acadia/zion/object/address_space.h

107 lines
3.2 KiB
C++

#pragma once
#include <glacier/container/binary_tree.h>
#include <glacier/memory/ref_ptr.h>
#include <stdint.h>
#include "include/ztypes.h"
#include "memory/user_stack_manager.h"
#include "object/memory_object.h"
class AddressSpace;
template <>
struct KernelObjectTag<AddressSpace> {
static const uint64_t type = KernelObject::ADDRESS_SPACE;
};
// VirtualMemory class holds a memory space for an individual process.
//
// Memory Regions are predefined for simplicity for now. However, in general
// we try not to rely on these regions being static to allow for flexibility in
// the future.
//
// User Regions (Per Process):
// 0x00000000 00000000 - 0x0000000F FFFFFFFF : USER_CODE (64 GiB)
// 0x00000010 00000000 - 0x0000001F FFFFFFFF : USER_HEAP (64 GiB)
// 0x00000020 00000000 - 0x0000002F FFFFFFFF : MEM_MAP (64 GiB)
// 0x00000040 00000000 - 0x0000004F FFFFFFFF : IPC_BUF (64 GiB)
// 0x00007FF0 00000000 - 0x00007FFF FFFFFFFF : USER_STACK (64 GiB)
//
// Kernel Regions (Shared across processes):
// 0xFFFF8000 00000000 - 0xFFFF800F FFFFFFFF : HHDM (64 GiB)
// 0xFFFFFFFF 40000000 - 0xFFFFFFFF 7FFFFFFF : KERNEL_HEAP (1 GiB)
// 0xFFFFFFFF 80000000 - 0xFFFFFFFF 80FFFFFF : KERNEL_CODE (16 MiB)
// 0xFFFFFFFF 90000000 - 0xFFFFFFFF 9FFFFFFF : KERNEL_STACK (256 MiB)
class AddressSpace : public KernelObject {
public:
uint64_t TypeTag() override { return KernelObject::ADDRESS_SPACE; }
static uint64_t DefaultPermissions() {
return kZionPerm_Write | kZionPerm_Transmit;
}
enum MemoryType {
UNSPECIFIED,
UNMAPPED,
USER_CODE,
USER_HEAP,
MEM_MAP,
IPC_BUF,
USER_STACK,
HHDM,
KERNEL_HEAP,
KERNEL_CODE,
KERNEL_STACK,
};
static glcr::RefPtr<AddressSpace> ForRoot();
AddressSpace();
AddressSpace(const AddressSpace&) = delete;
AddressSpace(AddressSpace&&) = delete;
uint64_t cr3() { return cr3_; }
// User Mappings.
uint64_t AllocateUserStack();
uint64_t GetNextMemMapAddr(uint64_t size);
// Maps in a memory object at a specific address.
// Note this is unsafe for now as it may clobber other mappings.
void MapInMemoryObject(uint64_t vaddr,
const glcr::RefPtr<MemoryObject>& mem_obj);
uint64_t MapInMemoryObject(const glcr::RefPtr<MemoryObject>& mem_obj);
// Kernel Mappings.
uint64_t* AllocateKernelStack();
// Returns true if the page fault has been resolved.
bool HandlePageFault(uint64_t vaddr);
private:
friend class glcr::MakeRefCountedFriend<AddressSpace>;
AddressSpace(uint64_t cr3) : cr3_(cr3) {}
uint64_t cr3_ = 0;
UserStackManager user_stacks_;
uint64_t next_memmap_addr_ = 0x20'00000000;
struct MemoryMapping {
uint64_t vaddr;
glcr::RefPtr<MemoryObject> mem_obj;
};
// TODO: Consider adding a red-black tree implementation here.
// As is this tree functions about as well as a linked list
// because mappings are likely to be added in near-perfect ascedning order.
// Also worth considering creating a special tree implementation for
// just this purpose, or maybe a BinaryTree implementation that accepts
// ranges rather than a single key.
glcr::BinaryTree<uint64_t, MemoryMapping> memory_mappings_;
glcr::Optional<glcr::Ref<MemoryMapping>> GetMemoryMappingForAddr(
uint64_t vaddr);
};