acadia/zion/object/thread.cpp

149 lines
4.0 KiB
C++

#include "object/thread.h"
#include "common/gdt.h"
#include "common/stack_unwind.h"
#include "debug/debug.h"
#include "memory/kernel_vmm.h"
#include "memory/paging_util.h"
#include "object/process.h"
#include "scheduler/process_manager.h"
#include "scheduler/scheduler.h"
#define K_THREAD_DEBUG 0
namespace {
extern "C" void jump_user_space(uint64_t rip, uint64_t rsp, uint64_t arg1,
uint64_t arg2);
extern "C" void thread_init() {
asm("sti");
gScheduler->CurrentThread()->Init();
panic("Reached end of thread.");
}
} // namespace
glcr::RefPtr<Thread> Thread::RootThread(Process& root_proc) {
return glcr::MakeRefCounted<Thread>(root_proc);
}
glcr::RefPtr<Thread> Thread::Create(Process& proc, uint64_t tid) {
return glcr::MakeRefCounted<Thread>(proc, tid);
}
Thread::Thread(Process& proc, uint64_t tid)
: process_(proc), id_(tid), fx_data_(new uint8_t[520]) {
uint64_t* stack_ptr =
reinterpret_cast<uint64_t*>(proc.vmas()->AllocateKernelStack());
// 0: rip
*(stack_ptr) = reinterpret_cast<uint64_t>(thread_init);
// 1-4: rax, rcx, rdx, rbx
// 5: rbp
*(stack_ptr - 5) = reinterpret_cast<uint64_t>(stack_ptr + 1);
// 6-15: rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15
// 16: cr3
*(stack_ptr - 16) = proc.vmas()->cr3();
rsp0_ = reinterpret_cast<uint64_t>(stack_ptr - 16);
rsp0_start_ = reinterpret_cast<uint64_t>(stack_ptr);
// Super hacky way to align to 16 bits.
if (reinterpret_cast<uint64_t>(fx_data_) & 0x8) {
fx_data_ += 8;
}
}
uint64_t Thread::pid() const { return process_.id(); }
void Thread::Start(uint64_t entry, uint64_t arg1, uint64_t arg2) {
rip_ = entry;
arg1_ = arg1;
arg2_ = arg2;
state_ = RUNNABLE;
// Get from parent to avoid creating a new shared ptr.
gScheduler->Enqueue(process_.GetThread(id_));
}
void Thread::Init() {
if (is_kernel_) {
((void (*)(void*))rip_)(reinterpret_cast<void*>(arg1_));
panic("Returned from kernel thread.");
}
#if K_THREAD_DEBUG
dbgln("Thread start.", pid(), id_);
#endif
auto stack_or = process_.vmas()->AllocateUserStack();
if (!stack_or.ok()) {
panic("Unable to allocate user stack: {}", stack_or.error());
}
user_stack_base_ = stack_or.value();
uint64_t rsp = user_stack_base_ + kUserStackSize - 0x8;
*reinterpret_cast<uint64_t*>(rsp) = kStackBaseSentinel;
SetRsp0(rsp0_start_);
jump_user_space(rip_, rsp, arg1_, arg2_);
}
void Thread::SetState(State state) {
if (IsDying()) {
panic("Cannot set state on dying thread.");
}
state_ = state;
}
void Thread::Exit() {
#if K_THREAD_DEBUG
dbgln("Exiting");
#endif
auto curr_thread = gScheduler->CurrentThread();
if (curr_thread->tid() != id_) {
panic("Thread::Exit called from [{}.{}] on [{}.{}]", curr_thread->pid(),
curr_thread->tid(), pid(), tid());
}
gProcMan->CleanupThread(curr_thread);
state_ = CLEANUP;
gScheduler->Yield();
}
void Thread::Cleanup() {
if (gScheduler->CurrentThread().get() == this) {
panic("Cannot cleanup thread from itself.");
}
if (state_ != CLEANUP) {
dbgln("WARN: Cleaning up thread with non-cleanup state {}",
(uint64_t)state_);
state_ = CLEANUP;
}
// 1. Release User Stack
PANIC_ON_ERR(process_.vmas()->FreeUserStack(user_stack_base_),
"Unable to free user stack.");
// 2. Unblock waiting threads.
while (blocked_threads_.size() != 0) {
auto thread = blocked_threads_.PopFront();
thread->SetState(Thread::RUNNABLE);
gScheduler->Enqueue(thread);
}
// 3. Release Kernel Stack
KernelVmm::FreeKernelStack(rsp0_start_);
state_ = FINISHED;
}
void Thread::Wait() {
// TODO: We need synchronization code here.
// Race condition is for A waiting on B.
// 1. A checks if B is finished.
// 2. Context Switch A -> B
// 3. B finishes.
// 4. Context Switch B -> A
// 5. A forever blocks on B.
if (IsDying()) {
return;
}
auto thread = gScheduler->CurrentThread();
thread->SetState(Thread::BLOCKED);
blocked_threads_.PushBack(thread);
gScheduler->Yield();
}