#include "memory/paging_util.h" #include "boot/boot_info.h" #include "debug/debug.h" #include "memory/physical_memory.h" #define PRESENT_BIT 0x1 #define READ_WRITE_BIT 0x2 #define USER_MODE_BIT 0x4; #define SIGN_EXT 0xFFFF0000'00000000 #define RECURSIVE ((uint64_t)0x1FE) #define PML_OFFSET 39 #define PDP_OFFSET 30 #define PD_OFFSET 21 #define PT_OFFSET 12 // How to recursively index into each page table structure assuming // the PML4 is recursively mapped at the 510th entry (0x1FE). #define PML_RECURSE 0xFFFFFF7F'BFDFE000 #define PDP_RECURSE 0xFFFFFF7F'BFC00000 #define PD_RECURSE 0xFFFFFF7F'80000000 #define PT_RECURSE 0xFFFFFF00'00000000 namespace { uint64_t PageAlign(uint64_t addr) { return addr & ~0xFFF; } uint64_t ShiftForEntryIndexing(uint64_t addr, uint64_t offset) { addr &= ~0xFFFF0000'00000000; addr >>= offset; addr <<= 3; return addr & 0xFF8; } uint64_t* Pml4Entry(uint64_t cr3, uint64_t addr) { cr3 += boot::GetHigherHalfDirectMap(); return reinterpret_cast(cr3 | ShiftForEntryIndexing(addr, PML_OFFSET)); } uint64_t* PageDirectoryPointerEntry(uint64_t pdp_phys, uint64_t addr) { pdp_phys += boot::GetHigherHalfDirectMap(); pdp_phys &= ~0xFFF; return reinterpret_cast(pdp_phys | ShiftForEntryIndexing(addr, PDP_OFFSET)); } uint64_t* PageDirectoryEntry(uint64_t pd_phys, uint64_t addr) { pd_phys += boot::GetHigherHalfDirectMap(); pd_phys &= ~0xFFF; return reinterpret_cast(pd_phys | ShiftForEntryIndexing(addr, PD_OFFSET)); } uint64_t* PageTableEntry(uint64_t pt_phys, uint64_t addr) { pt_phys += boot::GetHigherHalfDirectMap(); pt_phys &= ~0xFFF; return reinterpret_cast(pt_phys | ShiftForEntryIndexing(addr, PT_OFFSET)); } uint64_t PagePhysIfResident(uint64_t cr3, uint64_t virt) { uint64_t* pml4_entry = Pml4Entry(cr3, virt); if (!(*pml4_entry & PRESENT_BIT)) { return false; } uint64_t* pdp_entry = PageDirectoryPointerEntry(*pml4_entry, virt); if (!(*pdp_entry & PRESENT_BIT)) { return false; } uint64_t* pd_entry = PageDirectoryEntry(*pdp_entry, virt); if (!(*pd_entry & PRESENT_BIT)) { return false; } uint64_t* pt_entry = PageTableEntry(*pd_entry, virt); if (!(*pt_entry & PRESENT_BIT)) { return false; } return *pt_entry & ~0xFFF; } uint64_t Pml4Index(uint64_t addr) { return (addr >> PML_OFFSET) & 0x1FF; } uint64_t CurrCr3() { uint64_t pml4_addr = 0; asm volatile("mov %%cr3, %0;" : "=r"(pml4_addr)); return pml4_addr; } void CleanupPageStructure(uint64_t struct_phys, uint64_t level) { uint64_t* struct_virtual = reinterpret_cast(boot::GetHigherHalfDirectMap() + struct_phys); if (level > 0) { for (uint16_t i = 0; i < 256; i++) { if (struct_virtual[i] & PRESENT_BIT) { CleanupPageStructure(struct_virtual[i] & ~0xFFF, level - 1); } } } phys_mem::FreePage(struct_phys); } } // namespace void InitializePml4(uint64_t pml4_physical_addr) { uint64_t* pml4_virtual = reinterpret_cast( boot::GetHigherHalfDirectMap() + pml4_physical_addr); uint64_t curr_cr3 = CurrCr3(); // Map the kernel entry. // This should contain the heap at 0xFFFFFFFF'40000000 uint64_t kernel_addr = 0xFFFFFFFF'80000000; pml4_virtual[Pml4Index(kernel_addr)] = *Pml4Entry(curr_cr3, kernel_addr); // Map the HHDM. // This is necessary to access values off of the kernel stack. uint64_t hhdm = boot::GetHigherHalfDirectMap(); pml4_virtual[Pml4Index(hhdm)] = *Pml4Entry(curr_cr3, hhdm); } void CleanupPml4(uint64_t pml4_physical_addr) { uint64_t* pml4_virtual = reinterpret_cast( boot::GetHigherHalfDirectMap() + pml4_physical_addr); // Iterate the first half of the pml4 as it contains user-space mappings. for (uint8_t i = 0; i < 128; i++) { if (pml4_virtual[i] & PRESENT_BIT) { CleanupPageStructure(pml4_virtual[i] & ~0xFFF, 2); } } phys_mem::FreePage(pml4_physical_addr); } void MapPage(uint64_t cr3, uint64_t vaddr, uint64_t paddr) { vaddr = PageAlign(vaddr); paddr = PageAlign(paddr); uint64_t access_bits = PRESENT_BIT | READ_WRITE_BIT; uint64_t higher_half = 0xffff8000'00000000; if ((vaddr & higher_half) != higher_half) { access_bits |= USER_MODE_BIT; } uint64_t* pml4_entry = Pml4Entry(cr3, vaddr); if (!(*pml4_entry & PRESENT_BIT)) { uint64_t page = phys_mem::AllocateAndZeroPage(); *pml4_entry = page | access_bits; } uint64_t* pdp_entry = PageDirectoryPointerEntry(*pml4_entry, vaddr); if (!(*pdp_entry & PRESENT_BIT)) { uint64_t page = phys_mem::AllocateAndZeroPage(); *pdp_entry = page | access_bits; } uint64_t* pd_entry = PageDirectoryEntry(*pdp_entry, vaddr); if (!(*pd_entry & PRESENT_BIT)) { uint64_t page = phys_mem::AllocateAndZeroPage(); *(pd_entry) = page | access_bits; } uint64_t* pt_entry = PageTableEntry(*pd_entry, vaddr); if (!(*pt_entry & PRESENT_BIT)) { *pt_entry = paddr | access_bits; } else { panic("Page already allocated."); } } uint64_t AllocatePageIfNecessary(uint64_t addr) { uint64_t cr3 = CurrCr3(); uint64_t phys = PagePhysIfResident(cr3, addr); if (phys) { return phys; } phys = phys_mem::AllocatePage(); MapPage(cr3, addr, phys); return phys; } void EnsureResident(uint64_t addr, uint64_t size) { uint64_t max = addr + size; addr = PageAlign(addr); while (addr < max) { AllocatePageIfNecessary(addr); addr += 0x1000; } }