acadia/zion/memory/kernel_heap.cpp

108 lines
2.9 KiB
C++

#include "memory/kernel_heap.h"
#include "debug/debug.h"
#include "memory/paging_util.h"
#define K_HEAP_DEBUG 0
namespace {
static KernelHeap* gKernelHeap = nullptr;
KernelHeap& GetKernelHeap() {
if (!gKernelHeap) {
panic("Kernel Heap not initialized.");
}
return *gKernelHeap;
}
} // namespace
KernelHeap::KernelHeap(uint64_t lower_bound, uint64_t upper_bound)
: next_slab_addr_(lower_bound),
first_unsized_addr_(lower_bound + (upper_bound - lower_bound) / 2),
next_addr_(first_unsized_addr_),
upper_bound_(upper_bound) {
gKernelHeap = this;
}
void KernelHeap::InitializeSlabAllocators() {
slab_8_ = glcr::MakeUnique<SlabAllocator<8>>(next_slab_addr_, 4);
next_slab_addr_ += 0x4000;
slab_16_ = glcr::MakeUnique<SlabAllocator<16>>(next_slab_addr_, 6);
next_slab_addr_ += 0x6000;
slab_32_ = glcr::MakeUnique<SlabAllocator<32>>(next_slab_addr_, 6);
next_slab_addr_ += 0x6000;
}
void* KernelHeap::Allocate(uint64_t size) {
#if K_HEAP_DEBUG
dbgln("Alloc (%x)", size);
#endif
if ((size <= 8) && slab_8_) {
auto ptr_or = slab_8_->Allocate();
if (ptr_or.ok()) {
return ptr_or.value();
}
dbgln("Failed allocation (slab 8): %x", ptr_or.error());
}
if ((size <= 16) && slab_16_) {
auto ptr_or = slab_16_->Allocate();
if (ptr_or.ok()) {
return ptr_or.value();
}
dbgln("Failed allocation (slab 16): %x", ptr_or.error());
}
if ((size <= 32) && slab_32_) {
auto ptr_or = slab_32_->Allocate();
if (ptr_or.ok()) {
return ptr_or.value();
}
dbgln("Failed allocation (slab 32): %x", ptr_or.error());
}
if (next_addr_ + size >= upper_bound_) {
panic("Kernel Heap Overrun (next, size, max): %m, %x, %m", next_addr_, size,
upper_bound_);
}
#if K_HEAP_DEBUG
RecordSize(size);
#endif
EnsureResident(next_addr_, size);
uint64_t address = next_addr_;
next_addr_ += size;
return reinterpret_cast<void*>(address);
}
void KernelHeap::DumpDistribution() {
#if K_HEAP_DEBUG
uint64_t* distributions = gKernelHeap->distributions;
dbgln("<=4B: %u", distributions[0]);
dbgln("<=8B: %u", distributions[1]);
dbgln("<=16B: %u", distributions[2]);
dbgln("<=32B: %u", distributions[3]);
dbgln("<=64B: %u", distributions[4]);
dbgln("<=128B: %u", distributions[5]);
dbgln("<=256B: %u", distributions[6]);
dbgln("<=512B: %u", distributions[7]);
dbgln("<=1KiB: %u", distributions[8]);
dbgln("<=2KiB: %u", distributions[9]);
dbgln("<=4KiB: %u", distributions[10]);
dbgln("> 4KiB: %u", distributions[11]);
#endif
}
void KernelHeap::RecordSize(uint64_t size) {
size >>= 3;
uint64_t index = 0;
while (size && index < 11) {
size >>= 1;
index++;
}
distributions[index]++;
}
void* operator new(uint64_t size) { return GetKernelHeap().Allocate(size); }
void* operator new[](uint64_t size) { return GetKernelHeap().Allocate(size); }
void operator delete(void*, uint64_t size) {}
void operator delete[](void*) {}