#include "memory/kernel_heap.h" #include "debug/debug.h" #include "memory/paging_util.h" #define K_HEAP_DEBUG 0 namespace { static KernelHeap* gKernelHeap = nullptr; KernelHeap& GetKernelHeap() { if (!gKernelHeap) { panic("Kernel Heap not initialized."); } return *gKernelHeap; } } // namespace KernelHeap::KernelHeap(uint64_t lower_bound, uint64_t upper_bound) : next_slab_addr_(lower_bound), first_unsized_addr_(lower_bound + (upper_bound - lower_bound) / 2), next_addr_(first_unsized_addr_), upper_bound_(upper_bound) { gKernelHeap = this; } void KernelHeap::InitializeSlabAllocators() { slab_8_ = glcr::MakeUnique>(next_slab_addr_, 4); next_slab_addr_ += 0x4000; slab_16_ = glcr::MakeUnique>(next_slab_addr_, 6); next_slab_addr_ += 0x6000; slab_32_ = glcr::MakeUnique>(next_slab_addr_, 6); next_slab_addr_ += 0x6000; } void* KernelHeap::Allocate(uint64_t size) { #if K_HEAP_DEBUG dbgln("Alloc (%x)", size); #endif if ((size <= 8) && slab_8_) { auto ptr_or = slab_8_->Allocate(); if (ptr_or.ok()) { return ptr_or.value(); } dbgln("Failed allocation (slab 8): %x", ptr_or.error()); } if ((size <= 16) && slab_16_) { auto ptr_or = slab_16_->Allocate(); if (ptr_or.ok()) { return ptr_or.value(); } dbgln("Failed allocation (slab 16): %x", ptr_or.error()); } if ((size <= 32) && slab_32_) { auto ptr_or = slab_32_->Allocate(); if (ptr_or.ok()) { return ptr_or.value(); } dbgln("Failed allocation (slab 32): %x", ptr_or.error()); } if (next_addr_ + size >= upper_bound_) { panic("Kernel Heap Overrun (next, size, max): %m, %x, %m", next_addr_, size, upper_bound_); } #if K_HEAP_DEBUG RecordSize(size); #endif EnsureResident(next_addr_, size); uint64_t address = next_addr_; next_addr_ += size; return reinterpret_cast(address); } void KernelHeap::DumpDistribution() { #if K_HEAP_DEBUG uint64_t* distributions = gKernelHeap->distributions; dbgln("<=4B: %u", distributions[0]); dbgln("<=8B: %u", distributions[1]); dbgln("<=16B: %u", distributions[2]); dbgln("<=32B: %u", distributions[3]); dbgln("<=64B: %u", distributions[4]); dbgln("<=128B: %u", distributions[5]); dbgln("<=256B: %u", distributions[6]); dbgln("<=512B: %u", distributions[7]); dbgln("<=1KiB: %u", distributions[8]); dbgln("<=2KiB: %u", distributions[9]); dbgln("<=4KiB: %u", distributions[10]); dbgln("> 4KiB: %u", distributions[11]); #endif } void KernelHeap::RecordSize(uint64_t size) { size >>= 3; uint64_t index = 0; while (size && index < 11) { size >>= 1; index++; } distributions[index]++; } void* operator new(uint64_t size) { return GetKernelHeap().Allocate(size); } void* operator new[](uint64_t size) { return GetKernelHeap().Allocate(size); } void operator delete(void*, uint64_t size) {} void operator delete[](void*) {}