acadia/lib/glacier/container/binary_tree.h

256 lines
6.4 KiB
C++

#pragma once
#include "glacier/container/optional.h"
#include "glacier/container/pair.h"
#include "glacier/memory/move.h"
#include "glacier/memory/ref_counted.h"
#include "glacier/memory/ref_ptr.h"
#include "glacier/memory/reference.h"
#include "glacier/memory/unique_ptr.h"
#include "glacier/string/str_format.h"
namespace glcr {
template <typename K, typename V>
class BinaryTree {
public:
BinaryTree() = default;
BinaryTree(const BinaryTree&) = delete;
// FIXME: Implement move.
BinaryTree(BinaryTree&&) = delete;
void Insert(K key, V&& value);
void Delete(K key);
Optional<Ref<V>> Predecessor(K key);
Optional<Ref<V>> Successor(K key);
Optional<Ref<V>> Find(K key);
void DebugTreeIntoStr(StringBuilder& builder) const;
private:
// TODO: Consider adding a sharedptr type to
// avoid making this "RefCounted".
struct BinaryNode : public RefCounted<BinaryNode> {
K key;
V value;
RefPtr<BinaryNode> left;
RefPtr<BinaryNode> right;
RefPtr<BinaryNode> parent;
BinaryNode(K k, V v) : key(k), value(Move(v)) {}
};
RefPtr<BinaryNode> root_;
// If this node exists, return it. Otherwise, this
// will be the parent of where this node would be inserted.
RefPtr<BinaryNode> FindOrInsertionParent(K key);
static void DebugNodeIntoString(StringBuilder& builder, uint64_t indent_level,
const RefPtr<BinaryNode>& node);
};
template <typename K, typename V>
void BinaryTree<K, V>::Insert(K key, V&& value) {
auto parent = FindOrInsertionParent(key);
if (parent.empty()) {
root_ = AdoptPtr(new BinaryNode(key, Move(value)));
return;
}
if (parent->key > key) {
parent->left = AdoptPtr(new BinaryNode(key, Move(value)));
parent->left->parent = parent;
} else if (parent->key < key) {
parent->right = AdoptPtr(new BinaryNode(key, Move(value)));
parent->right->parent = parent;
} else {
parent->value = Move(value);
}
}
template <typename K, typename V>
void BinaryTree<K, V>::Delete(K key) {
auto node = FindOrInsertionParent(key);
if (node.empty() || node->key != key) {
return;
}
RefPtr<BinaryNode> new_child = nullptr;
if (!node->left) {
// No children.
// Right child only.
new_child = node->right;
} else if (!node->right) {
// Left child only.
new_child = node->left;
} else {
// Find Successor.
auto successor = node->right;
while (successor->left) {
successor = successor->left;
}
new_child = successor;
if (successor != node->right) {
successor->parent->left = successor->right;
}
}
if (node == root_) {
root_ = new_child;
} else {
if (node->parent->right == node) {
node->parent->right = new_child;
} else {
node->parent->left = new_child;
}
}
if (new_child) {
new_child->parent = node->parent;
}
}
template <typename K, typename V>
Optional<Ref<V>> BinaryTree<K, V>::Predecessor(K key) {
auto current = FindOrInsertionParent(key);
if (current.empty()) {
return {};
}
// The case where the current is the insertion parent and
// the predecessor is unique. If the key was going to be
// inserted as the left child, it shares its predecessor with the parent.
if (current->key < key) {
return Optional<Ref<V>>(current->value);
}
// Case where the predecessor is below us in the tree.
if (current->left) {
current = current->left;
while (current->right) {
current = current->right;
}
return {current->value};
}
// Case where the predecessor is above us in the tree.
auto parent = current->parent;
while (parent && (parent->left == current)) {
current = parent;
parent = current->parent;
}
if (parent) {
return {parent->value};
}
return {};
}
template <typename K, typename V>
Optional<Ref<V>> BinaryTree<K, V>::Successor(K key) {
auto current = FindOrInsertionParent(key);
if (current.empty()) {
return {};
}
// The case where the current is the insertion parent and
// the predecessor is unique. If the key was going to be
// inserted as the left child, it shares its predecessor with the parent.
if (current->key > key) {
return Optional<Ref<V>>(current->value);
}
// Case where the predecessor is below us in the tree.
if (current->right) {
current = current->right;
while (current->left) {
current = current->left;
}
return {current->value};
}
// Case where the predecessor is above us in the tree.
auto parent = current->parent;
while (parent && (parent->right == current)) {
current = parent;
parent = current->parent;
}
if (parent) {
return {parent->value};
}
return {};
}
template <typename K, typename V>
Optional<Ref<V>> BinaryTree<K, V>::Find(K key) {
auto current = FindOrInsertionParent(key);
if (current.empty()) {
return {};
}
if (current->key == key) {
return Optional<Ref<V>>(current->value);
}
return {};
}
template <typename K, typename V>
RefPtr<typename BinaryTree<K, V>::BinaryNode>
BinaryTree<K, V>::FindOrInsertionParent(K key) {
if (root_.empty()) {
return nullptr;
}
auto current = root_;
while (true) {
if (key == current->key) {
return current;
} else if (key < current->key) {
if (!current->left) {
return current;
}
current = current->left;
} else {
if (!current->right) {
return current;
}
current = current->right;
}
}
}
template <typename K, typename V>
void StrFormatValue(StringBuilder& builder, const BinaryTree<K, V>& value,
StringView opts) {
value.DebugTreeIntoStr(builder);
}
template <typename K, typename V>
void BinaryTree<K, V>::DebugTreeIntoStr(StringBuilder& builder) const {
DebugNodeIntoString(builder, 0, root_);
}
template <typename K, typename V>
void BinaryTree<K, V>::DebugNodeIntoString(StringBuilder& builder,
uint64_t indent_level,
const RefPtr<BinaryNode>& node) {
if (node.empty()) {
return;
}
for (uint64_t i = 0; i < indent_level; i++) {
builder.PushBack('\t');
}
StrFormatValue(builder, node->value, "");
builder.PushBack('\n');
if (node->left) {
builder.PushBack('L');
DebugNodeIntoString(builder, indent_level + 1, node->left);
}
if (node->right) {
builder.PushBack('R');
DebugNodeIntoString(builder, indent_level + 1, node->right);
}
}
} // namespace glcr