPortRecv(uint64_t port_cap, uint64_t num_bytes,
uint8_t* bytes, uint64_t num_caps,
uint64_t* caps, uint64_t* type,
uint64_t* actual_bytes, uint64_t* actual_caps);
[[nodiscard]] z_err_t ZIrqRegister(uint64_t irq_num, uint64_t* port_cap);
[[nodiscard]] z_err_t ZDebug(const char* message);

View File

@ -7,7 +7,7 @@
#include "common/port.h"
#include "debug/debug.h"
#define APIC_DEBUG 0
#define APIC_DEBUG 1
namespace {
@ -17,6 +17,7 @@ namespace {
const uint64_t kEoiOffset = 0xB0;
// FIXME: parse these from madt.
constexpr uint64_t kLApicBase = 0xFEE0'0000;
constexpr uint64_t kIoApicAddr = 0xFEC0'0000;
constexpr uint64_t kIoApicData = 0xFEC0'0010;
@ -88,7 +89,6 @@ void InspectApic() {
dbgln("TPR: %x", GetLocalReg(0x80));
dbgln("APR: %x", GetLocalReg(0x90));
dbgln("PPR: %x", GetLocalReg(0xA0));
dbgln("RRD: %x", GetLocalReg(0xC0));
dbgln("LDR: %x", GetLocalReg(0xD0));
dbgln("DFR: %x", GetLocalReg(0xE0));
dbgln("SIV: %x", GetLocalReg(0xF0));
@ -119,10 +119,22 @@ void EnableApic() {
SetIoEntry(0x14, 0x20);
// Skip Keyboard for now.
// SetIoEntry(0x12, 0x21);
// TODO: This also works with the interrupt numbers provided by the MADT
// I need to do further investigation on the difference in this case and
// also how to find a declarative spec for where the PCI Lines are mapped.
// PCI Line 1-4
// FIXME: These should be level triggered according to spec I believe
// but because we handle the interrupt outside of the kernel it is tricky
// to wait to send the end of interrupt message.
// Because of this leave them as edge triggered and send EOI immediately.
SetIoEntry(0x30, 0x30);
SetIoEntry(0x32, 0x31);
SetIoEntry(0x34, 0x32);
SetIoEntry(0x36, 0x33);
InspectApic();
}
void SignalEOI() {
// Value doesn't matter.
WriteLocalReg(kEoiOffset, 0x1);
}
void SignalEOI() { WriteLocalReg(kEoiOffset, 0x0); }

View File

@ -138,11 +138,44 @@ extern "C" void interrupt_timer(InterruptFrame*) {
gScheduler->Preempt();
}
RefPtr<Port> pci1_port;
extern "C" void isr_pci1();
extern "C" void interrupt_pci1(InterruptFrame*) {
dbgln("Interrupt PCI line 1");
pci1_port->Write({});
SignalEOI();
}
extern "C" void isr_pci2();
extern "C" void interrupt_pci2(InterruptFrame*) {
dbgln("Interrupt PCI line 2");
SignalEOI();
}
extern "C" void isr_pci3();
extern "C" void interrupt_pci3(InterruptFrame*) {
dbgln("Interrupt PCI line 3");
SignalEOI();
}
extern "C" void isr_pci4();
extern "C" void interrupt_pci4(InterruptFrame*) {
dbgln("Interrupt PCI line 4");
SignalEOI();
}
void InitIdt() {
gIdt[0] = CreateDescriptor(isr_divide_by_zero);
gIdt[13] = CreateDescriptor(isr_protection_fault);
gIdt[14] = CreateDescriptor(isr_page_fault);
gIdt[32] = CreateDescriptor(isr_timer);
gIdt[0x20] = CreateDescriptor(isr_timer);
gIdt[0x30] = CreateDescriptor(isr_pci1);
gIdt[0x31] = CreateDescriptor(isr_pci2);
gIdt[0x32] = CreateDescriptor(isr_pci3);
gIdt[0x33] = CreateDescriptor(isr_pci4);
InterruptDescriptorTablePointer idtp{
.size = sizeof(gIdt),
.base = reinterpret_cast<uint64_t>(gIdt),
@ -151,3 +184,5 @@ void InitIdt() {
EnableApic();
}
void RegisterPciPort(const RefPtr<Port>& port) { pci1_port = port; }

View File

@ -1,3 +1,8 @@
#pragma once
#include "lib/ref_ptr.h"
#include "object/port.h"
void InitIdt();
void RegisterPciPort(const RefPtr<Port>& port);

View File

@ -63,6 +63,34 @@ class PhysicalMemoryManager {
}
return page;
}
uint64_t AllocateContinuous(uint64_t num_pages) {
if (front_ == nullptr) {
panic("No available memory regions.");
}
if (front_->num_pages == 0) {
panic("Bad state, empty memory block.");
}
MemBlock* block = front_;
while (block != nullptr && block->num_pages < num_pages) {
block = block->next;
}
if (block == nullptr) {
panic("No memory regions to allocate");
}
uint64_t page = front_->base;
front_->base += num_pages * 0x1000;
front_->num_pages -= num_pages;
if (front_->num_pages == 0) {
MemBlock* temp = front_;
front_ = front_->next;
delete temp;
}
return page;
}
void FreePage(uint64_t page) { AddMemoryRegion(page, 0x1000); }
private:
@ -129,4 +157,12 @@ uint64_t AllocatePage() {
return page;
}
uint64_t AllocateContinuous(uint64_t num_continuous) {
if (gPmm == nullptr) {
panic("No physical memory manager!");
}
return gPmm->AllocateContinuous(num_continuous);
}
} // namespace phys_mem

View File

@ -13,6 +13,7 @@ void InitBootstrapPageAllocation();
void InitPhysicalMemoryManager();
uint64_t AllocatePage();
uint64_t AllocateContinuous(uint64_t num_pages);
void FreePage(uint64_t page);
} // namespace phys_mem

View File

@ -35,6 +35,7 @@ class MemoryObject : public KernelObject {
class FixedMemoryObject : public MemoryObject {
public:
// FIXME: Validate that this is 4k aligned.
FixedMemoryObject(uint64_t physical_addr, uint64_t size)
: MemoryObject(size, true), physical_addr_(physical_addr) {}

50
zion/object/port.cpp Normal file
View File

@ -0,0 +1,50 @@
#include "object/port.h"
Port::Port() {}
z_err_t Port::Write(const ZMessage& msg) {
if (msg.num_caps > 0) {
dbgln("Unimplemented passing caps on port");
return Z_ERR_UNIMPLEMENTED;
}
if (msg.num_bytes > 0x1000) {
dbgln("Large message size unimplemented: %x", msg.num_bytes);
return Z_ERR_INVALID;
}
Message message{
.type = msg.type,
.num_bytes = msg.num_bytes,
.bytes = new uint8_t[msg.num_bytes],
};
for (uint64_t i = 0; i < msg.num_bytes; i++) {
message.bytes[i] = msg.bytes[i];
}
pending_messages_.PushBack(message);
return Z_OK;
}
z_err_t Port::Read(ZMessage& msg) {
if (pending_messages_.size() < 1) {
dbgln("Implement blocking");
return Z_ERR_UNIMPLEMENTED;
}
Message next_msg = pending_messages_.PeekFront();
if (next_msg.num_bytes > msg.num_bytes) {
return Z_ERR_BUFF_SIZE;
}
msg.type = next_msg.type;
msg.num_bytes = next_msg.num_bytes;
msg.num_caps = 0;
for (uint64_t i = 0; i < msg.num_bytes; i++) {
msg.bytes[i] = next_msg.bytes[i];
}
pending_messages_.PopFront();
return Z_OK;
}

22
zion/object/port.h Normal file
View File

@ -0,0 +1,22 @@
#pragma once
#include "lib/linked_list.h"
#include "object/kernel_object.h"
#include "usr/zcall_internal.h"
class Port : public KernelObject {
public:
Port();
z_err_t Write(const ZMessage& msg);
z_err_t Read(ZMessage& msg);
private:
struct Message {
uint64_t type;
uint64_t num_bytes;
uint8_t* bytes;
};
LinkedList<Message> pending_messages_;
};

View File

@ -127,6 +127,13 @@ uint64_t Process::AddCapability(const RefPtr<Channel>& chan) {
return cap_id;
}
uint64_t Process::AddCapability(const RefPtr<Port>& port) {
uint64_t cap_id = next_cap_id_++;
caps_.PushBack(MakeRefCounted<Capability>(port, Capability::PORT, cap_id,
ZC_WRITE | ZC_READ));
return cap_id;
}
void Process::AddCapability(uint64_t cap_id, const RefPtr<MemoryObject>& vmmo) {
caps_.PushBack(MakeRefCounted<Capability>(vmmo, Capability::MEMORY_OBJECT,
cap_id, ZC_WRITE));

View File

@ -7,6 +7,7 @@
#include "lib/ref_ptr.h"
#include "object/address_space.h"
#include "object/channel.h"
#include "object/port.h"
// Forward decl due to cyclic dependency.
class Thread;
@ -37,6 +38,7 @@ class Process : public KernelObject {
uint64_t AddCapability(const RefPtr<AddressSpace>& vmas);
uint64_t AddCapability(const RefPtr<MemoryObject>& vmmo);
uint64_t AddCapability(const RefPtr<Channel>& chan);
uint64_t AddCapability(const RefPtr<Port>& chan);
void AddCapability(uint64_t cap_id, const RefPtr<MemoryObject>& vmmo);
// Checks the state of all child threads and transitions to

View File

@ -40,11 +40,13 @@ void Scheduler::Preempt() {
if (current_thread_ == sleep_thread_) {
// Sleep should never be preempted. (We should yield it if another thread
// becomes scheduleable).
asm volatile("sti");
return;
}
if (runnable_threads_.size() == 0) {
// Continue.
asm volatile("sti");
return;
}

View File

@ -7,7 +7,10 @@
#include "debug/debug.h"
#include "include/zcall.h"
#include "include/zerrors.h"
#include "interrupt/interrupt.h"
#include "memory/physical_memory.h"
#include "object/channel.h"
#include "object/port.h"
#include "object/process.h"
#include "scheduler/process_manager.h"
#include "scheduler/scheduler.h"
@ -131,11 +134,16 @@ z_err_t MemoryObjectCreate(ZMemoryObjectCreateReq* req,
}
z_err_t MemoryObjectCreatePhysical(ZMemoryObjectCreatePhysicalReq* req,
ZMemoryObjectCreateResp* resp) {
ZMemoryObjectCreatePhysicalResp* resp) {
auto& curr_proc = gScheduler->CurrentProcess();
auto vmmo_ref = MakeRefCounted<FixedMemoryObject>(req->paddr, req->size);
uint64_t paddr = req->paddr;
if (paddr == 0) {
paddr = phys_mem::AllocateContinuous((req->size - 1 / 0x1000) + 1);
}
auto vmmo_ref = MakeRefCounted<FixedMemoryObject>(paddr, req->size);
resp->vmmo_cap =
curr_proc.AddCapability(StaticCastRefPtr<MemoryObject>(vmmo_ref));
resp->paddr = paddr;
return Z_OK;
}
@ -174,7 +182,30 @@ z_err_t ChannelRecv(ZChannelRecvReq* req) {
RET_ERR(ValidateCap(chan_cap, Capability::CHANNEL, ZC_READ));
auto chan = chan_cap->obj<Channel>();
chan->Read(req->message);
return chan->Read(req->message);
}
z_err_t PortRecv(ZPortRecvReq* req) {
auto& proc = gScheduler->CurrentProcess();
dbgln("Port cap %u", req->port_cap);
auto port_cap = proc.GetCapability(req->port_cap);
RET_ERR(ValidateCap(port_cap, Capability::PORT, ZC_READ));
auto port = port_cap->obj<Port>();
return port->Read(req->message);
}
z_err_t IrqRegister(ZIrqRegisterReq* req, ZIrqRegisterResp* resp) {
auto& proc = gScheduler->CurrentProcess();
if (req->irq_num != Z_IRQ_PCI_BASE) {
// FIXME: Don't hardcode this nonsense.
dbgln("Irq %x", req->irq_num);
return Z_ERR_UNIMPLEMENTED;
}
RefPtr<Port> port = MakeRefCounted<Port>();
resp->port_cap = proc.AddCapability(port);
dbgln("Port cap %u", resp->port_cap);
RegisterPciPort(port);
return Z_OK;
}
@ -210,7 +241,7 @@ extern "C" z_err_t SyscallHandler(uint64_t call_id, void* req, void* resp) {
case Z_MEMORY_OBJECT_CREATE_PHYSICAL:
return MemoryObjectCreatePhysical(
reinterpret_cast<ZMemoryObjectCreatePhysicalReq*>(req),
reinterpret_cast<ZMemoryObjectCreateResp*>(resp));
reinterpret_cast<ZMemoryObjectCreatePhysicalResp*>(resp));
case Z_TEMP_PCIE_CONFIG_OBJECT_CREATE:
return TempPcieConfigObjectCreate(
reinterpret_cast<ZTempPcieConfigObjectCreateResp*>(resp));
@ -220,6 +251,11 @@ extern "C" z_err_t SyscallHandler(uint64_t call_id, void* req, void* resp) {
return ChannelSend(reinterpret_cast<ZChannelSendReq*>(req));
case Z_CHANNEL_RECV:
return ChannelRecv(reinterpret_cast<ZChannelRecvReq*>(req));
case Z_PORT_RECV:
return PortRecv(reinterpret_cast<ZPortRecvReq*>(req));
case Z_IRQ_REGISTER:
return IrqRegister(reinterpret_cast<ZIrqRegisterReq*>(req),
reinterpret_cast<ZIrqRegisterResp*>(resp));
case Z_DEBUG_PRINT:
dbgln("[Debug] %s", req);
return Z_OK;

View File

@ -90,12 +90,25 @@ z_err_t ZMemoryObjectCreatePhysical(uint64_t paddr, uint64_t size,
.paddr = paddr,
.size = size,
};
ZMemoryObjectCreateResp resp;
ZMemoryObjectCreatePhysicalResp resp;
z_err_t ret = SysCall2(Z_MEMORY_OBJECT_CREATE_PHYSICAL, &req, &resp);
*vmmo_cap = resp.vmmo_cap;
return ret;
}
z_err_t ZMemoryObjectCreateContiguous(uint64_t size, uint64_t* vmmo_cap,
uint64_t* paddr) {
ZMemoryObjectCreatePhysicalReq req{
.paddr = 0,
.size = size,
};
ZMemoryObjectCreatePhysicalResp resp;
z_err_t ret = SysCall2(Z_MEMORY_OBJECT_CREATE_PHYSICAL, &req, &resp);
*vmmo_cap = resp.vmmo_cap;
*paddr = resp.paddr;
return ret;
}
z_err_t ZTempPcieConfigObjectCreate(uint64_t* vmmo_cap, uint64_t* vmmo_size) {
ZTempPcieConfigObjectCreateResp resp;
z_err_t ret = SysCall2(Z_TEMP_PCIE_CONFIG_OBJECT_CREATE, 0, &resp);
@ -150,4 +163,35 @@ z_err_t ZChannelRecv(uint64_t chan_cap, uint64_t num_bytes, uint8_t* bytes,
return ret;
}
z_err_t ZPortRecv(uint64_t port_cap, uint64_t num_bytes, uint8_t* bytes,
uint64_t num_caps, uint64_t* caps, uint64_t* type,
uint64_t* actual_bytes, uint64_t* actual_caps) {
ZPortRecvReq req{
.port_cap = port_cap,
.message =
{
.type = 0,
.num_bytes = num_bytes,
.bytes = bytes,
.num_caps = num_caps,
.caps = caps,
},
};
z_err_t ret = SysCall1(Z_PORT_RECV, &req);
*type = req.message.type;
*actual_bytes = req.message.num_bytes;
*actual_caps = req.message.num_caps;
return ret;
}
z_err_t ZIrqRegister(uint64_t irq_num, uint64_t* port_cap) {
ZIrqRegisterReq req{
.irq_num = irq_num,
};
ZIrqRegisterResp resp;
z_err_t ret = SysCall2(Z_IRQ_REGISTER, &req, &resp);
*port_cap = resp.port_cap;
return ret;
}
z_err_t ZDebug(const char* message) { return SysCall1(Z_DEBUG_PRINT, message); }

View File

@ -51,6 +51,11 @@ struct ZMemoryObjectCreatePhysicalReq {
uint64_t size;
};
struct ZMemoryObjectCreatePhysicalResp {
uint64_t vmmo_cap;
uint64_t paddr;
};
struct ZTempPcieConfigObjectCreateResp {
uint64_t vmmo_cap;
uint64_t vmmo_size;
@ -80,3 +85,16 @@ struct ZChannelRecvReq {
uint64_t chan_cap;
ZMessage message;
};
struct ZPortRecvReq {
uint64_t port_cap;
ZMessage message;
};
struct ZIrqRegisterReq {
uint64_t irq_num;
};
struct ZIrqRegisterResp {
uint64_t port_cap;
};