Compare commits

..

2 Commits

Author SHA1 Message Date
Drew Galbraith 19f7ba44c4 [Yunq] First pass at parsing the yunq idl for ipc.
Writing my own idl to make ipc simpler and allow easy passing of
capabilities between processes.
2023-10-12 22:46:37 -07:00
Drew Galbraith ee603b7478 [zion] Add a basic slab allocator to the kernel.
Don't free from the slab allocator yet but allocations appear to work.
2023-08-02 00:54:39 -07:00
6 changed files with 438 additions and 2 deletions

14
yunq/example.yunq Normal file
View File

@ -0,0 +1,14 @@
interface File {
method open (OpenFileRequest) -> (FileResponse);
}
message OpenFileRequest {
string path;
u64 options;
}
message File {
string path;
u64 attrs;
capability mem_cap;
}

255
yunq/yunq.py Normal file
View File

@ -0,0 +1,255 @@
from enum import Enum
import os
import sys
class LexemeType(Enum):
NONE = 0
EOF = 1
# Identifiers and Keywords
NAME = 2
# Symbols
LEFT_BRACE = 3
RIGHT_BRACE = 4
LEFT_PAREN = 5
RIGHT_PAREN = 6
ARROW = 7
SEMICOLON = 8
class Lexeme():
def __init__(self, lextype: LexemeType, value = None):
self.type = lextype
self.value = value
def __str__(self):
if self.value:
return "(%s, %s)" % (self.type, self.value)
return "(%s)" % self.type
def __repr__(self):
return self.__str__()
def lexer(program: str):
line = 1
start = 0
current = 0
tokens: list[Lexeme] = []
while current < len(program):
# Scan next token.
start = current
curr = program[current]
if curr == '\n':
line += 1
elif curr == '\t' or curr == ' ' or curr == '\r':
pass
elif curr == '{':
tokens.append(Lexeme(LexemeType.LEFT_BRACE))
elif curr == '}':
tokens.append(Lexeme(LexemeType.RIGHT_BRACE))
elif curr == '(':
tokens.append(Lexeme(LexemeType.LEFT_PAREN))
elif curr == ')':
tokens.append(Lexeme(LexemeType.RIGHT_PAREN))
elif curr == ';':
tokens.append(Lexeme(LexemeType.SEMICOLON))
elif curr == '-':
current += 1
if program[current] == '>':
tokens.append(Lexeme(LexemeType.ARROW))
else:
sys.exit("Expected > after - got '%s' on line %d" % (program[current], line))
elif curr.isalpha():
while program[current + 1].isalnum() or program[current + 1] == '_':
current += 1
tokens.append(Lexeme(LexemeType.NAME, program[start:current + 1]))
else:
sys.exit("Got unexpected token %s on line %s." % (curr, line))
current += 1
tokens.append(Lexeme(LexemeType.EOF))
return tokens
class Method():
def __init__(self, name: str, request: str, response: str):
self.name = name
self.request = request
self.response = response
class Interface():
def __init__(self, name: str, methods: list[Method]):
self.name = name
self.methods = methods
class Type(Enum):
NONE = 0
U64 = 1
I64 = 2
STRING = 3
BYTES = 4
CAPABILITY = 5
type_str_dict = {
"u64": Type.U64,
"i64": Type.I64,
"string": Type.STRING,
"bytes": Type.BYTES,
"capability": Type.CAPABILITY,
}
class Field():
def __init__(self, fieldtype: Type, name: str):
self.type = fieldtype
self.name = name
class Message():
def __init__(self, name: str, fields: list[Field]):
self.name = name
self.fields = fields
Decl = Interface | Message
class Parser():
def __init__(self, tokens: list[Lexeme]):
self.tokens = tokens
self.current = 0
def peektype(self) -> LexemeType:
return self.tokens[self.current].type
def peekvalue(self) -> str:
return self.tokens[self.current].value
def consume(self) -> Lexeme:
self.current += 1
return self.tokens[self.current - 1]
def consume_identifier(self) -> str:
tok = self.consume()
if tok.type != LexemeType.NAME:
sys.exit("Expected identifier got %s" % tok.type)
return tok.value
def consume_check(self, lex_type: LexemeType):
tok = self.consume()
if tok.type != lex_type:
sys.exit("Expected %s got %s" % (lex_type, tok_type))
def consume_check_identifier(self, name: str):
tok = self.consume()
if tok.type != LexemeType.NAME:
sys.exit("Expected '%s' got a %s" % (name, tok.type))
if tok.value != name:
sys.exit("Expected '%s' got '%s'" % (name, tok.value))
def parse(self) -> list[Decl]:
decls = []
while self.peektype() != LexemeType.EOF:
decls.append(self.decl())
return decls
def decl(self) -> Decl:
token = self.consume()
if token.type != LexemeType.NAME:
sys.exit("Unexpected token: %s", token)
if token.value == "message":
return self.message()
elif token.value == "interface":
return self.interface()
sys.exit("Unexpected identifier '%s', expected message or interface" % token.value)
def interface(self):
# "interface" consumed by decl.
name = self.consume_identifier()
self.consume_check(LexemeType.LEFT_BRACE)
methods: list[Method] = []
while self.peektype() != LexemeType.RIGHT_BRACE:
methods.append(self.method())
self.consume_check(LexemeType.RIGHT_BRACE)
return Interface(name, methods)
def method(self):
self.consume_check_identifier("method")
name = self.consume_identifier()
self.consume_check(LexemeType.LEFT_PAREN)
request = self.consume_identifier()
self.consume_check(LexemeType.RIGHT_PAREN)
self.consume_check(LexemeType.ARROW)
self.consume_check(LexemeType.LEFT_PAREN)
response = self.consume_identifier()
self.consume_check(LexemeType.RIGHT_PAREN)
self.consume_check(LexemeType.SEMICOLON)
return Method(name, request, response)
def message(self):
# "message" consumed by decl.
name = self.consume_identifier()
self.consume_check(LexemeType.LEFT_BRACE)
fields: list[Field] = []
while self.peektype() != LexemeType.RIGHT_BRACE:
fields.append(self.field())
self.consume_check(LexemeType.RIGHT_BRACE)
return Message(name, fields)
def field(self):
field_type_str = self.consume_identifier()
if field_type_str not in type_str_dict.keys():
sys.exit("Expected type got '%s'" % field_type_str)
field_type = type_str_dict[field_type_str]
name = self.consume_identifier()
self.consume_check(LexemeType.SEMICOLON)
return Field(field_type, name)
def print_ast(decls: list[Decl]):
for decl in decls:
if type(decl) is Interface:
print("%s (Interface)" % decl.name)
for method in decl.methods:
print("\t%s (%s -> %s)" % (method.name, method.request, method.response))
elif type(decl) is Message:
print("%s (Message)" % decl.name)
for field in decl.fields:
print("\t%s %s" % (field.type.name, field.name))
else:
print("unknown type")
def main():
if len(sys.argv) != 2:
sys.exit("Takes name of file.")
filename = sys.argv[1]
with open(filename, mode='r') as f:
filedata = f.read()
lexemes = lexer(filedata)
parser = Parser(lexemes)
print_ast(parser.parse())
if __name__ == "__main__":
main()

View File

@ -18,11 +18,47 @@ KernelHeap& GetKernelHeap() {
} // namespace
KernelHeap::KernelHeap(uint64_t lower_bound, uint64_t upper_bound)
: next_addr_(lower_bound), upper_bound_(upper_bound) {
: next_slab_addr_(lower_bound),
first_unsized_addr_(lower_bound + (upper_bound - lower_bound) / 2),
next_addr_(first_unsized_addr_),
upper_bound_(upper_bound) {
gKernelHeap = this;
}
void KernelHeap::InitializeSlabAllocators() {
slab_8_ = glcr::MakeUnique<SlabAllocator<8>>(next_slab_addr_, 4);
next_slab_addr_ += 0x4000;
slab_16_ = glcr::MakeUnique<SlabAllocator<16>>(next_slab_addr_, 6);
next_slab_addr_ += 0x6000;
slab_32_ = glcr::MakeUnique<SlabAllocator<32>>(next_slab_addr_, 6);
next_slab_addr_ += 0x6000;
}
void* KernelHeap::Allocate(uint64_t size) {
#if K_HEAP_DEBUG
dbgln("Alloc (%x)", size);
#endif
if ((size <= 8) && slab_8_) {
auto ptr_or = slab_8_->Allocate();
if (ptr_or.ok()) {
return ptr_or.value();
}
dbgln("Failed allocation (slab 8): %x", ptr_or.error());
}
if ((size <= 16) && slab_16_) {
auto ptr_or = slab_16_->Allocate();
if (ptr_or.ok()) {
return ptr_or.value();
}
dbgln("Failed allocation (slab 16): %x", ptr_or.error());
}
if ((size <= 32) && slab_32_) {
auto ptr_or = slab_32_->Allocate();
if (ptr_or.ok()) {
return ptr_or.value();
}
dbgln("Failed allocation (slab 32): %x", ptr_or.error());
}
if (next_addr_ + size >= upper_bound_) {
panic("Kernel Heap Overrun (next, size, max): %m, %x, %m", next_addr_, size,
upper_bound_);
@ -67,5 +103,5 @@ void KernelHeap::RecordSize(uint64_t size) {
void* operator new(uint64_t size) { return GetKernelHeap().Allocate(size); }
void* operator new[](uint64_t size) { return GetKernelHeap().Allocate(size); }
void operator delete(void*, uint64_t) {}
void operator delete(void*, uint64_t size) {}
void operator delete[](void*) {}

View File

@ -1,19 +1,31 @@
#pragma once
#include <glacier/memory/unique_ptr.h>
#include <stdint.h>
#include "memory/slab_allocator.h"
class KernelHeap {
public:
KernelHeap(uint64_t lower_bound, uint64_t upper_bound);
void InitializeSlabAllocators();
void* Allocate(uint64_t size);
void Free(void* address);
static void DumpDistribution();
private:
uint64_t next_slab_addr_;
uint64_t first_unsized_addr_;
uint64_t next_addr_;
uint64_t upper_bound_;
glcr::UniquePtr<SlabAllocator<8>> slab_8_;
glcr::UniquePtr<SlabAllocator<16>> slab_16_;
glcr::UniquePtr<SlabAllocator<32>> slab_32_;
// Distribution collection for the purpose of investigating a slab allocator.
// 0: 0-4B
// 1: 4B-8B

View File

@ -0,0 +1,118 @@
#pragma once
#include <glacier/container/intrusive_list.h>
#include <glacier/memory/ref_counted.h>
#include <glacier/status/error.h>
#include <glacier/status/error_or.h>
#include <stdint.h>
#include "memory/paging_util.h"
constexpr uint64_t kSlabSentinel = 0xDEADBEEF'C0DEC0DE;
// TODO: Add variable sized slabs (i.e. multiple page slabs.)
template <uint64_t ElemSize>
class Slab : public glcr::RefCounted<Slab<ElemSize>>,
public glcr::IntrusiveListNode<Slab<ElemSize>> {
public:
explicit Slab(uint64_t addr) : page_addr_(addr) {
for (uint64_t i = 0; i < kBitmapLength; i++) {
bitmap_[i] = 0;
}
bitmap_[0] = ElemSize <= 8 ? 0x3 : 0x1;
EnsureResident(page_addr_, 16);
uint64_t* first_elem = reinterpret_cast<uint64_t*>(page_addr_);
first_elem[0] = kSlabSentinel;
first_elem[1] = reinterpret_cast<uint64_t>(this);
}
Slab(Slab&) = delete;
Slab(Slab&&) = delete;
glcr::ErrorOr<void*> Allocate() {
uint64_t index = GetFirstFreeIndex();
if (index == 0) {
return glcr::EXHAUSTED;
}
bitmap_[index / 64] |= (0x1 << (index % 64));
return reinterpret_cast<void*>(page_addr_ + (index * ElemSize));
}
glcr::ErrorCode Free(void* addr) {
uint64_t raw_addr = reinterpret_cast<uint64_t>(addr);
if (raw_addr < page_addr_ || raw_addr > (page_addr_ + 0x1000)) {
return glcr::INVALID_ARGUMENT;
}
// FIXME: Check alignment.
uint64_t offset = raw_addr - page_addr_;
uint64_t index = offset / ElemSize;
if (index == 0) {
return glcr::FAILED_PRECONDITION;
}
bitmap_[index / 64] &= ~(0x1 << (index % 64));
}
bool IsFull() {
for (uint64_t i = 0; i < kBitmapLength; i++) {
if (bitmap_[i] != -1) {
return false;
}
}
return true;
}
private:
// FIXME: Likely a bug or two here if the number of elements doesn't evenly
// divide in to the bitmap length.
static constexpr uint64_t kBitmapLength = 0x1000 / ElemSize / 64;
static constexpr uint64_t kMaxElements = 0x99E / ElemSize;
uint64_t bitmap_[kBitmapLength];
uint64_t page_addr_;
uint64_t GetFirstFreeIndex() {
uint64_t bi = 0;
while (bi < kBitmapLength && (bitmap_[bi] == -1)) {
bi++;
}
if (bi == kBitmapLength) {
return 0;
}
// FIXME: Use hardware bit instructions here.
uint64_t bo = 0;
uint64_t bm = bitmap_[bi];
while (bm & 0x1) {
bm >>= 1;
bo += 1;
}
return (bi * 64) + bo;
}
};
template <uint64_t ElemSize>
class SlabAllocator {
public:
SlabAllocator() = delete;
SlabAllocator(SlabAllocator&) = delete;
// TODO: Add a Kernel VMMO Struct to hold things like this.
SlabAllocator(uint64_t base_addr, uint64_t num_pages) {
for (uint64_t i = 0; i < num_pages; i++, base_addr += 0x1000) {
slabs_.PushBack(glcr::MakeRefCounted<Slab<ElemSize>>(base_addr));
}
}
glcr::ErrorOr<void*> Allocate() {
glcr::RefPtr<Slab<ElemSize>> curr = slabs_.PeekFront();
while (curr) {
if (curr->IsFull()) {
curr = curr->next_;
continue;
}
return curr->Allocate();
}
return glcr::EXHAUSTED;
}
private:
glcr::IntrusiveList<Slab<ElemSize>> slabs_;
};

View File

@ -25,6 +25,7 @@ extern "C" void zion() {
phys_mem::InitBootstrapPageAllocation();
KernelHeap heap(0xFFFFFFFF'40000000, 0xFFFFFFFF'80000000);
phys_mem::InitPhysicalMemoryManager();
heap.InitializeSlabAllocators();
dbgln("[boot] Memory allocations available now.");