#include "syscall/syscall.h" #include #include "boot/acpi.h" #include "common/msr.h" #include "debug/debug.h" #include "include/zcall.h" #include "interrupt/interrupt.h" #include "memory/physical_memory.h" #include "object/channel.h" #include "object/port.h" #include "object/process.h" #include "scheduler/process_manager.h" #include "scheduler/scheduler.h" #include "usr/zcall_internal.h" #define RET_IF_NULL(expr) \ { \ if (!expr) { \ return Z_ERR_CAP_TYPE; \ } \ } #define EFER 0xC0000080 #define STAR 0xC0000081 #define LSTAR 0xC0000082 extern "C" void syscall_enter(); // Used by syscall_enter.s extern "C" uint64_t GetKernelRsp() { return gScheduler->CurrentThread()->Rsp0Start(); } void InitSyscall() { uint64_t efer_val = GetMSR(EFER); efer_val |= 1; SetMSR(EFER, efer_val); if (GetMSR(EFER) != efer_val) { panic("Failed to set EFER MSR"); } uint64_t star_val = GetMSR(STAR); uint64_t kernel_cs = 0x8; // Due to the ability to jump from a 64 bit kernel into compatibility mode, // this will actually use CS 0x20 (and SS 0x18). // See AMD Manual 3.4 instruction SYSRET for more info. uint64_t user_cs = 0x18; star_val |= (kernel_cs << 32) | (user_cs << 48); SetMSR(STAR, star_val); SetMSR(LSTAR, reinterpret_cast(syscall_enter)); } z_err_t ValidateCap(const RefPtr& cap, uint64_t permissions) { if (!cap) { return Z_ERR_CAP_NOT_FOUND; } // FIXME: Check capability type before permissions, otherwise you can // get a confusing error. if (!cap->HasPermissions(permissions)) { dbgln("PERM, has %x needs %x", cap->permissions(), permissions); return Z_ERR_CAP_DENIED; } return Z_OK; } z_err_t ProcessSpawn(ZProcessSpawnReq* req, ZProcessSpawnResp* resp) { auto& curr_proc = gScheduler->CurrentProcess(); auto cap = curr_proc.GetCapability(req->proc_cap); RET_ERR(ValidateCap(cap, ZC_PROC_SPAWN_PROC)); RefPtr proc = Process::Create(); gProcMan->InsertProcess(proc); resp->proc_cap = curr_proc.AddNewCapability( proc, ZC_PROC_SPAWN_PROC | ZC_PROC_SPAWN_THREAD | ZC_WRITE); resp->vmas_cap = curr_proc.AddNewCapability(proc->vmas(), ZC_WRITE); if (req->bootstrap_cap != 0) { auto cap = curr_proc.ReleaseCapability(req->bootstrap_cap); if (!cap) { return Z_ERR_CAP_NOT_FOUND; } // FIXME: Check permissions. resp->bootstrap_cap = proc->AddExistingCapability(cap); } return Z_OK; } z_err_t ThreadCreate(ZThreadCreateReq* req) { auto& curr_proc = gScheduler->CurrentProcess(); auto cap = curr_proc.GetCapability(req->proc_cap); RET_ERR(ValidateCap(cap, ZC_PROC_SPAWN_THREAD)); auto parent_proc = cap->obj(); RET_IF_NULL(parent_proc); auto thread = parent_proc->CreateThread(); *req->thread_cap = curr_proc.AddNewCapability(thread, ZC_WRITE); return Z_OK; } z_err_t ThreadStart(ZThreadStartReq* req) { auto& curr_proc = gScheduler->CurrentProcess(); auto cap = curr_proc.GetCapability(req->thread_cap); RET_ERR(ValidateCap(cap, ZC_WRITE)); auto thread = cap->obj(); RET_IF_NULL(thread); // FIXME: validate entry point is in user space. thread->Start(req->entry, req->arg1, req->arg2); return Z_OK; } z_err_t AddressSpaceMap(ZAddressSpaceMapReq* req, ZAddressSpaceMapResp* resp) { auto& curr_proc = gScheduler->CurrentProcess(); auto vmas_cap = curr_proc.GetCapability(req->vmas_cap); auto vmmo_cap = curr_proc.GetCapability(req->vmmo_cap); RET_ERR(ValidateCap(vmas_cap, ZC_WRITE)); RET_ERR(ValidateCap(vmmo_cap, ZC_WRITE)); auto vmas = vmas_cap->obj(); auto vmmo = vmmo_cap->obj(); RET_IF_NULL(vmas); RET_IF_NULL(vmmo); // FIXME: Validation necessary. if (req->vmas_offset != 0) { vmas->MapInMemoryObject(req->vmas_offset, vmmo); resp->vaddr = req->vmas_offset; } else { resp->vaddr = vmas->MapInMemoryObject(vmmo); } return Z_OK; } z_err_t MemoryObjectCreate(ZMemoryObjectCreateReq* req, ZMemoryObjectCreateResp* resp) { auto& curr_proc = gScheduler->CurrentProcess(); resp->vmmo_cap = curr_proc.AddNewCapability( MakeRefCounted(req->size), ZC_WRITE); return Z_OK; } z_err_t MemoryObjectCreatePhysical(ZMemoryObjectCreatePhysicalReq* req, ZMemoryObjectCreatePhysicalResp* resp) { auto& curr_proc = gScheduler->CurrentProcess(); uint64_t paddr = req->paddr; if (paddr == 0) { paddr = phys_mem::AllocateContinuous(((req->size - 1) / 0x1000) + 1); } auto vmmo_ref = MakeRefCounted(paddr, req->size); resp->vmmo_cap = curr_proc.AddNewCapability( StaticCastRefPtr(vmmo_ref), ZC_WRITE); resp->paddr = paddr; return Z_OK; } z_err_t TempPcieConfigObjectCreate(ZTempPcieConfigObjectCreateResp* resp) { auto& curr_proc = gScheduler->CurrentProcess(); uint64_t pci_base, pci_size; RET_ERR(GetPciExtendedConfiguration(&pci_base, &pci_size)); auto vmmo_ref = MakeRefCounted(pci_base, pci_size); resp->vmmo_cap = curr_proc.AddNewCapability( StaticCastRefPtr(vmmo_ref), ZC_WRITE); resp->vmmo_size = pci_size; return Z_OK; } z_err_t ChannelCreate(ZChannelCreateResp* resp) { auto& proc = gScheduler->CurrentProcess(); auto chan_pair = Channel::CreateChannelPair(); resp->chan_cap1 = proc.AddNewCapability(chan_pair.first(), ZC_WRITE | ZC_READ); resp->chan_cap2 = proc.AddNewCapability(chan_pair.second(), ZC_WRITE | ZC_READ); return Z_OK; } z_err_t ChannelSend(ZChannelSendReq* req) { auto& proc = gScheduler->CurrentProcess(); auto chan_cap = proc.GetCapability(req->chan_cap); RET_ERR(ValidateCap(chan_cap, ZC_WRITE)); auto chan = chan_cap->obj(); RET_IF_NULL(chan); chan->Write(req->message); return Z_OK; } z_err_t ChannelRecv(ZChannelRecvReq* req) { auto& proc = gScheduler->CurrentProcess(); auto chan_cap = proc.GetCapability(req->chan_cap); RET_ERR(ValidateCap(chan_cap, ZC_READ)); auto chan = chan_cap->obj(); RET_IF_NULL(chan); return chan->Read(req->message); } z_err_t PortCreate(ZPortCreateResp* resp) { auto& proc = gScheduler->CurrentProcess(); auto port = MakeRefCounted(); resp->port_cap = proc.AddNewCapability(port, ZC_WRITE | ZC_READ); return Z_OK; } z_err_t PortSend(ZPortSendReq* req) { auto& proc = gScheduler->CurrentProcess(); auto port_cap = proc.GetCapability(req->port_cap); RET_ERR(ValidateCap(port_cap, ZC_WRITE)); auto port = port_cap->obj(); RET_IF_NULL(port); return port->Write(req->message); } z_err_t PortRecv(ZPortRecvReq* req) { auto& proc = gScheduler->CurrentProcess(); auto port_cap = proc.GetCapability(req->port_cap); RET_ERR(ValidateCap(port_cap, ZC_READ)); auto port = port_cap->obj(); RET_IF_NULL(port); return port->Read(req->message); } z_err_t PortPoll(ZPortRecvReq* req) { auto& proc = gScheduler->CurrentProcess(); auto port_cap = proc.GetCapability(req->port_cap); RET_ERR(ValidateCap(port_cap, ZC_READ)); auto port = port_cap->obj(); RET_IF_NULL(port); if (!port->HasMessages()) { return Z_ERR_EMPTY; } return port->Read(req->message); } z_err_t IrqRegister(ZIrqRegisterReq* req, ZIrqRegisterResp* resp) { auto& proc = gScheduler->CurrentProcess(); if (req->irq_num != Z_IRQ_PCI_BASE) { // FIXME: Don't hardcode this nonsense. return Z_ERR_UNIMPLEMENTED; } RefPtr port = MakeRefCounted(); resp->port_cap = proc.AddNewCapability(port, ZC_READ | ZC_WRITE); RegisterPciPort(port); return Z_OK; } z_err_t CapDuplicate(ZCapDuplicateReq* req, ZCapDuplicateResp* resp) { auto& proc = gScheduler->CurrentProcess(); auto cap = proc.GetCapability(req->cap); if (!cap) { return Z_ERR_CAP_NOT_FOUND; } resp->cap = proc.AddExistingCapability(cap); return Z_OK; } extern "C" z_err_t SyscallHandler(uint64_t call_id, void* req, void* resp) { RefPtr thread = gScheduler->CurrentThread(); switch (call_id) { case Z_PROCESS_EXIT: // FIXME: kill process here. dbgln("Exiting: %m", req); dbgln("Exit code: %x", reinterpret_cast(req)->code); thread->Exit(); panic("Returned from thread exit"); break; case Z_PROCESS_SPAWN: return ProcessSpawn(reinterpret_cast(req), reinterpret_cast(resp)); case Z_THREAD_CREATE: return ThreadCreate(reinterpret_cast(req)); case Z_THREAD_START: return ThreadStart(reinterpret_cast(req)); case Z_THREAD_EXIT: thread->Exit(); panic("Returned from thread exit"); break; case Z_ADDRESS_SPACE_MAP: return AddressSpaceMap(reinterpret_cast(req), reinterpret_cast(resp)); case Z_MEMORY_OBJECT_CREATE: return MemoryObjectCreate( reinterpret_cast(req), reinterpret_cast(resp)); case Z_MEMORY_OBJECT_CREATE_PHYSICAL: return MemoryObjectCreatePhysical( reinterpret_cast(req), reinterpret_cast(resp)); case Z_TEMP_PCIE_CONFIG_OBJECT_CREATE: return TempPcieConfigObjectCreate( reinterpret_cast(resp)); case Z_CHANNEL_CREATE: return ChannelCreate(reinterpret_cast(resp)); case Z_CHANNEL_SEND: return ChannelSend(reinterpret_cast(req)); case Z_CHANNEL_RECV: return ChannelRecv(reinterpret_cast(req)); case Z_PORT_CREATE: return PortCreate(reinterpret_cast(resp)); case Z_PORT_SEND: return PortSend(reinterpret_cast(req)); case Z_PORT_RECV: return PortRecv(reinterpret_cast(req)); case Z_PORT_POLL: return PortPoll(reinterpret_cast(req)); case Z_IRQ_REGISTER: return IrqRegister(reinterpret_cast(req), reinterpret_cast(resp)); case Z_CAP_DUPLICATE: return CapDuplicate(reinterpret_cast(req), reinterpret_cast(resp)); case Z_DEBUG_PRINT: dbgln("[Debug] %s", req); return Z_OK; break; default: panic("Unhandled syscall number: %x", call_id); } UNREACHABLE }