Compare commits

...

3 Commits

Author SHA1 Message Date
Drew Galbraith b9b45c5e45 Add the ability to copy memory to non resident process.
Use/Test this by loading the user space elf from the kernel process
before it starts rather than as a part of the first thread.

This simplifies thread start a fair bit.
2023-05-30 01:27:47 -07:00
Drew Galbraith f6609983d2 Move away from using recursive mapping for page tables.
Having the HHDM-based mapping allows us to more easily map data into
non-resident processes.
2023-05-30 01:06:01 -07:00
Drew Galbraith c6921b5459 Add validity check in shared ptr 2023-05-30 01:05:50 -07:00
11 changed files with 150 additions and 100 deletions

View File

@ -15,12 +15,13 @@ class SharedPtr {
}
SharedPtr(const SharedPtr<T>& other)
: ptr_(other.ptr_), ref_cnt_(other.ref_cnt_) {
: init_(other.init_), ptr_(other.ptr_), ref_cnt_(other.ref_cnt_) {
(*ref_cnt_)++;
}
SharedPtr& operator=(const SharedPtr<T>& other) {
Cleanup();
init_ = other.init_;
ptr_ = other.ptr_;
ref_cnt_ = other.ref_cnt_;
(*ref_cnt_)++;
@ -29,14 +30,33 @@ class SharedPtr {
~SharedPtr() { Cleanup(); }
T& operator*() { return *ptr_; }
const T& operator*() const { return *ptr_; }
T* operator->() { return ptr_; }
const T* operator->() const { return ptr_; }
T& operator*() {
CheckValid();
return *ptr_;
}
const T& operator*() const {
CheckValid();
return *ptr_;
}
T* operator->() {
CheckValid();
return ptr_;
}
const T* operator->() const {
CheckValid();
return ptr_;
}
T* ptr() { return ptr_; }
T* ptr() {
CheckValid();
return ptr_;
}
bool operator==(const SharedPtr<T>& other) { return ptr_ == other.ptr_; }
bool operator==(const SharedPtr<T>& other) {
CheckValid();
other.CheckValid();
return ptr_ == other.ptr_;
}
bool empty() { return !init_; }
@ -55,6 +75,12 @@ class SharedPtr {
delete ref_cnt_;
}
}
void CheckValid() const {
if (!init_) {
panic("Accessing invalid shared ptr");
}
}
};
template <typename T, class... A>

View File

@ -46,17 +46,9 @@ typedef struct {
uint64_t align;
} Elf64ProgramHeader;
void badmemcpy(uint64_t base, uint64_t offset, uint64_t dest) {
uint8_t* ptr = reinterpret_cast<uint8_t*>(base);
uint8_t* dest_ptr = reinterpret_cast<uint8_t*>(dest);
for (uint64_t i = 0; i < offset; i++) {
dest_ptr[i] = ptr[i];
}
}
} // namespace
uint64_t LoadElfProgram(uint64_t base, uint64_t offset) {
uint64_t LoadElfProgram(uint64_t cr3, uint64_t base, uint64_t offset) {
Elf64Header* header = reinterpret_cast<Elf64Header*>(base);
dbgln("phoff: %u phnum: %u", header->phoff, header->phnum);
Elf64ProgramHeader* programs =
@ -68,8 +60,8 @@ uint64_t LoadElfProgram(uint64_t base, uint64_t offset) {
"filesz: %u, memsz: %u, align: %u",
program.type, program.flags, program.offset, program.vaddr,
program.paddr, program.filesz, program.memsz, program.align);
EnsureResident(program.vaddr, program.memsz);
badmemcpy(base + program.offset, program.filesz, program.vaddr);
CopyIntoNonResidentProcess(base + program.offset, program.filesz, cr3,
program.vaddr);
}
return header->entry;
}

View File

@ -3,4 +3,4 @@
#include <stdint.h>
// Loads the elf program and returns its entry point.
uint64_t LoadElfProgram(uint64_t base, uint64_t length);
uint64_t LoadElfProgram(uint64_t cr3, uint64_t base, uint64_t length);

View File

@ -25,6 +25,11 @@ const limine_file& GetInitProgram() {
void LoadInitProgram() {
const limine_file& init_prog = GetInitProgram();
gProcMan->InsertProcess(
new Process(reinterpret_cast<uint64_t>(init_prog.address)));
SharedPtr<Process> proc = MakeShared<Process>();
gProcMan->InsertProcess(proc);
uint64_t entry =
LoadElfProgram(proc->cr3(), reinterpret_cast<uint64_t>(init_prog.address),
init_prog.size);
proc->CreateThread(entry);
}

View File

@ -39,121 +39,155 @@ uint64_t ShiftForEntryIndexing(uint64_t addr, uint64_t offset) {
addr &= ~0xFFFF0000'00000000;
addr >>= offset;
addr <<= 3;
return addr;
return addr & 0xFF8;
}
uint64_t* Pml4Entry(uint64_t addr) {
return reinterpret_cast<uint64_t*>(PML_RECURSE |
uint64_t* Pml4Entry(uint64_t cr3, uint64_t addr) {
cr3 += boot::GetHigherHalfDirectMap();
return reinterpret_cast<uint64_t*>(cr3 |
ShiftForEntryIndexing(addr, PML_OFFSET));
}
uint64_t* PageDirectoryPointerEntry(uint64_t addr) {
return reinterpret_cast<uint64_t*>(PDP_RECURSE |
uint64_t* PageDirectoryPointerEntry(uint64_t pdp_phys, uint64_t addr) {
pdp_phys += boot::GetHigherHalfDirectMap();
pdp_phys &= ~0xFFF;
return reinterpret_cast<uint64_t*>(pdp_phys |
ShiftForEntryIndexing(addr, PDP_OFFSET));
}
uint64_t* PageDirectoryEntry(uint64_t addr) {
return reinterpret_cast<uint64_t*>(PD_RECURSE |
uint64_t* PageDirectoryEntry(uint64_t pd_phys, uint64_t addr) {
pd_phys += boot::GetHigherHalfDirectMap();
pd_phys &= ~0xFFF;
return reinterpret_cast<uint64_t*>(pd_phys |
ShiftForEntryIndexing(addr, PD_OFFSET));
}
uint64_t* PageTableEntry(uint64_t addr) {
return reinterpret_cast<uint64_t*>(PT_RECURSE |
uint64_t* PageTableEntry(uint64_t pt_phys, uint64_t addr) {
pt_phys += boot::GetHigherHalfDirectMap();
pt_phys &= ~0xFFF;
return reinterpret_cast<uint64_t*>(pt_phys |
ShiftForEntryIndexing(addr, PT_OFFSET));
}
bool PageDirectoryPointerLoaded(uint64_t addr) {
return *Pml4Entry(addr) & PRESENT_BIT;
}
bool PageDirectoryLoaded(uint64_t addr) {
return PageDirectoryPointerLoaded(addr) &&
(*PageDirectoryPointerEntry(addr) & PRESENT_BIT);
}
bool PageTableLoaded(uint64_t addr) {
return PageDirectoryLoaded(addr) && (*PageDirectoryEntry(addr) & PRESENT_BIT);
}
void MapPage(uint64_t virt, uint64_t phys) {
if (PageLoaded(virt)) {
panic("Allocating Over Existing Page: %m", virt);
uint64_t PagePhysIfResident(uint64_t cr3, uint64_t virt) {
uint64_t* pml4_entry = Pml4Entry(cr3, virt);
if (!(*pml4_entry & PRESENT_BIT)) {
return false;
}
uint64_t* pdp_entry = PageDirectoryPointerEntry(*pml4_entry, virt);
if (!(*pdp_entry & PRESENT_BIT)) {
return false;
}
uint64_t* pd_entry = PageDirectoryEntry(*pdp_entry, virt);
if (!(*pd_entry & PRESENT_BIT)) {
return false;
}
uint64_t* pt_entry = PageTableEntry(*pd_entry, virt);
if (!(*pt_entry & PRESENT_BIT)) {
return false;
}
return *pt_entry & ~0xFFF;
}
uint64_t MapPage(uint64_t cr3, uint64_t virt) {
uint64_t access_bits = PRESENT_BIT | READ_WRITE_BIT;
uint64_t higher_half = 0xffff8000'00000000;
if ((virt & higher_half) != higher_half) {
access_bits |= USER_MODE_BIT;
}
if (!PageDirectoryPointerLoaded(virt)) {
uint64_t* pml4_entry = Pml4Entry(cr3, virt);
if (!(*pml4_entry & PRESENT_BIT)) {
uint64_t page = phys_mem::AllocatePage();
*Pml4Entry(virt) = page | access_bits;
ZeroOutPage(PageDirectoryPointerEntry(virt));
*pml4_entry = page | access_bits;
ZeroOutPage(PageDirectoryPointerEntry(*pml4_entry, virt));
}
if (!PageDirectoryLoaded(virt)) {
uint64_t* pdp_entry = PageDirectoryPointerEntry(*pml4_entry, virt);
if (!(*pdp_entry & PRESENT_BIT)) {
uint64_t page = phys_mem::AllocatePage();
*PageDirectoryPointerEntry(virt) = page | access_bits;
ZeroOutPage(PageDirectoryEntry(virt));
*pdp_entry = page | access_bits;
ZeroOutPage(PageDirectoryEntry(*pdp_entry, virt));
}
if (!PageTableLoaded(virt)) {
uint64_t* pd_entry = PageDirectoryEntry(*pdp_entry, virt);
if (!(*pd_entry & PRESENT_BIT)) {
uint64_t page = phys_mem::AllocatePage();
*PageDirectoryEntry(virt) = page | access_bits;
ZeroOutPage(PageTableEntry(virt));
*(pd_entry) = page | access_bits;
ZeroOutPage(PageTableEntry(*pd_entry, virt));
}
*PageTableEntry(virt) = PageAlign(phys) | access_bits;
ZeroOutPage(reinterpret_cast<uint64_t*>(virt));
uint64_t* pt_entry = PageTableEntry(*pd_entry, virt);
if (!(*pt_entry & PRESENT_BIT)) {
uint64_t phys = phys_mem::AllocatePage();
*pt_entry = PageAlign(phys) | access_bits;
ZeroOutPage(reinterpret_cast<uint64_t*>(boot::GetHigherHalfDirectMap() +
PageAlign(phys)));
return phys;
} else {
panic("Page already allocated.");
return 0;
}
}
uint64_t Pml4Index(uint64_t addr) { return (addr >> PML_OFFSET) & 0x1FF; }
} // namespace
void InitPaging() {
uint64_t CurrCr3() {
uint64_t pml4_addr = 0;
asm volatile("mov %%cr3, %0;" : "=r"(pml4_addr));
uint64_t* pml4_virtual =
reinterpret_cast<uint64_t*>(boot::GetHigherHalfDirectMap() + pml4_addr);
uint64_t recursive_entry = pml4_addr | PRESENT_BIT | READ_WRITE_BIT;
pml4_virtual[0x1FE] = recursive_entry;
return pml4_addr;
}
} // namespace
void InitializePml4(uint64_t pml4_physical_addr) {
uint64_t* pml4_virtual = reinterpret_cast<uint64_t*>(
boot::GetHigherHalfDirectMap() + pml4_physical_addr);
// Map the recursive entry.
uint64_t recursive_entry = pml4_physical_addr | PRESENT_BIT | READ_WRITE_BIT;
pml4_virtual[0x1FE] = recursive_entry;
uint64_t curr_cr3 = CurrCr3();
// Map the kernel entry.
// This should contain the heap at 0xFFFFFFFF'40000000
uint64_t kernel_addr = 0xFFFFFFFF'80000000;
pml4_virtual[Pml4Index(kernel_addr)] = *Pml4Entry(kernel_addr);
pml4_virtual[Pml4Index(kernel_addr)] = *Pml4Entry(curr_cr3, kernel_addr);
// Map the HHDM.
// This is necessary to access values off of the kernel stack.
uint64_t hhdm = boot::GetHigherHalfDirectMap();
pml4_virtual[Pml4Index(hhdm)] = *Pml4Entry(hhdm);
pml4_virtual[Pml4Index(hhdm)] = *Pml4Entry(curr_cr3, hhdm);
}
void AllocatePage(uint64_t addr) {
uint64_t physical_page = phys_mem::AllocatePage();
MapPage(addr, physical_page);
uint64_t AllocatePageIfNecessary(uint64_t addr, uint64_t cr3) {
if (cr3 == 0) {
cr3 = CurrCr3();
}
uint64_t phys = PagePhysIfResident(cr3, addr);
if (phys) {
return phys;
}
return MapPage(cr3, addr);
}
void EnsureResident(uint64_t addr, uint64_t size) {
uint64_t max = addr + size;
addr = PageAlign(addr);
while (addr < max) {
if (!PageLoaded(addr)) {
AllocatePage(addr);
}
AllocatePageIfNecessary(addr);
addr += 0x1000;
}
}
bool PageLoaded(uint64_t addr) {
return PageTableLoaded(addr) && (*PageTableEntry(addr) & PRESENT_BIT);
void CopyIntoNonResidentProcess(uint64_t base, uint64_t size, uint64_t dest_cr3,
uint64_t dest_virt) {
if (size > 0x1000) {
panic("Unimplemented NR copy > 1 page");
}
if (dest_virt & 0xFFF) {
panic("Unimplemented NR copy to non page aligned");
}
uint64_t phys = AllocatePageIfNecessary(dest_virt, dest_cr3);
uint8_t* src = reinterpret_cast<uint8_t*>(base);
uint8_t* dest =
reinterpret_cast<uint8_t*>(phys + boot::GetHigherHalfDirectMap());
for (uint64_t i = 0; i < size; i++) {
dest[i] = src[i];
}
}

View File

@ -2,10 +2,10 @@
#include <stdint.h>
void InitPaging();
void InitializePml4(uint64_t pml4_physical_addr);
void AllocatePage(uint64_t addr);
uint64_t AllocatePageIfNecessary(uint64_t addr, uint64_t cr3 = 0);
void EnsureResident(uint64_t addr, uint64_t size);
bool PageLoaded(uint64_t addr);
void CopyIntoNonResidentProcess(uint64_t base, uint64_t size, uint64_t dest_cr3,
uint64_t dest_virt);

View File

@ -22,14 +22,13 @@ SharedPtr<Process> Process::RootProcess() {
return proc;
}
Process::Process(uint64_t elf_ptr) : id_(gNextId++), state_(RUNNING) {
Process::Process() : id_(gNextId++), state_(RUNNING) {
cr3_ = phys_mem::AllocatePage();
InitializePml4(cr3_);
CreateThread(elf_ptr);
}
void Process::CreateThread(uint64_t elf_ptr) {
Thread* thread = new Thread(this, next_thread_id_++, elf_ptr);
void Process::CreateThread(uint64_t entry) {
Thread* thread = new Thread(this, next_thread_id_++, entry);
threads_.PushBack(thread);
gScheduler->Enqueue(thread);
}

View File

@ -17,12 +17,12 @@ class Process {
FINISHED,
};
static SharedPtr<Process> RootProcess();
Process(uint64_t elf_ptr);
Process();
uint64_t id() const { return id_; }
uint64_t cr3() const { return cr3_; }
void CreateThread(uint64_t elf_ptr);
void CreateThread(uint64_t entry);
SharedPtr<Thread> GetThread(uint64_t tid);
// Checks the state of all child threads and transitions to

View File

@ -23,8 +23,8 @@ SharedPtr<Thread> Thread::RootThread(Process* root_proc) {
return new Thread(root_proc);
}
Thread::Thread(const SharedPtr<Process>& proc, uint64_t tid, uint64_t elf_ptr)
: process_(proc), id_(tid), elf_ptr_(elf_ptr) {
Thread::Thread(const SharedPtr<Process>& proc, uint64_t tid, uint64_t entry)
: process_(proc), id_(tid), rip_(entry) {
uint64_t* stack = new uint64_t[512];
uint64_t* stack_ptr = stack + 511;
// 0: rip
@ -42,12 +42,11 @@ Thread::Thread(const SharedPtr<Process>& proc, uint64_t tid, uint64_t elf_ptr)
uint64_t Thread::pid() { return process_->id(); }
void Thread::Init() {
dbgln("[%u.%u]", pid(), id_);
uint64_t rip = LoadElfProgram(elf_ptr_, 0);
dbgln("[%u.%u] thread start.", pid(), id_);
uint64_t rsp = 0x80000000;
EnsureResident(rsp - 1, 1);
SetRsp0(rsp0_start_);
jump_user_space(rip, rsp);
jump_user_space(rip_, rsp);
}
void Thread::Exit() {

View File

@ -11,16 +11,13 @@ class Thread {
public:
enum State {
UNSPECIFIED,
CREATED,
RUNNING,
RUNNABLE,
BLOCKED,
FINISHED,
};
static SharedPtr<Thread> RootThread(Process* root_proc);
explicit Thread(const SharedPtr<Process>& proc, uint64_t tid,
uint64_t elf_ptr);
explicit Thread(const SharedPtr<Process>& proc, uint64_t tid, uint64_t entry);
uint64_t tid() { return id_; };
uint64_t pid();
@ -45,7 +42,8 @@ class Thread {
uint64_t id_;
State state_ = RUNNABLE;
uint64_t elf_ptr_;
// Startup Context for the thread.
uint64_t rip_;
// Stack pointer to take on resume.
// Stack will contain the full thread context.

View File

@ -17,9 +17,6 @@ extern "C" void zion() {
InitGdt();
InitIdt();
dbgln("[boot] Init Paging.");
InitPaging();
dbgln("[boot] Init Physical Memory Manager.");
phys_mem::InitBootstrapPageAllocation();
KernelHeap heap(0xFFFFFFFF'40000000, 0xFFFFFFFF'80000000);